Articles de revues sur le sujet « Coaxial Injectors »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Coaxial Injectors.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Coaxial Injectors ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Xu, Jiabao, Ping Jin, Ruizhi Li, Jue Wang et Guobiao Cai. « Numerical Study on Combustion and Atomization Characteristics of Coaxial Injectors for LOX/Methane Engine ». International Journal of Aerospace Engineering 2021 (22 mai 2021) : 1–16. http://dx.doi.org/10.1155/2021/6670813.

Texte intégral
Résumé :
The LOX/methane engine has an admirable performance under a supercritical state. However, the properties of methane change drastically with varying injection temperature. Because the injector can greatly affect the atomization and combustion, this study performed a three-dimensional numerical simulation of atomization, combustion, and heat transfer in a subscale LOX/methane engine to evaluate the effect of the main fluid parameters with different methane injection temperatures and different injectors on atomization performance and combustion performance. The results show that the larger propellant momentum ratio and Weber number can improve the heat flux and combustion stability in shear coaxial injector, while the influence in swirl coaxial injector is relatively small. Moreover, in shear coaxial injector and in swirl coaxial injector, the larger propellant momentum ratio and Weber number can reduce the droplet size, enhance atomization performance, and improve the combustion efficiency. The numerical model provides an economical method to evaluate the main fluid parameters and proposes new design principles of injectors in LOX/methane engine.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Woo, Seongphil, Jungho Lee, Yeoungmin Han et Youngbin Yoon. « Experimental Study of the Combustion Efficiency in Multi-Element Gas-Centered Swirl Coaxial Injectors ». Energies 13, no 22 (19 novembre 2020) : 6055. http://dx.doi.org/10.3390/en13226055.

Texte intégral
Résumé :
The effects of the momentum-flux ratio of propellant upon the combustion efficiency of a gas-centered-swirl-coaxial (GCSC) injector used in the combustion chamber of a full-scale 9-tonf staged-combustion-cycle engine were studied experimentally. In the combustion experiment, liquid oxygen was used as an oxidizer, and kerosene was used as fuel. The liquid oxygen and kerosene burned in the preburner drive the turbine of the turbopump under the oxidizer-rich hot-gas condition before flowing into the GCSC injector of the combustion chamber. The oxidizer-rich hot gas is mixed with liquid kerosene passed through combustion chamber’s cooling channel at the injector outlet. This mixture has a dimensionless momentum-flux ratio that depends upon the dispensing speed of the two fluids. Combustion tests were performed under varying mixture ratios and combustion pressures for different injector shapes and numbers of injectors, and the characteristic velocities and performance efficiencies of the combustion were compared. It was found that, for 61 gas-centered swirl-coaxial injectors, as the moment flux ratio increased from 9 to 23, the combustion-characteristic velocity increased linearly and the performance efficiency increased from 0.904 to 0.938. In addition, excellent combustion efficiency was observed when the combustion chamber had a large number of injectors at the same momentum-flux ratio.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kim, Do-Hun, Jeung-Hwan Shin, In-Chul Lee et Ja-Ye Koo. « Atomizing Characteristics of Coaxial Porous Injectors ». Journal of ILASS-Korea 17, no 1 (30 mars 2012) : 35–44. http://dx.doi.org/10.15435/jilasskr.2012.17.1.035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Anand, Rahul, PR Ajayalal, Vikash Kumar, A. Salih et K. Nandakumar. « Spray and atomization characteristics of gas-centered swirl coaxial injectors ». International Journal of Spray and Combustion Dynamics 9, no 2 (5 août 2016) : 127–40. http://dx.doi.org/10.1177/1756827716660225.

Texte intégral
Résumé :
To achieve uniform and efficient combustion in a rocket engine, a fine uniform spray is needed. The same is achieved by designing an injector with good atomization characteristics. Gas-centered swirl coaxial (GCSC) injector elements have been preferred recently in liquid rocket engines because of an inherent capability to dampen the pressure oscillations in the thrust chamber. The gas-centered swirl coaxial injector chosen for this study is proposed to be used in a semi-cryogenic rocket engine operating with oxidizer rich hot exhaust gases from the pre-burner and liquid kerosene as fuel. In this paper, nine different configurations of gas-centered swirl coaxial injector, sorted out by studying the spray angle and coefficient of discharge with swirl number varying from 9 to 20 and recess ratio of 0.5, 1, and 1.5 are investigated for their atomization characteristics. Spray uniformity, spray cone angle, and droplet size in terms of Sauter mean diameter and mass median diameter are studied at various momentum flux ratios for all configurations. Sauter mean diameter is almost independent of recess ratio, whereas cone angle was inversely proportional to the recess ratio. A finer atomization was observed for injectors of high swirl number but the pressure drop also increased to achieve the same flow rate. An injector of medium swirl number and recess ratio of 1.5 is deemed most fit for above-mentioned application.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lee, Jungho, Ingyu Lee, Seongphil Woo, Yeoungmin Han et Youngbin Yoon. « Experimental Study of Spray and Combustion Characteristics in Gas-Centered Swirl Coaxial Injectors : Influence of Recess Ratio and Gas Swirl ». Aerospace 11, no 3 (8 mars 2024) : 209. http://dx.doi.org/10.3390/aerospace11030209.

Texte intégral
Résumé :
The spray and combustion characteristics of a gas-centered swirl coaxial (GCSC) injector used in oxidizer-rich staged combustion cycle engines were analyzed. The study focused on varying the recess ratio, presence of gas swirl, and swirl direction to improve injector performance. The impact of the recess ratio was assessed by increasing it for gas jet-type injectors with varying momentum ratios. Gas-swirl effects were studied by comparing injectors with and without swirl against a baseline of a low recess ratio gas injection. In atmospheric pressure-spray experiments, injector performance was assessed using backlight photography, cross-sectional imaging with a structured laser illumination planar imaging technique (SLIPI), and droplet analysis using ParticleMaster. Increasing the recess ratio led to reduced spray angle and droplet size, and trends of gas swirl-type injectors were similar to those of high recess ratio gas jet-type injectors. Combustion tests involved fabricating combustion chamber heads equipped with identical injectors, varying only the injector type. Oxidizer-rich combustion gas, produced by a pre-burner, and kerosene served as propellants. Combustion characteristics, including characteristic velocity, combustion efficiency, and heat flux, were evaluated. Elevated recess ratios correlated with increased characteristic velocity and reduced differences in the momentum–flux ratios of injectors. However, increasing the recess ratio yielded diminishing returns on combustion efficiency enhancement beyond a certain threshold. Gas swirling did not augment characteristic velocity but notably influenced heat flux distribution. The trends observed in spray tests were related to combustion characteristics regarding heat flux and combustion efficiency. Additionally, it was possible to estimate changes in the location and shape of the flame according to the characteristics of the injector.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sivakumar, D., et B. N. Raghunandan. « Jet Interaction in Liquid-Liquid Coaxial Injectors ». Journal of Fluids Engineering 118, no 2 (1 juin 1996) : 329–34. http://dx.doi.org/10.1115/1.2817381.

Texte intégral
Résumé :
Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Woo, Seongphil, Jungho Lee, Ingyu Lee, Seunghan Kim, Yeoungmin Han et Youngbin Yoon. « Analyzing Combustion Efficiency According to Spray Characteristics of Gas-Centered Swirl-Coaxial Injector ». Aerospace 10, no 3 (10 mars 2023) : 274. http://dx.doi.org/10.3390/aerospace10030274.

Texte intégral
Résumé :
The momentum flux ratio (MFR) significantly affects the mixing characteristics and combustion efficiency of propellants in rocket engine injectors. The spray characteristics of three gas-centered swirl-coaxial injectors used in a full-scale combustion test were investigated according to the change in the momentum flux ratio. The difference in combustion efficiency was analyzed through the comparison with combustion test results using spray visualization and quantification. The spray cross-sectional shape and droplet distribution were measured using a structured laser illumination planar imaging technique. As the swirl effect was more apparent at a low MFR, the flow rate of the liquid that was sprayed outside was high. The flow rate of the liquid sprayed around the gas injection increased with the MFR. The Sauter mean diameter (SMD) of each injector liquid spray was obtained using the laser shadow imaging method. The SMD decreased as the MFR of all injector types increased, and the injector with a high liquid flow rate and small SMD injected towards the gas center exhibited higher combustion efficiency than the injector with a dominant liquid spray and the large SMD at a large injection angle. The outcomes of the study could help contribute to the increase in the combustion efficiency of the full-scale staged combustion cycle engine combustor.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ahn, Kyubok, Seonghyeon Seo et Hwan-Seok Choi. « Fuel-Rich Combustion Characteristics of Biswirl Coaxial Injectors ». Journal of Propulsion and Power 27, no 4 (juillet 2011) : 864–72. http://dx.doi.org/10.2514/1.b34121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

So, Younseok, Yeoungmin Han et Sejin Kwon. « Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum Ratios ». Energies 14, no 13 (5 juillet 2021) : 4064. http://dx.doi.org/10.3390/en14134064.

Texte intégral
Résumé :
The combustion characteristics of a staged combustion cycle engine with an oxidizer-rich preburner were experimentally studied at different momentum ratios of multi-element injectors. Propellants were simultaneously supplied as a liquid–liquid–liquid system, and an injector was designed in which a swirl coaxial jet is sprayed. The injector burned the propellants in the inner chamber which had a temperature greater than 2000 K. To cool the combustion gas, a liquid oxidizer was supplied to the cooling channel outside the injector. To prevent the turbine blades from melting, the temperature of the combustion gas was maintained below 700 K. To confirm the combustion characteristics at different momentum ratios of the high-temperature combustion gas inside the injector and the low-temperature liquid oxidizer outside the injector, three types of injectors were designed and manufactured with different momentum ratios: MR 3.0, MR 3.3, and MR 3.7. In this study, the results of the combustion test for each type were compared for 30 s. For ORPB-A, a combustion pressure of 18.5 MPaA, fuel mass flow rate of 0.26 kg/s, oxidizer mass flow rate of 15.3 kg/s, and turbine inlet temperature of 686 K were obtained in the combustion stability period of 29.0–29.5 s. The combustion efficiency was 98% for MR 3.0 (ORPB-A), which was superior to that for other momentum ratios. In addition, during the combustion test for MR 3.0, the fluctuations in the characteristic velocity, combustion pressure, and propellant mass flow rate were low, indicating that combustion was stable. The three types of combustion instability were all less than 0.8%, thus confirming that the combustion stability was excellent.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wataru, Miyagi, Miki Takahiro, Matsuoka Tsuneyoshi et Noda Susumu. « 1112 CHARACTERISTICS OF H2/AIR ANNULAR JET FLAMES USING MULTIPLE SHEAR COAXIAL INJECTORS ». Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013) : _1112–1_—_1112–5_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1112-1_.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Gao, Dekun, Jianxiu Qin et Huiqiang Zhang. « Investigation on Acoustic Properties of Thruster Chamber with Coaxial Injectors and Plenum Chamber ». International Journal of Aerospace Engineering 2020 (25 septembre 2020) : 1–12. http://dx.doi.org/10.1155/2020/9672358.

Texte intégral
Résumé :
Based on the URANS equation, a numerical simulation is carried out for acoustic properties of the thruster chamber with coaxial injectors and plenum chamber in a liquid rocket engine. Pressure oscillations with multiacoustic modes are successfully excited in the chamber by using the constant volume bomb method. FFT analysis is applied to obtain the acoustic properties of eigenfrequencies, power amplitudes, and damping rates for each excited acoustic mode. Compared with the acoustic properties in the model chamber with and without an injector as well as with and without the plenum chamber, it can be found that the injector with one open end and one half-open end still can work as a quarter-wave resonator. The power amplitudes of the acoustic mode can be suppressed significantly when its eigenfrequency is close to the tuning frequency of the injector, which is achieved by Cutting down the pressure Peak and Raising up the pressure Trough (CPRT). Compared with the acoustic properties in the model chamber with and without the plenum chamber, it can be found that 1L acoustic pressure oscillation is inhibited completely by the plenum chamber and other acoustic pressure oscillations are also suppressed in a different extent. The injector and plenum chamber have a little effect on the eigenfrequencies and damping rate of each acoustic mode. For multimode pressure oscillation, it is better for tuning frequency of the injector closing to the lower eigenfrequency acoustic mode, which will be effective for suppression of these multiacoustic modes simultaneously.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Kim, Byoung-Do, et Stephen D. Heister. « Two-Phase Modeling of Hydrodynamic Instabilities in Coaxial Injectors ». Journal of Propulsion and Power 20, no 3 (mai 2004) : 468–79. http://dx.doi.org/10.2514/1.10378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Seol, J. H., P. G. Han, W. H. Jeong et Y. Yoon. « Recess Effects on Spray Characteristics of Swirl Coaxial Injectors ». International Journal of Aeronautical and Space Sciences 4, no 1 (30 mai 2003) : 26–33. http://dx.doi.org/10.5139/ijass.2003.4.1.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Bak, Sujin, Donghyun Hwang, Kyubok Ahn et Youngbin Yoon. « Effects of Injector Recess and Combustion Chamber Length on Combustion Stability of Swirl Coaxial Injectors ». Journal of the Korean Society of Propulsion Engineers 24, no 1 (1 février 2020) : 24–33. http://dx.doi.org/10.6108/kspe.2020.24.1.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ahn, Kyubok, et Hwan-Seok Choi. « Combustion Dynamics of Swirl Coaxial Injectors in Fuel-Rich Combustion ». Journal of Propulsion and Power 28, no 6 (novembre 2012) : 1359–67. http://dx.doi.org/10.2514/1.b34448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Park, Tae-Seon. « RANS-LES Simulations of Scalar Mixing in Recessed Coaxial Injectors ». Journal of the Korean Society of Propulsion Engineers 16, no 1 (1 février 2012) : 55–63. http://dx.doi.org/10.6108/kspe.2012.16.1.055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ramamurthi, K., et T. John Tharakan. « Experimental study of liquid sheets formed in coaxial swirl injectors ». Journal of Propulsion and Power 11, no 6 (novembre 1995) : 1103–9. http://dx.doi.org/10.2514/3.23947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Puissant, C., et M. J. Glogowski. « EXPERIMENTAL CHARACTERIZATION OF SHEAR COAXIAL INJECTORS USING LIQUID/GASEOUS NITROGEN ». Atomization and Sprays 7, no 5 (1997) : 467–78. http://dx.doi.org/10.1615/atomizspr.v7.i5.20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hashimoto, T. « Combustion stability of a vitiated-air heater using coaxial injectors ». Energy Conversion and Management 38, no 10-13 (juillet 1997) : 1083–92. http://dx.doi.org/10.1016/s0196-8904(96)00138-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lim, Byung-Jik, Seonghyeon Seo, Munki Kim, Kyubok Ahn, Jong-Gyu Kim et Hwan-Seok Choi. « Combustion characteristics of swirl coaxial injectors at kerosene-rich conditions ». Fuel 106 (avril 2013) : 639–45. http://dx.doi.org/10.1016/j.fuel.2012.10.078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ahn, Kyubok, Yeoung-Min Han, Seonghyeon Seo et Hwan-Seok Choi. « Effects of Injector Recess and Chamber Pressure on Combustion Characteristics of Liquid–Liquid Swirl Coaxial Injectors ». Combustion Science and Technology 183, no 3 (22 décembre 2010) : 252–70. http://dx.doi.org/10.1080/00102202.2010.516289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ahn, K., et B. J. Lee. « Experimental Study on the Discharge Coefficient of Bi-Swirl Coaxial Injectors ». Journal of Applied Fluid Mechanics 12, no 5 (1 septembre 2019) : 1439–47. http://dx.doi.org/10.29252/jafm.12.05.29533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Liu, Luhao, Qingfei Fu et Lijun Yang. « Theoretical Atomization Model of Liquid Sheet Generated by Coaxial Swirl Injectors ». International Journal of Multiphase Flow 142 (septembre 2021) : 103725. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2021.103725.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Strakey, P. A., D. G. Talley et J. J. Hutt. « Mixing Characteristics of Coaxial Injectors at High Gas/Liquid Momentum Ratios ». Journal of Propulsion and Power 17, no 2 (mars 2001) : 402–10. http://dx.doi.org/10.2514/2.5756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

AHN, Kyubok, Byoungjik LIM et Hwan-Seok CHOI. « Stability Characteristics of Bi-swirl Coaxial Injectors in Fuel-rich Combustion ». TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 57, no 6 (2014) : 317–24. http://dx.doi.org/10.2322/tjsass.57.317.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Son, Jinwoo, Chae Hoon Sohn, Gujeong Park et Youngbin Yoon. « Spray Patterns and Injection Characteristics of Gas-Centered Swirl Coaxial Injectors ». Journal of Aerospace Engineering 30, no 5 (septembre 2017) : 04017035. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000745.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ahn, Kyubok, Yeoung-Min Han et Hwan-Seok Choi. « Effects of Recess Length on Discharge Coefficients of Swirl Coaxial Injectors ». Combustion Science and Technology 184, no 3 (mars 2012) : 323–36. http://dx.doi.org/10.1080/00102202.2011.635615.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Dai, Jian, GuoBiao Cai, Yang Zhang et NanJia Yu. « Experimental investigations of coaxial injectors in a laboratory-scale rocket combustor ». Aerospace Science and Technology 59 (décembre 2016) : 41–51. http://dx.doi.org/10.1016/j.ast.2016.10.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Martin, Jan, Michael Börner, Justin Hardi, Dmitry Suslov et Michael Oschwald. « Experimental Investigation of Flame Anchoring Behavior in a LOX/LNG Rocket Combustor ». Aerospace 10, no 6 (6 juin 2023) : 542. http://dx.doi.org/10.3390/aerospace10060542.

Texte intégral
Résumé :
Hot fire tests of a multi-injector research combustor were performed with liquid-oxygen and liquefied-natural-gas (LOX/LNG) propellants at chamber pressures from 30 up to 67 bar, hence at conditions similar to an upper stage rocket engine. Within these tests shear coaxial injectors were tested with and without a recessed LOX post. In both configurations, operating conditions with flames anchored at the LOX post tip and thus, if available, pre-combustion in the recess volume as well as lifted flames were observed. Flame anchoring was indirectly detected via acoustic measurements, using mean speed of sound to indicate the presence of flame in the head end of the combustion chamber. While the injector without recess showed only stable combustion irrespective of the flame anchoring behavior, the recessed injector featured short-lived bursts of oscillatory combustion and sustained combustion instabilities. Analysis of the test data showed that stable flame anchoring could not be ensured at momentum flux ratios below 20 for a non-recessed and below 45 for a recessed injector.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Wang, Xiaowei, Gouzhou Zhang, Guobiao Cai et Hongfa Huo. « Pressure and Geometry Scaling of Gaseous Hydrogen/Gaseous Oxygen Shear-Coaxial Injectors ». Journal of Propulsion and Power 28, no 6 (novembre 2012) : 1368–78. http://dx.doi.org/10.2514/1.b34508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Yang, Li-Jun, et Qing-Fei Fu. « Stability of Confined Gas-Liquid Shear Flows in Recessed Shear Coaxial Injectors ». Journal of Propulsion and Power 28, no 6 (novembre 2012) : 1413–24. http://dx.doi.org/10.2514/1.b34560.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Yoon, W., et K. Ahn. « Experimental and Theoretical Study on Spray Angles of Bi-Swirl Coaxial Injectors ». Journal of Applied Fluid Mechanics 11, no 5 (1 septembre 2018) : 1377–86. http://dx.doi.org/10.29252/jafm.11.05.28814.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bai, Xiao, Pengjin Cao, Qinglian Li et Peng Cheng. « The break phenomenon of self-pulsation for liquid-centered swirl coaxial injectors ». International Journal of Multiphase Flow 142 (septembre 2021) : 103708. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2021.103708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ahn, Jonghyeon, Ha Young Lim et Kyubok Ahn. « Spray Characteristics of Additive Manufactured Swirl Coaxial Injectors with Different Recess Lengths ». Journal of the Korean Society of Propulsion Engineers 26, no 1 (28 février 2022) : 47–59. http://dx.doi.org/10.6108/kspe.2022.26.1.047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Park, Gujeong, Jungho Lee, Ingyu Lee et Youngbin Yoon. « Spray Characteristics of Gas-Centered Swirl Coaxial Injectors according to Injection Conditions ». Journal of ILASS-Korea 19, no 4 (31 décembre 2014) : 167–73. http://dx.doi.org/10.15435/jilasskr.2014.19.4.167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Hautman, Donald J. « SPRAY CHARACTERIZATION OF LIQUID/GAS COAXIAL INJECTORS WITH THE CENTER LIQUID SWIRLED ». Atomization and Sprays 3, no 4 (1993) : 373–87. http://dx.doi.org/10.1615/atomizspr.v3.i4.20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Song, Jiawen, et Bing Sun. « Coupled heat transfer analysis of thrust chambers with recessed shear coaxial injectors ». Acta Astronautica 132 (mars 2017) : 150–60. http://dx.doi.org/10.1016/j.actaastro.2016.12.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

MIYAGI, Wataru, Takahiro MIKI, Tsuneyoshi MATSUOKA et Susumu NODA. « Characteristics of H2/air annular jet flames using multiple shear coaxial injectors ». Journal of Fluid Science and Technology 9, no 3 (2014) : JFST0039. http://dx.doi.org/10.1299/jfst.2014jfst0039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Marragou, S., H. Magnes, A. Aniello, T. F. Guiberti, L. Selle, T. Poinsot et T. Schuller. « Modeling of h2/air flame stabilization regime above coaxial dual swirl injectors ». Combustion and Flame 255 (septembre 2023) : 112908. http://dx.doi.org/10.1016/j.combustflame.2023.112908.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mosolov, S. V., et D. A. Sidlerov. « Investigating the Specifics of Work Cycle Evolution in the Combustion Chamber of an Oxygen/Kerosene Liquid Rocket Engine ». Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no 2 (125) (avril 2019) : 34–46. http://dx.doi.org/10.18698/0236-3941-2019-2-34-46.

Texte intégral
Résumé :
The paper considers the specifics of gasification, mixing and burnout processes for propellant components in a combustion chamber featuring coaxial bicentrifugal injectors and operating in the liquid/liquid mode employing oxygen and the T-1 and T-6 kerosene types. Numerical simulation revealed that when using the T6 fuel, the structure of recirculation zones appearing in the leading region of the combustion chamber may provide more efficient oxygen and kerosene mixing and burnout as compared to a chamber running on the T-1 fuel
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jeong, Gijeong, Yeseung Lee, Juntae Yoon, Hyeontaek Jo et Youngbin Yoon. « ATOMIZATION AND DISTRIBUTION OF DROPLETS IN GAS-LIQUID SPRAYS BY COAXIAL SWIRL INJECTORS ». Atomization and Sprays 30, no 8 (2020) : 607–26. http://dx.doi.org/10.1615/atomizspr.2020033825.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kim, Dongjun, Poonggyoo Han, Ji-Hyuk Im, Youngbin Yoon et Vladimir G. Bazarov. « Effect of Recess on the Spray Characteristics of Liquid-Liquid Swirl Coaxial Injectors ». Journal of Propulsion and Power 23, no 6 (novembre 2007) : 1194–203. http://dx.doi.org/10.2514/1.30450.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

SEO, Seonghyeon, Yeoung-Min HAN et Hwan-Seok CHOI. « Combustion Characteristics of Bi-Liquid Swirl Coaxial Injectors with Respect to a Recess ». TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 53, no 179 (2010) : 24–31. http://dx.doi.org/10.2322/tjsass.53.24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Bai, Xiao, Peng Cheng, Liyong Sheng, Qinglian Li, Xinqiao Zhang et Zhongtao Kang. « Effects of backpressure on self-pulsation characteristics of liquid-centered swirl coaxial injectors ». International Journal of Multiphase Flow 116 (juillet 2019) : 239–49. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.04.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Wang, Xingjian, Liwei Zhang, Yixing Li, Shiang-Ting Yeh et Vigor Yang. « Supercritical combustion of gas-centered liquid-swirl coaxial injectors for staged-combustion engines ». Combustion and Flame 197 (novembre 2018) : 204–14. http://dx.doi.org/10.1016/j.combustflame.2018.07.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhang, Liwei, Xingjian Wang, Yixing Li, Shiang-Ting Yeh et Vigor Yang. « Supercritical fluid flow dynamics and mixing in gas-centered liquid-swirl coaxial injectors ». Physics of Fluids 30, no 7 (juillet 2018) : 075106. http://dx.doi.org/10.1063/1.5026786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Cao, Pengjin, Peng Cheng, Xiao Bai, Qinglian Li et Chengchao Cui. « Effects of recess ratio on combustion characteristics of LOX/methane swirl coaxial injectors ». Fuel 337 (avril 2023) : 127205. http://dx.doi.org/10.1016/j.fuel.2022.127205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kumar, Abhijeet, et Srikrishna Sahu. « Influence of nozzle geometry on primary and large-scale instabilities in coaxial injectors ». Chemical Engineering Science 221 (août 2020) : 115694. http://dx.doi.org/10.1016/j.ces.2020.115694.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Parra, Teresa, David Pastor, Ruben Pérez et José Molina. « Numerical Modelling of Swirl-Stabilized Turbulent Lean Non-Premixed Flames ». Advanced Engineering Forum 29 (août 2018) : 62–66. http://dx.doi.org/10.4028/www.scientific.net/aef.29.62.

Texte intégral
Résumé :
Numerical simulations have been performed to analyze the interaction of confined coaxial high-swirl jets in both cases: isothermal and reactive flows. Besides different setups of swirl injectors have been tested to study the influence of swirl in the flames for both stoichiometric and lean mixtures. The aim was to quantify the nitrogen oxide emissions as well as the flow pattern for different swirling annular air jet and non-swirling inner fuel jet. This simple setup is widely used in burners to promote stabilized flames of lean mixtures producing ultra low NOx emissions.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ficuciello, A., F. Baillot, JB Blaisot, C. Richard et M. Théron. « Acoustic response of an injection system to high-frequency transverse acoustic fields ». International Journal of Spray and Combustion Dynamics 9, no 4 (11 octobre 2017) : 217–29. http://dx.doi.org/10.1177/1756827717735300.

Texte intégral
Résumé :
The acoustic coupling between the injection system and the acoustic fluctuations in liquid rocket engine combustion chambers is an important issue in the understanding of the thermo-acoustic instability phenomenon. This paper presents the results of a wide-ranging parametric investigation of the acoustic response of a two-phase injection system submitted to a forced high-amplitude transverse acoustic field. Two domes, one for the gas and one for the liquid, were expressly designed to feed three identical coaxial injectors. The internal mode shapes of the domes were characterized by measuring pressure signals at different locations in the domes. Experimental mode shapes showed good agreement with those predicted by numerical simulations. Acoustic pressure amplitudes up to 23% of those induced in the main cavity can be found in both the gas and liquid domes. The response efficiency in a dome depends on the position of the injectors’ exit in the acoustic field.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie