Articles de revues sur le sujet « Cobaltite de calcium »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Cobaltite de calcium.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Cobaltite de calcium ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Yu, Jincheng, et Robert Freer. « Calcium cobaltite, a promising oxide for energy harvesting : effective strategies toward enhanced thermoelectric performance ». Journal of Physics : Energy 4, no 2 (15 mars 2022) : 022001. http://dx.doi.org/10.1088/2515-7655/ac5172.

Texte intégral
Résumé :
Abstract Thermoelectric (TE) materials are able to generate power from waste heat and thereby provide an alternative source of sustainable energy. Calcium cobaltite is a promising p-type TE oxide because of its intrinsically low thermal conductivity arising from the misfit-layered structure. Its structural framework contains two sub-layers with different incommensurate periodicities, offering different sites for substituting elements; the plate-like grain structure contributes to texture development, thereby providing opportunities to modulate the TE response. In this topical review, we briefly introduce the misfit crystal structure of calcium cobaltite and summarize three efficient strategies to enhance the TE performance, namely (a) elemental doping, (b) optimization of fabrication route, and (c) composite design. For each strategy, examples are presented and enhancing mechanisms are discussed. The roles of dopants, processing routes and phase composition are identified to provide insights into processing-microstructure-property relationships for calcium cobaltite based materials. We outline some of the challenges that still need to be addressed and hope that the proposed strategies can be exploited in other TE systems.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kim, Dong-Wan, Young-Dae Ko, Jong-Sung Park, Hae-June Je, Ji-Won Son et Joosun Kim. « Electrochemical Performance of Calcium Cobaltite Nano-Plates ». Journal of Nanoscience and Nanotechnology 9, no 7 (1 juillet 2009) : 4056–60. http://dx.doi.org/10.1166/jnn.2009.m10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Romo-De-La-Cruz, C., L. Liang, S. A. Paredes Navia, Y. Chen, J. Prucz et X. Song. « Role of oversized dopant potassium on the nanostructure and thermoelectric performance of calcium cobaltite ceramics ». Sustainable Energy & ; Fuels 2, no 4 (2018) : 876–81. http://dx.doi.org/10.1039/c7se00612h.

Texte intégral
Résumé :
The impact of the non-stoichiometric addition of potassium (K) on the nanostructure and thermoelectric performance of misfit layered calcium cobaltite (Ca3Co4O9) ceramics is reported.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Baily, S. A., et M. B. Salamon. « Anomalous Hall effect of calcium-doped lanthanum cobaltite films ». Journal of Applied Physics 93, no 10 (15 mai 2003) : 8316–18. http://dx.doi.org/10.1063/1.1540183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lee, Hwasoo, Felipe Caliari et Sanjay Sampath. « Thermoelectric properties of plasma sprayed of calcium cobaltite (Ca2Co2O5) ». Journal of the European Ceramic Society 39, no 13 (octobre 2019) : 3749–55. http://dx.doi.org/10.1016/j.jeurceramsoc.2019.05.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sopicka-Lizer, Małgorzata, Paweł Smaczyński, Karolina Kozłowska, Ewa Bobrowska-Grzesik, Julian Plewa et Horst Altenburg. « Preparation and characterization of calcium cobaltite for thermoelectric application ». Journal of the European Ceramic Society 25, no 12 (janvier 2005) : 1997–2001. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Srepusharawoot, Pornjuk, Supree Pinitsoontorn et Santi Maensiri. « Electronic structure of iron-doped misfit-layered calcium cobaltite ». Computational Materials Science 114 (mars 2016) : 64–71. http://dx.doi.org/10.1016/j.commatsci.2015.12.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tang, G. D., H. H. Guo, T. Yang, D. W. Zhang, X. N. Xu, L. Y. Wang, Z. H. Wang, H. H. Wen, Z. D. Zhang et Y. W. Du. « Anisotropic thermopower and magnetothermopower in a misfit-layered calcium cobaltite ». Applied Physics Letters 98, no 20 (16 mai 2011) : 202109. http://dx.doi.org/10.1063/1.3592831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sekak, Khairunnadim Ahmad, et Adrian Lowe. « Structural and Thermal Characterization of Calcium Cobaltite Electrospun Nanostructured Fibers ». Journal of the American Ceramic Society 94, no 2 (28 septembre 2010) : 611–19. http://dx.doi.org/10.1111/j.1551-2916.2010.04106.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Klyndyuk, A. I., et I. V. Matsukevich. « Synthesis and properties of disubstituted derivatives of layered calcium cobaltite ». Glass Physics and Chemistry 41, no 5 (septembre 2015) : 545–50. http://dx.doi.org/10.1134/s1087659615050077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Faaland, Sonia, Mari-Ann Einarsrud et Tor Grande. « Reactions between Calcium- and Strontium-Substituted Lanthanum Cobaltite Ceramic Membranes and Calcium Silicate Sealing Materials ». Chemistry of Materials 13, no 3 (mars 2001) : 723–32. http://dx.doi.org/10.1021/cm991184n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Carvillo, Paulo, Yun Chen, Cullen Boyle, Paul N. Barnes et Xueyan Song. « Thermoelectric Performance Enhancement of Calcium Cobaltite through Barium Grain Boundary Segregation ». Inorganic Chemistry 54, no 18 (11 septembre 2015) : 9027–32. http://dx.doi.org/10.1021/acs.inorgchem.5b01296.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Murai, Kei-Ichiro, Shuhei Kori, Shun Nakai et Toshihiro Moriga. « Effect of thermoelectric material of Ca or Fe-doped LaCoO3 ». International Journal of Modern Physics B 32, no 19 (18 juillet 2018) : 1840037. http://dx.doi.org/10.1142/s0217979218400374.

Texte intégral
Résumé :
As the Perovskite-type Lanthanum Cobalt Oxide of LaCoO3 is nontoxic and thermally stable even at high temperature, this material is expected as a candidate for thermoelectric applications. The thermoelectric performance of a material is often evaluated by the dimensionless figure-of-merit, ZT (=S[Formula: see text]T/[Formula: see text]), or S[Formula: see text] in the ZT equation. S[Formula: see text] shows the electrical characteristic as a Power factor (PF). It has been reported Seebeck coefficient of LaCoO3 is higher than other oxide materials at room temperature even though electrical conductivity and ZT are lower values. In this study, calcium-doped lanthanum cobaltite La[Formula: see text]Ca[Formula: see text]CoO3 (x = 0.00, 0.05, 0.10 and 0.15) and iron-doped lanthanum cobaltite LaCo[Formula: see text]Fe[Formula: see text]O3 (y = 0.05, 0.10 and 0.15) have been prepared by solid-phase process. The X-ray diffraction patterns of the calcium-doped samples and iron-doped samples show cubic perovskite structure. Electric conductivities were improved by Ca or Fe substitution and showed a tendency to increase with increasing the temperature. The sample substituted with Fe 5 mol.% showed the maximum PF, 0.510 ([Formula: see text] W/K2m) at 548 K, and the sample substituted with Ca 15 mol.% showed the maximum PF, 0.152 ([Formula: see text] W/K2m) at 498 K.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Machado, R. A. M., M. V. Gelfuso et D. Thomazini. « Thermoelectric properties of barium doped calcium cobaltite obtained by simplified chemical route ». Cerâmica 67, no 381 (mars 2021) : 90–97. http://dx.doi.org/10.1590/0366-69132021673813034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ermakova, E. A., S. S. Strel’nikova, A. S. Anokhin, A. N. Rogova et D. N. Sovyk. « Sol-Gel Synthesis of Lanthanum Cobaltite Powders with Added Strontium and Calcium ». Glass and Ceramics 77, no 11-12 (mars 2021) : 438–41. http://dx.doi.org/10.1007/s10717-021-00327-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Abbas, Yasir, Muhammad Kamran, Tanveer Akhtar et Muhammad Anis-ur-Rehman. « Study of Temperature Dependent Dielectric Spectroscopy of Cerium Doped Bismuth Calcium Cobaltite ». Materials Science Forum 1067 (10 août 2022) : 197–203. http://dx.doi.org/10.4028/p-292841.

Texte intégral
Résumé :
Bulk specimens of Bi2Ca2-xCexCoO6 (x = 0.00, 0.20) were prepared in pure phase form using co-precipitation method. The monoclinic structure of all samples is revealed via X-Ray Diffraction (XRD) analysis. The crystallite size, lattice constant, lattice strain, and volume of the unit cell were all determined using XRD analysis. On sintered at 750°C for 2 hours, the average crystallite size was 32-38nm. The precision analyzer was used to determine the loss tangent tan (δ), dielectric constant (ε'), AC conductivity (σac) in the 20Hz-3MHz range. The conduction process of electrical conductivity was also investigated utilizing the Jonscher Power Law.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Klyndyuk, A. I., N. S. Krasutskaya et A. A. Khort. « Synthesis and Properties of Ceramics Based on a Layered Bismuth Calcium Cobaltite ». Inorganic Materials 54, no 5 (mai 2018) : 509–14. http://dx.doi.org/10.1134/s0020168518050059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Shi, Zongmo, Can Zhang, Taichao Su, Jie Xu, Jihong Zhu, Haiyan Chen, Tong Gao et al. « Boosting the Thermoelectric Performance of Calcium Cobaltite Composites through Structural Defect Engineering ». ACS Applied Materials & ; Interfaces 12, no 19 (22 avril 2020) : 21623–32. http://dx.doi.org/10.1021/acsami.0c03297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Boyle, Cullen, Paulo Carvillo, Yun Chen, Ever J. Barbero, Dustin Mcintyre et Xueyan Song. « Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite ». Journal of the European Ceramic Society 36, no 3 (février 2016) : 601–7. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Song, Xueyan, Dustin McIntyre, Xueqin Chen, Ever J. Barbero et Yun Chen. « Phase evolution and thermoelectric performance of calcium cobaltite upon high temperature aging ». Ceramics International 41, no 9 (novembre 2015) : 11069–74. http://dx.doi.org/10.1016/j.ceramint.2015.05.052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bresch, Sophie, Björn Mieller, Daniela Schönauer‐Kamin, Ralf Moos, Timmy Reimann, Fabien Giovannelli et Torsten Rabe. « Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite ». Journal of the American Ceramic Society 104, no 2 (5 novembre 2020) : 917–27. http://dx.doi.org/10.1111/jace.17541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Yu, Jincheng, Kan Chen, Feridoon Azough, Diana T. Alvarez-Ruiz, Michael J. Reece et Robert Freer. « Enhancing the Thermoelectric Performance of Calcium Cobaltite Ceramics by Tuning Composition and Processing ». ACS Applied Materials & ; Interfaces 12, no 42 (7 octobre 2020) : 47634–46. http://dx.doi.org/10.1021/acsami.0c14916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Yu, Shancheng, Guiping Zhang, Han Chen et Lucun Guo. « A novel post-treatment to calcium cobaltite cathode for solid oxide fuel cells ». International Journal of Hydrogen Energy 43, no 4 (janvier 2018) : 2436–42. http://dx.doi.org/10.1016/j.ijhydene.2017.12.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bresch, Sophie, Björn Mieller, Christian Selleng, Thomas Stöcker, Ralf Moos et Torsten Rabe. « Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 ». Journal of Electroceramics 40, no 3 (27 février 2018) : 225–34. http://dx.doi.org/10.1007/s10832-018-0124-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Silva, Thayse, Vinícius Silva, Jakeline Santos, Thiago Simões et Daniel Macedo. « Effect of Cu-doping on the activity of calcium cobaltite for oxygen evolution reaction ». Materials Letters 298 (septembre 2021) : 130026. http://dx.doi.org/10.1016/j.matlet.2021.130026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Klyndyuk, A. I., E. A. Chizhova, E. A. Tugova, R. S. Latypov, O. N. Karpov et M. V. Tomkovich. « Thermoelectric Multiphase Ceramics Based on Layered Calcium Cobaltite, as Synthesized Using Two-Stage Sintering ». Glass Physics and Chemistry 46, no 6 (novembre 2020) : 562–69. http://dx.doi.org/10.1134/s1087659620060127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Aswathy, P. K., R. Ganga et Deepthi N Rajendran. « Impact of A-site calcium on structural and electrical properties of samarium cobaltite perovskites ». Solid State Communications 350 (juillet 2022) : 114748. http://dx.doi.org/10.1016/j.ssc.2022.114748.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yu, Jincheng, Mikko Nelo, Xiaodong Liu, Shouqi Shao, Bing Wang, Sarah J. Haigh, Heli Jantunen et Robert Freer. « Enhancing the thermoelectric performance of cold sintered calcium cobaltite ceramics through optimised heat-treatment ». Journal of the European Ceramic Society 42, no 9 (août 2022) : 3920–28. http://dx.doi.org/10.1016/j.jeurceramsoc.2022.03.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ko, Young-Dae, Jin-Gu Kang, Kyung Jin Choi, Jae-Gwan Park, Jae-Pyoung Ahn, Kyung Yoon Chung, Kyung-Wan Nam, Won-Sub Yoon et Dong-Wan Kim. « High rate capabilities induced by multi-phasic nanodomains in iron-substituted calcium cobaltite electrodes ». Journal of Materials Chemistry 19, no 13 (2009) : 1829. http://dx.doi.org/10.1039/b817120c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zhang, Cuijuan, Xinyue Zhang, Katelynn Daly, Curtis P. Berlinguette et Simon Trudel. « Water Oxidation Catalysis : Tuning the Electrocatalytic Properties of Amorphous Lanthanum Cobaltite through Calcium Doping ». ACS Catalysis 7, no 9 (24 août 2017) : 6385–91. http://dx.doi.org/10.1021/acscatal.7b02145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Tani, Toshihiko, Hiroshi Itahara, Hiroaki Kadoura et Ryoji Asahi. « Crystallographic Orientation Analysis on Calcium Cobaltite Ceramic Grains Textured by Reactive-Templated Grain Growth ». International Journal of Applied Ceramic Technology 4, no 4 (août 2007) : 318–25. http://dx.doi.org/10.1111/j.1744-7402.2007.02146.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Yang, Wenchao, Huicheng Zhang, Jiaqing Tao, Dongdong Zhang, Dewei Zhang, Zhihe Wang et Guodong Tang. « Optimization of the spin entropy by incorporating magnetic ion in a misfit-layered calcium cobaltite ». Ceramics International 42, no 8 (juin 2016) : 9744–48. http://dx.doi.org/10.1016/j.ceramint.2016.03.065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Klyndyuk, A. I., E. A. Chizhova et S. V. Shevchenko. « Spin–state transition in the layered barium cobaltite derivatives and their thermoelectric properties ». Chimica Techno Acta 7, no 1 (25 mars 2020) : 26–33. http://dx.doi.org/10.15826/chimtech.2020.7.1.04.

Texte intégral
Résumé :
Ba1.9Me0.1Co9O14 (Me = Ba, Sr, Ca) (BCO) layered cobaltites were prepared by means of solid-state reactions method. Crystal structure, microstructure, thermal expansion, electrical conductivity, and thermo-EMF for the obtained oxides were studied; the values of their linear thermal expansion coefficient, activation energy of electrical transport, and power factor values were calculated. It was found that BCO are p-type semiconductors, in which the spin-state transition occurs within 460-700 K temperature interval due to change in spin state of cobalt ions, which accompanied the sharp increase in electrical conductivity, activation energy of electrical conductivity, and linear thermal expansion coefficient, while thermo-EMF coefficient decreased. Partial substitution of barium by strontium or calcium in BCO leads to the increase in spin-state transition temperature and electrical conductivity of the samples, and, at the same time, thermo-EMF coefficient; consequently, their power factor values decrease.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Yu, Jincheng, Yabin Chang, Ewa Jakubczyk, Bing Wang, Feridoon Azough, Robert Dorey et Robert Freer. « Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and doping ». Journal of the European Ceramic Society 41, no 9 (août 2021) : 4859–69. http://dx.doi.org/10.1016/j.jeurceramsoc.2021.03.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yu, Jincheng, Xiaodong Liu, Wei Xiong, Bing Wang, Michael J. Reece et Robert Freer. « The effects of dual-doping and fabrication route on the thermoelectric response of calcium cobaltite ceramics ». Journal of Alloys and Compounds 902 (mai 2022) : 163819. http://dx.doi.org/10.1016/j.jallcom.2022.163819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Rubešová, K., V. Jakeš, O. Jankovský, M. Lojka et D. Sedmidubský. « Bismuth calcium cobaltite thermoelectrics : A study of precursor reactivity and its influence on the phase formation ». Journal of Physics and Chemistry of Solids 164 (mai 2022) : 110631. http://dx.doi.org/10.1016/j.jpcs.2022.110631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Bochmann, Arne, Timmy Reimann, Thomas Schulz, Steffen Teichert et Jörg Töpfer. « Transverse thermoelectric multilayer generator with bismuth-substituted calcium cobaltite : Design optimization through variation of tilt angle ». Journal of the European Ceramic Society 39, no 9 (août 2019) : 2923–29. http://dx.doi.org/10.1016/j.jeurceramsoc.2019.03.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Schulz, Thomas, Timmy Reimann, Arne Bochmann, Andre Vogel, Beate Capraro, Björn Mieller, Steffen Teichert et Jörg Töpfer. « Sintering behavior, microstructure and thermoelectric properties of calcium cobaltite thick films for transversal thermoelectric multilayer generators ». Journal of the European Ceramic Society 38, no 4 (avril 2018) : 1600–1607. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.11.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wu, Jiajing, Jiancheng Tang, Xiaoxiao Wei, Nan Ye et Fangxin Yu. « Preparation process and mechanism of ultra-fine spherical cobalt powders by hydrogen reduction of calcium cobaltite ». Journal of Alloys and Compounds 726 (décembre 2017) : 1119–23. http://dx.doi.org/10.1016/j.jallcom.2017.08.070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ramasubramaniam, Ashwin. « First-principles Studies of the Electronic and Thermoelectric Properties of Misfit Layered Phases of Calcium Cobaltite ». Israel Journal of Chemistry 57, no 6 (9 novembre 2016) : 522–28. http://dx.doi.org/10.1002/ijch.201600065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Araújo, Allan J. M., Francisco J. A. Loureiro, Laura I. V. Holz, João P. F. Grilo, Daniel A. Macedo, Carlos A. Paskocimas et Duncan P. Fagg. « Composite of calcium cobaltite with praseodymium-doped ceria : A promising new oxygen electrode for solid oxide cells ». International Journal of Hydrogen Energy 46, no 55 (août 2021) : 28258–69. http://dx.doi.org/10.1016/j.ijhydene.2021.06.049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Klyndyuk, A. I., I. V. Matsukevich, M. Janek, E. A. Chizhova, Z. Lenčéš, O. Hanzel et P. Veteška. « Effect of Copper Additions on the Thermoelectric Properties of a Layered Calcium Cobaltite Prepared by Hot Pressing ». Inorganic Materials 56, no 11 (novembre 2020) : 1198–205. http://dx.doi.org/10.1134/s0020168520110059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Prasoetsopha, Natkrita, Supree Pinitsoontorn, Atipong Bootchanont, Pinit Kidkhunthod, Pornjuk Srepusharawoot, Teerasak Kamwanna, Vittaya Amornkitbamrung, Ken Kurosaki et Shinsuke Yamanaka. « Local structure of Fe in Fe-doped misfit-layered calcium cobaltite : An X-ray absorption spectroscopy study ». Journal of Solid State Chemistry 204 (août 2013) : 257–65. http://dx.doi.org/10.1016/j.jssc.2013.05.038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Mishra, Avinna, Aneeya K. Samantara, Swagatika Kamila, Bikash Kumar Jena, U. Manju et Sarama Bhattacharjee. « Non-precious transition metal oxide calcium cobaltite : Effect of dopant on oxygen/hydrogen evolution reaction and thermoelectric properties ». Materials Today Communications 15 (juin 2018) : 48–54. http://dx.doi.org/10.1016/j.mtcomm.2018.02.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gholizadeh, Ahmad, Hamid Yousefi, Azim Malekzadeh et Faiz Pourarian. « Calcium and strontium substituted lanthanum manganite–cobaltite [La1−(Ca,Sr) Mn0.5Co0.5O3] nano-catalysts for low temperature CO oxidation ». Ceramics International 42, no 10 (août 2016) : 12055–63. http://dx.doi.org/10.1016/j.ceramint.2016.04.134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Boyle, Cullen, Liang Liang, Yun Chen, Jacky Prucz, Ercan Cakmak, Thomas R. Watkins, Edgar Lara-Curzio et Xueyan Song. « Competing dopants grain boundary segregation and resultant seebeck coefficient and power factor enhancement of thermoelectric calcium cobaltite ceramics ». Ceramics International 43, no 14 (octobre 2017) : 11523–28. http://dx.doi.org/10.1016/j.ceramint.2017.06.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bayata, Fatma. « Enhancement of high temperature thermoelectric performance of cobaltite based materials for automotive exhaust thermoelectric generators ». Smart Materials and Structures 31, no 2 (27 décembre 2021) : 025017. http://dx.doi.org/10.1088/1361-665x/ac4120.

Texte intégral
Résumé :
Abstract Thermoelectric (TE) generators can directly convert exhaust waste heat into electricity in vehicles. However, the low conversion efficiency of TE generators is the main obstacle to their commercialization in automotive. Their efficiency mainly depends on the performance of the used materials which is quantified by the figure of merit (ZT value). In the present study, single- and co-doped calcium cobaltites (CCO) with rare-earth (Tb) and transition metals (Cu, Fe, Ni, Mn, Cr) were produced using sol–gel technique in order to improve their high temperature TE properties for heat recovery in exhaust manifold applications. By the combined effect of doping approach and the production technique used in this study, a remarkable decrease in the grain size of CCO was obtained, and thus its thermal conductivity dramatically decreased. Besides, thermopower values were improved significantly. The reduction in thermal conductivity and the increase in thermopower led to an enhancement in ZT value of CCO ceramics. Among all the co-doped samples, Tb–Cu co-doped CCO displayed the maximum ZT value of 0.116 at 873 K which is 2.5 times larger than that of pure CCO. The high thermal stability and the enhanced TE performance make Tb–Cu co-doped CCO material a potential candidate for heat recovery in automotive exhaust TE generators.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Klyndyuk, A. I., E. A. Chizhova, R. S. Latypov, S. V. Shevchenko et V. M. Kononovich. « Effect of the Addition of Copper Particles on the Thermoelectric Properties of the Ca3Co4O9 + δ Ceramics Produced by Two-Step Sintering ». Russian Journal of Inorganic Chemistry 67, no 2 (février 2022) : 237–44. http://dx.doi.org/10.1134/s0036023622020073.

Texte intégral
Résumé :
Abstract Composite thermoelectric materials based on layered calcium cobaltite Ca3Co4O9 + δ doped with copper particles were synthesized by two-step sintering, and their microstructure, and electrotransport and thermoelectric properties were studied. It was determined that the introduction of copper particles into the ceramics improves their sinterability at moderate sintering temperatures (Tsint ≤ 1273 K), leading to a decrease in the porosity of the samples and an increase in their electrical conductivity and power factor, whereas the oxidation of copper to less conductive copper(II) oxide significantly decreases the electrical conductivity and power factor of the ceramics sintered at elevated temperatures (Tsint ≥ 1373 K). The power factor is maximum for the Ca3Co4O9 + δ + 3 wt % Cu ceramic sintered at 1273 K (335 μW/(m K2) at a temperature of 1100 K), which is by a factor of 2.3 higher than the power factor of the base material Ca3Co4O9 + δ with the same thermal history (145 μW/(m K2) at 1100 K) and more than 3 times higher than the power factor of the Ca3Co4O9+δ ceramic synthesized by the conventional solid-phase method.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bangert, U., U. Falke et A. Weidenkaff. « Nature of domains in lanthanum calcium cobaltite perovskite revealed by atomic resolution Z-contrast and electron energy loss spectroscopy ». Materials Science and Engineering : B 133, no 1-3 (août 2006) : 30–36. http://dx.doi.org/10.1016/j.mseb.2006.04.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Dziedzic, Andrzej, Szymon Wójcik, Mirosław Gierczak, Slavko Bernik, Nana Brguljan, Kathrin Reinhardt et Stefan Körner. « Planar Thermoelectric Microgenerators in Application to Power RFID Tags ». Sensors 24, no 5 (2 mars 2024) : 1646. http://dx.doi.org/10.3390/s24051646.

Texte intégral
Résumé :
This paper presents an innovative approach to the integration of thermoelectric microgenerators (μTEGs) based on thick-film thermopiles of planar constantan–silver (CuNi-Ag) and calcium cobaltite oxide–silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (μTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie