Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Climate change, Carbon Dioxide, foraminifera.

Thèses sur le sujet « Climate change, Carbon Dioxide, foraminifera »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Climate change, Carbon Dioxide, foraminifera ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Pang, Oi-ting Brenda, et 彭愷婷. « Climate change : the role of carbon dioxide ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46732937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Martin, M. J. « Models of the interactive effects of rising ozone, carbon dioxide and temperature on canopy carbon dioxide exchange and isoprene emission ». Thesis, University of Essex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ramsell, Philip G. « An alternative climate change levy scheme for manufacturing industries ». Thesis, Open University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sandu, Suwin. « Assessment of carbon tax as a policy option for reducing carbon-dioxide emissions in Australia ». Electronic version, 2007. http://hdl.handle.net/2100/535.

Texte intégral
Résumé :
University of Technology, Sydney. Faculty of Engineering.
This research has analysed the economy-wide impacts of carbon tax as a policy option to reduce the rate of growth of carbon-dioxide emissions from the electricity sector in Australia. These impacts are analysed for energy and non energy sectors of the economy. An energy-oriented Input–Output framework, with ‘flexible’ production functions, based on Translog and Cobb-Douglas formulations, is employed for the analysis of various impacts. Further, two alternative conceptions of carbon tax are considered in this research, namely, based on Polluter Pays Principle (PPP) and Shared Responsibility Principle (SRP). In the first instance, the impacts are analysed, for the period 2005–2020, for tax levels of $10 and $20 per tonne of CO2, in a situation of no a-priori limit on CO2 emissions. The analysis shows that CO2 emissions from the electricity sector, when carbon tax is based on PPP, would be 211 and 152 Mt, for tax levels of $10 and $20, respectively (as compared to 250 Mt in the Base Case scenario, that is, the business-as-usual-case). The net economic costs, corresponding with these tax levels, expressed in present value terms, would be $27 and $49 billion, respectively, over the period 2005-2020. These economic costs are equivalent to 0.43 and 0.78 per cent of the estimated GDP of Australia. Further, most of the economic burden, in this instance, would fall on the electricity sector, particularly coal-fired electricity generators – large consumers of direct fossil fuel. On the other hand, in the case of a carbon tax based on SRP, CO2 emissions would be 172 and 116 Mt, for tax levels of $10 and $20, respectively. The corresponding net economic costs would be $47 (0.74 per cent of GDP) and $84 (1.34 per cent of GDP) billion, respectively, with significant burden felt by the commercial sector – large consumers of indirect energy and materials whose production would contribute to CO2 emissions. Next, the impacts are analysed by placing an a-priori limit on CO2 emissions from the electricity sector – equivalent to 108 per cent of the 1990 level (that is, 138 Mt), by the year 2020. Two cases are analysed, namely, early action (carbon tax introduced in 2005) and deferred action (carbon tax introduced in 2010). In the case of early action, the analysis suggests, carbon tax of $25 and $15, based on PPP and SRP, respectively, would be required to achieve the above noted emissions target. The corresponding tax levels in the case of deferred action are $51 and $26, respectively. This research also shows that the net economic costs, in the case of early action, would be $32 billion (for PPP) and $18 billion (for SRP) higher than those in the case of deferred action. However, this research has demonstrated, that this inference is largely due to the selection of particular indicator (that is, present value) and the relatively short time frame (that is, 2005–2020) for analysis. By extending the time frame of the analysis to the year 2040, the case for an early introduction of carbon tax strengthens. Overall, the analysis in this research suggests that an immediate introduction of carbon tax, based on SRP, is the most attractive approach to reduce the rate of growth of CO2 emissions from the electricity sector and to simultaneously meet economic and social objectives. If the decision to introduce such a tax is deferred, it would be rather difficult to achieve not only environmental objectives but economic and social objectives as well.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Corbo, Alessandro. « Biochar as a carbon dioxide removal solution : An assessment of carbon stability and carbon dioxide removal potential in Sweden ». Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281918.

Texte intégral
Résumé :
Biochar is increasingly gaining momentum in the context of climate change mitigation and its production in Sweden could potentially become a large-scale system. Carbon stability in biochar is a crucial factor to assess its the carbon sequestration potential. Currently specific methodologies to assess biochar carbon site-specific stability are missing. This work aims at filling in part this knowledge gap assessing stability for Sweden specific soil conditions. Moreover, this work aims at assessing biomass feedstock availability for biochar production from a system perspective and aims at estimating biochar production and carbon dioxide removal potentials in Sweden. Preliminary carbon stability specific thresholds are provided for soils at 10°C temperature and, thus, representative for Sweden conditions. Carbon dioxide removal functions are obtained for different feedstock categories (woody, herbaceous, biosolids and animal waste) dependent on pyrolysis conditions (Highest Treatment Temperature), and conditions for maximum carbon removal are assessed. The need for future analysis in order to validate the presented results is highlighted. Future work should focus on collecting new experimental results of biochar mineralisation based on the requirements presented in this work. An opportunity mapping for biochar production system is provided, focusing on some aspects of the interaction of the former with existing systems (agricultural, energy production and waste management). From the results of the opportunity mapping, an inventory of the available feedstock for biochar production is presented including woody residues, sewage sludge, manure, garden waste and straw. From the available feedstocks, biochar production and carbon dioxide removal potentials are estimated to range respectively between 0.9 and 1.7 million tbiochar/year and between 2 and 4.2 million tons CO2 sequestered per year (in a 100 years perspective). In terms of carbon dioxide removal potential, biochar production can significantly contribute to the goals set by Sweden in terms of climate change mitigation and emission offsetting for 2030 and 2045, potentially covering all the measures needed from carbon sinks from forest and land. It was found that the most significant contribution derives from the availability of woody residues in Sweden, whose analysis should be prioritised for future assessment of feasibility of biochar large scale production.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sobek, Sebastian. « Carbon Dioxide Supersaturation in Lakes – Causes, Consequences and Sensitivity to Climate Change ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis (AUU) : Universitetsbiblioteket [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5920.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Campbell, Justin E. « The Effects of Carbon Dioxide Fertilization on the Ecology of Tropical Seagrass Communities ». FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/693.

Texte intégral
Résumé :
Increasing atmospheric CO2 concentrations associated with climate change will likely influence a wide variety of ecosystems. Terrestrial research has examined the effects of increasing CO2 concentrations on the functionality of plant systems; with studies ranging in scale from the short-term responses of individual leaves, to long-term ecological responses of complete forests. While terrestrial plants have received much attention, studies on the responses of marine plants (seagrasses) to increased CO2(aq) concentrations remain relatively sparse, with most research limited to small-scale, ex situ experimentation. Furthermore, few studies have attempted to address similarities between terrestrial and seagrass responses to increases in CO2(aq). The goals of this dissertation are to expand the scope of marine climate change research, and examine how the tropical seagrass, Thalassia testudinum responds to increasing CO2(aq) concentrations over multiple spatial and temporal scales. Manipulative laboratory and field experimentation reveal that, similar to terrestrial plants, seagrasses strongly respond to increases in CO2(aq) concentrations. Using a novel field technique, in situ field manipulations show that over short time scales, seagrasses respond to elevated CO2(aq) by increasing leaf photosynthetic rates and the production of soluble carbohydrates. Declines in leaf nutrient (nitrogen and phosphorus) content were additionally detected, paralleling responses from terrestrial systems. Over long time scales, seagrasses increase total above- and belowground biomass with elevated CO2(aq), suggesting that, similar to terrestrial research, pervasive increases in atmospheric and oceanic CO2(aq) concentrations stand to influence the productivity and functionality of these systems. Furthermore, field experiments reveal that seagrass epiphytes, which comprise an important component of seagrass ecosystems, additionally respond to increased CO2(aq) with strong declines in calcified taxa and increases in fleshy taxa. Together, this work demonstrates that increasing CO2(aq) concentrations will alter the functionality of seagrass ecosystems by increasing plant productivity and shifting the composition of the epiphyte community. These results have implications for future rates of carbon storage and sediment production within these widely distributed systems.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cotrufo, Maria Francesca. « Effects of enriched atmospheric concentration of carbon dioxide on tree litter decomposition ». Thesis, Lancaster University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Singleton-Jones, Paul. « Elevated carbon dioxide and gas exchange in groundnut and sorghum ». Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Scholz, Stephane. « GLOBALIZATION AND CARBON DIOXIDE EMISSION TRAJECTORIES IN DEVELOPING COUNTRIES, 1980-2006 ». Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202970.

Texte intégral
Résumé :
Global energy sector carbon dioxide emissions between 2007 and 2010 have been growing much faster than projected by the Intergovernmental Panel on Climate Change (IEA 2011). Roughly 75% of this growth can be attributed to developing countries that are increasingly manufacturing goods destined for consumption in the developed world (Peters et al. 2011). This study examines the energy sector carbon dioxide emissions and emission trajectories of 64 developing countries from 1980 to 2006. Approximately 50% of these countries have relatively flat slopes when their emissions are plotted over time or against gross domestic product per capita. To shed some light on how this is possible, two competing theories of globalization are tested. World-systems theory argues that global economic integration is predicated on core-periphery exploitation, which leads to unsustainable development. World-society theory, on the other hand, contends that global social integration diffuses modern environmental values, which leads to structural isomorphism and sustainable development. World-society diffusion in this study is approximated by the network measure of degree centrality, which is calculated from shared ratifications of international environmental treaties. To find out if these opposing dynamics significantly impact emissions and emission trajectories independently, or in conjunction, three different methods are used: Prais-Winsten panel regression with panel-corrected standard errors, cross-section ordinary least squares regression and fuzzy set qualitative comparative analysis.Findings from the panel regressions indicate that network centrality in global environmental treaty regimes has a significant, albeit weak, negative effect on carbon dioxide emissions. This effect is further attenuated by high levels of world-system exploitation, as measured by International Monetary Fund (IMF) credit. The first set of cross-section regressions indicate that network centrality has a significant, but weak, negative effect on emission trajectories plotted against GDP per capita when restricted to those countries that have low levels of IMF credit. The second set of cross-section regressions indicate that network centrality has a significant, but once again weak, negative effect on emission trajectories plotted over time when restricted to those countries that have low levels of foreign direct investment (FDI). The fuzzy set qualitative comparative analyses reveal that world-society diffusion is only implicated in two out of five sufficient configurations for membership in the outcome set of countries with relatively flat emission trajectories plotted against GDP per capita. Furthermore, world-society diffusion, at least as approximated in terms of network centrality in international environmental treaty regimes, is not implicated in any of the sufficient configurations when the outcome involves membership in the set of countries with relatively flat emission trajectories plotted over time. In these analyses it is the absence of economic growth that is most often implicated, followed by low levels of FDI and IMF credit.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Young, Jodi Nicole. « Past and future adaptations of phytoplankton to carbon dioxide ». Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:ef1fc31a-d2a5-4ec4-8849-ea73a74b643b.

Texte intégral
Résumé :
Photosynthesis is responsible for fixing approximately 111 – 117 Pg of CO₂ into organic carbon each year, of which about half is performed by algae in the oceans. Over geological timescales, photosynthesis by algae was instrumental in transforming Earth’s atmosphere. Despite the integral role algae play in the carbon cycle, the interaction and feedbacks between CO₂ fixation by algae and atmospheric CO₂ is poorly understood. This thesis expands upon our current knowledge by tracing the evolution of the key enzyme of photosynthesis, Rubisco, in algae through geological history. It was found that Rubisco underwent adaptation during distinct periods corresponding with falling atmospheric CO₂. The pattern of adaptation hints at physiological adaptation to varying concentrations of atmospheric CO2 and possibly indicates the emergence of carbon concentrating mechanisms (CCMs). This adaptation was probed further within the red and chromist algae, identifying key residues within the Rubisco protein sequence that may influence its kinetic properties. This research also provided new measurements of Rubisco CO2 affinity within the haptophyte algae. Finally, the importance of HCO₃- use by phytoplankton in the modern ocean was explored. HCO₃- utilisation was modelled through signals retained within stable carbon isotopes of organic matter estimate the response to anthropogenic increases of CO₂. The results indicate that phytoplankton utilise a large proportion HCO₃- which shows little sensitivity to anthropogenic increases of CO₂, even when model predictions are extended to 2100. This thesis demonstrates how algae can respond to CO₂ levels over geological and anthropogenic time scales.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Canales, Medina Dominga Elizabeth. « Evaluation of carbon dioxide emissions by Kansas agribusiness retailers ». Thesis, Kansas State University, 2010. http://hdl.handle.net/2097/14041.

Texte intégral
Résumé :
Master of Agribusiness
Department of Agricultural Economics
Michael Boland
Greenhouse gas (GHG) emissions and their negative effect on the environment is a growing concern in the world. It is estimated that agriculture is responsible for 7% of the total GHG emissions in the United States. Currently, environmental policies to regulate GHG are in place in different countries and are expected to increase in the future. Increased awareness about climate change by customers also represents an incentive for companies in measuring their emissions. The objective of this study is to estimate carbon dioxide-equivalent emissions from eight agribusiness retailers in Kansas. Data consisted of two years of energy inputs from the operation of the agribusiness retailers. Carbon emission coefficients were employed to determine carbon dioxide-equivalent emissions associated with the use of each energy input during their operations. Results suggest that electricity is the largest source of total carbon dioxide emissions from the retail operations followed by diesel fuel. Diesel fuel represents the main source of direct emissions and gasoline represents the second largest source of direct emissions. Emissions from the agricultural sector will not be regulated under the current American Clean Energy and Security Act of 2009 but information on their potential carbon footprint may be used in identifying specific processes where emissions could be reduced and to analyze possible climate legislation implications for their operations. If agribusinesses were to be regulated, none of the eight retailers have locations with emission levels that would be subject to the current cap and trade bill passed by the U.S. House of Representatives. But, if they were regulated and had to comply by purchasing carbon credits equal to 5 to 20% of their direct emissions, the cost would be low given estimation of future carbon prices in the literature. Even if agricultural retailers are not directly restricted, they will likely be affected by increases in energy input prices if such legislation is enacted.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Jones, Chris, et Melanie Lenart. « Rising Carbon Dioxide Levels and Forest Management (Climate Change and Variability in the Southwest Ecosystem Series) ». College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2006. http://hdl.handle.net/10150/146951.

Texte intégral
Résumé :
4 pp.
Climate Change and Variability in Southwest Ecosystems Series
Several environmental factors are changing, including the global rise in atmospheric CO2 concentrations and global warming. These environmental changes portend needed changes in the future management of forests in the Southwestern U.S. Therefore, University of Arizona Extension Agents organized a Workshop in Sedona, AZ, in February, 2005, targeted at Southwest forest managers. This paper presents facts from one of the presentations at that workshop and summarizes what the direct effects of the increased CO2 concentrations are likely to be on future tree growth. It is expected that the growth of most trees will be stimulated by the higher CO2 concentrations but variations in response among species will alter competition among species. The fact sheet also speculates about what the implications may be for future forest management. This research benefits the forest industry, as well as the many consumers of forest products.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Fernandez, Julianne M. « Carbon Dioxide and Methane in the North American Great Lakes ». University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504868932301161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Burgess, P. E. « Future climatic and cryospheric change on millennial timescales : an assessment using two-dimensional climate modelling studies ». Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gatis, Naomi Le Feuvre. « Determining the effects of peatland restoration on carbon dioxide exchange and potential for climate change mitigation ». Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18205.

Texte intégral
Résumé :
Over the last millennium peatlands have accumulated significant carbon stores. Drainage for agricultural use has been widespread and has altered the functioning of these mires: shifting them towards carbon release. Recently, in recognition of the range of ecosystem services derived from these landscapes peatland restoration projects have been initiated. Carbon storage is often cited amongst the aims of these projects, especially since the inclusion of rewetting wetlands in the Kyoto Protocol. However, little is known about the effects of ditch blocking on CO2 fluxes, particularly in Molinia caerulea dominated peatlands, a species common on degraded peatlands which tolerates a range of water table depths. This thesis aims firstly to quantify CO2 fluxes from a drained Molinia caerulea dominated blanket bog and to improve understanding of the temporal and spatial controls on these fluxes and secondly, to quantify the immediate effects of ditch blocking. Closed chamber measurements of net ecosystem exchange and partitioned below-ground respiration from control-restored paired sites were collected over the growing seasons immediately pre- (2012) and post-restoration (2013/2014). These flux data were coupled with remotely sensed data quantifying vegetation phenology and structure with a fine resolution (daily/cm) over large extents (annual/catchment). Although temporal variation in water table depth was not related to CO2 fluxes, the seasonal average related to vegetation composition suggesting raising water tables may promote a change in vegetation composition within these species-poor ecosystems. The distribution of water table depths, vegetation composition and CO2 fluxes did not vary with proximity to drainage ditches despite their prominence. An empirical model suggests in a drained state these peatlands are CO2 sources, indicating carbon previously accumulated is gradually being lost. Data suggest restoration does not always significantly affect water tables and consequently CO2 fluxes in the short-term. Where shallower water tables were maintained during dry conditions photosynthesis decreased and heterotrophic respiration increased: enhancing carbon release. Research undertaken during atypical weather has been unable to determine if restoration will be able to raise water tables sufficiently to protect the existing peat store and promote the vegetation change required to reinstate CO2 sequestration in the longer-term.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Boysen, Lena. « Potentials, consequences and trade-offs of terrestrial carbon dioxide removal ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17737.

Texte intégral
Résumé :
Die globalen Mitteltemperaturen könnten bis 2100 um 2◦C bis 4.5◦C über vorindustriellem Wert steigen sollten CO2 Emissionen nicht oder nur unzureichend gesenkt werden. Klima-Engineering befasst sich deshalb mit der gezielten Abkühlung des Klimas, z.B. durch terrestrischen Kohlendioxidentzugs (tCDR). Insbesondere wird der Anbau von großflächigen Biomasseplantagen (BP) in Kombination mit der Erstellung von langlebigen Kohlenstoffprodukten wie Bioenergie oder Biokohle in Betracht gezogen. Die vorliegende Doktorarbeit untersucht die tCDR Potentiale und möglichen Konsequenzen von BP auf Nahrungsmittelproduktion, Ökosysteme und das Klima selbst mit Hilfe der Analyse von Landnutzungszenarien simuliert mit einem Biosphärenmodell. Insgesamt wird das tCDR Potential von BP als gering befunden, unabhängig vom Emissionsszenario und ab wann oder wie flächendeckend BP angebaut werden. Demgegenüber stehen meist die zuvor genannten, ungewünschten Konsequenzen. In einem Szenario mit hohen CO2 Konzentrationen kann selbst unbeschränkte Landverfügbarkeit für tCDR die bisherigen Emissionen nicht ausgleichen. Anders jedoch, wenn gleichzeitig Emissionen eingespart. In beiden Fällen führen diese Landumwandlungen jedoch zu sehr hohen “Kosten” für Ökosysteme und die Nahrungsmittelproduktion. Um deren Schutz zu gewährleisten kann die Landverfügbarkeit für tCDR beschränkt werden, was jedoch die tCDR Potentiale trotz baldiger Etablierung sehr einschränkt. Auch die Potentiale des RCP2.6 bleiben deutlich unter den Anforderungen. Das Potential könnte jedoch durch Erhöhung der Umwandlungseffizienzen von Biomasse, neuen Managementoptionen oder der Aufwertung degradierter Flächen durch BP erhöht werden. Diese Doktorarbeit kann abschließend nicht die Annahme unterstützen, dass tCDR eine effektive und umweltfreundliche Methode der Kohlenstoffsequestrierung, und damit eine Ersetzung von strengen Mitigationspfaden, sein könnte.
Global mean temperatures could change by 2◦C to 4.5◦C above pre-industrial levels until 2100 if mitigation enforcement of CO2 emissions fails. To counteract this projected global warming, climate engineering techniques aim at intendedly cooling Earth’s climate for example through terrestrial carbon dioxide removal (tCDR). Here, tCDR refers to the establishment of large-scale biomass plantations (BPs) in combination with the production of long-lasting carbon products such as bioenergy with carbon capture and storage or biochar. This thesis examines the potentials and possible consequences of tCDR by analysing land-use scenarios with different spatial and temporal scales of BPs using an advanced biosphere model forced by varying climate projections. Synthesised, the potential of tCDR to permanently extract CO2 out of the atmosphere is found to be small, regardless of the emission scenario, the point of onset or the spatial extent. On the contrary, the aforementioned trade-offs and impacts are shown to be unfavourable in most cases. In a high emission scenario even unlimited area availability for tCDR could not reverse past emissions sufficiently. However, simultaneous emission reductions could result in strong carbon extractions reversing past emissions. In both cases, land transformation for tCDR leads to high “costs” for ecosystems and food production. Restricting the available land for BPs by these trade-off constraints leaves very small tCDR despite a near-future onset. Similarly, simulated tCDR potentials on dedicated BP areas defined in the RCP2.6 scenario stay below the aimed values using current management practices. Some potential may lie the reduction of carbon losses from field to end-products, new management options and the restoration of degraded soils with BPs. This thesis contradicts the assumption that tCDR could be an effective and environmentally friendly way of complementing or substituting strong and rapid mitigation efforts.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Davey, Phillip A. « Acclimation of photosynthesis in herbaceous species to increasing atmospheric CO←2 concentration : how important are interactions with nitrogen supply and temperature ? » Thesis, University of Essex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hymus, Graham J. « Photoinhibition of photosynthesis, will it increase or decrease with elevated CO←2 ? » Thesis, University of Essex, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bruhn, Dan. « Plant respiration and climate change effects ». Roskilde : Risø National Laboratory, 2002. http://www.risoe.dk/rispubl/PRD/prdpdf/ris-r-1332.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Carpenter, Steven Michael. « Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community ». Thesis, California Institute of Integral Studies, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10276706.

Texte intégral
Résumé :

This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines.

This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993).

Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary.

The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or dimensions. Much of this new knowledge has come from the analysis and understanding of the Tier 1, Tier 2 and Emergent traits of the transdisciplinarian.

Styles APA, Harvard, Vancouver, ISO, etc.
22

Jonsson, Andreas. « Modelling the middle atmosphere and its sensitivity to climate change ». Doctoral thesis, Stockholm University, Department of Meteorology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-769.

Texte intégral
Résumé :

The Earth's middle atmosphere at about 10-100 km has shown a substantial sensitivity to human activities. First, the ozone layer has been reduced since the the early 1980s due to man-made emissions of halogenated hydrocarbons. Second, the middle atmosphere has been identified as a region showing clear evidence of climate change due to increased emissions of greenhouse gases. While increased CO2 abundances are expected to lead to a warmer climate near the Earth's surface, observations show that the middle atmosphere has been cooling by up to 2-3 degrees per decade over the past few decades. This is partly due to CO2 increases and partly due to ozone depletion.

Predicting the future development of the middle atmosphere is problematic because of strong feedbacks between temperature and ozone. Ozone absorbs solar ultraviolet radiation and thus warms middle atmosphere, and also, ozone chemistry is temperature dependent, so that temperature changes are modulated by ozone changes.

This thesis examines the middle atmospheric response to a doubling of the atmospheric CO2 content using a coupled chemistry-climate model. The effects can be separated in the intrinsic CO2-induced radiative response, the radiative feedback through ozone changes and the response due to changes in the climate of the underlying atmosphere and surface. The results show, as expected, a substantial cooling throughout the middle atmosphere, mainly due to the radiative impact of the CO2 increase. Model simulations with and without coupled chemistry show that the ozone feedback reduces the temperature response by up to 40%. Further analyses show that the ozone changes are caused primarily by the temperature dependency of the reaction O+O2+M->O3+M. The impact of changes in the surface climate on the middle atmosphere is generally small. In particular, no noticeable change in upward propagating planetary wave flux from the lower atmosphere is found. The temperature response in the polar regions is non-robust and thus, for the model used here, polar ozone loss does not appear to be sensitive to climate change in the lower atmosphere as has been suggested recently. The large interannual variability in the polar regions suggests that simulations longer than 30 years will be necessary for further analysis of the effects in this region.

The thesis also addresses the long-standing dilemma that models tend to underestimate the ozone concentration at altitudes 40-75 km, which has important implications for climate change studies in this region. A photochemical box model is used to examine the photochemical aspects of this problem. At 40-55 km, the model reproduces satellite observations to within 10%, thus showing a substantial reduction in the ozone deficit problem. At 60-75 km, however, the model underestimates the observations by up to 35%, suggesting a significant lack of understanding of the chemistry and radiation in this region.

Styles APA, Harvard, Vancouver, ISO, etc.
23

Difs, Kristina. « District Heating and CHP : Local Possibilities for Global Climate Change Mitigation ». Doctoral thesis, Linköpings universitet, Energisystem, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58716.

Texte intégral
Résumé :
Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO2) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linköping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed. In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO2 reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO2 reduction and savings potential. However, the global CO2 reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on the DH system cost the gasification application integrated with production of renewable biofuels (SNG) for the transport sector is the investment option with the largest savings potential for lower electricity prices, while with increasing electricity prices the BIGCC and NGCC CHP plants are the most cost-effective investment options. The economic outcome for biomass gasification applications is, however, dependent on the level of policy instruments for biofuels and renewable electricity. Moreover, it was shown that the tradable green certificates for renewable electricity can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems’ potential for global CO2 emissions reductions. Also illustrated is that conversion of industrial processes, utilising electricity and fossil fuels, to DH and DC can contribute to energy savings. Since DH is mainly used for space heating, the heat demand for DH systems is strongly outdoor temperature-dependent. By converting industrial processes, where the heat demand is often dependent on process hours instead of outdoor temperature, the heat loads in DH systems can become more evenly distributed over the year, with increased base-load heat demand and increased electricity generation in CHP plants as an outcome. This extra electricity production, in combination with the freed electricity when converting electricity-using processes to DH, can replace marginal electricity production in the European electricity market, resulting in reduced global CO2 emissions. Demonstrated in this thesis is that the local energy company, along with its customers, can contribute to reaching the European Union’s targets of reducing energy use and decreasing CO2 emissions. This can be achieved in a manner that is cost-effective to both the local energy company and the customers.
Den globala uppvärmningen i kombination med ett ökat energibehov och stigande energipriser gör det nödvändigt att förändra energianvändningen. Energieffektiva system är samtidigt en förutsättning för att kunna säkra energitillförseln och utveckla hållbara samhällen. Fjärrvärme har en viktig roll att fylla i den här omställningen. I fjärrvärmesystemen kan värmeresurser som annars kan vara svåra att nyttiggöras, som till exempel spillvärme och förbränning av avfall tas tillvara. Fjärrvärme kan även bidra till elproduktion i kraftvärmeverk där totalverkningsgraden är högre än vid separat el- respektive värmeproduktion. En omställning av energisystemet till en ökad användning av fjärrvärme och minskad användning av el genom effektiviseringar och konverteringar från olja och el till fjärrvärme kan bidra till att skapa energieffektiva system. Syftet med den här avhandlingen är att identifiera hur ett lokalt energibolag som producerar fjärrvärme, fjärrkyla och el i kraftvärmeverk kan bidra till att skapa energieffektiva system och kostnadseffektiva globala koldioxidreduktioner tillsammans med sina kunder. Det energibolag som framförallt har studerats i den här avhandlingen är Tekniska Verken i Linköping AB. För att optimera energibolagets fjärrvärme- och fjärrkylaproduktion har energisystemanalyser genomförts, där både åtgärder på tillförsel- och användarsidan har studerats. Genom att se energiförsörjningen ur ett systemperspektiv kan man undvika att ekonomiska och miljömässiga vinster vid en anläggning ersätts av förluster någon annanstans. Optimeringsmodeller, som MODEST och reMIND, har använts för energisystemanalyserna där även scenarier och känslighetsanalyser har inkluderats. För alla energisystemanalyser har ett europeiskt energisystemperspektiv använts där en totalt avreglerad europeisk elmarknad utan flaskhalsar eller andra systemfel antagits. Slutsatser från analyserna är att det lokala energibolaget kan bidra till kostnadseffektiva globala koldioxidreduktioner genom ett effektivt nyttjande av bränslen i kraftvärmeanläggningar och i bioraffinaderier. Speciellt kraftvärmeanläggningar med hög elverkningsgrad, som t.ex. biomasseförgasning- och naturgaskombianläggningar, har en betydande global koldioxidreduktionspotential. Även biomasseförgasningsanläggningar som är integrerade med produktion av förnybara drivmedel för transportsektorn har visat sig kostnadseffektiva med stor potential att reducera de globala koldioxidutsläppen. Styrmedel har dock en stor påverkan på det ekonomiska utfallet för förgasningsanläggningarna. Dessutom har studierna visat att energibesparingar kan åstadkommas genom att konvertera el och fossilbränsledrivna industriella processer till fjärrvärme och fjärrkyla. Eftersom fjärrvärme framförallt används för lokaluppvärmning är värmelasten i fjärrvärmesystem säsongsbetonad. Genom att konvertera industriella processer som inte är utetemperaturberoende till fjärrvärme kan fjärrvärmelasten bli mindre säsongsbetonad och mer jämt fördelad över året. En jämt fördelad värmelast är fördelaktig för driften av fjärrvärmeanläggningar och kan bidra till mer elproduktion i kraftvärmeanläggningar. Den extra elproduktionen, tillsammans med den el som blivit tillgänglig efter konvertering av eldrivna processer till fjärrvärme, kan ersätta europeisk marginalelsproduktion vilket kan reducera de globala koldioxidutsläppen. Det som har framkommit av dessa studier är att det lokala energibolaget, tillsammans med sina kunder, kan bidra till att uppfylla de mål den Europeiska Unionen har angående reduktionen av energianvändningen och koldioxidutsläppen. Dessutom kan detta ske på ett kostnadseffektivt sätt för både energibolaget och dess kunder.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Slechten, Aurelie. « Policies for climate change ». Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209493.

Texte intégral
Résumé :
In my thesis, I address two important issues: (i) the creation of a price signal through the use of carbon markets (or cap-and-trade schemes) and (ii) the necessity to reach a global agreement on greenhouse gas emission reduction policies. It consists of three separate papers. Chapters 2 and 3 of this thesis emphasize theoretically and empirically the fact that achieving international cooperation on climate change is very difficult. Chapter 3 suggests that the global nature of the climate change problem and the design of climate agreements (i.e. the means available to reduce CO2 emissions) may explain this failure. Chapter 2 shows theoretically that asymmetric information between countries may exacerbate the free-rider problem. These two chapters also provide some possible solutions to the lack of international cooperation. To address the issue of information asymmetry, chapter 2 proposes the creation of institutions in charge of gathering and certifying countries' private information before environmental negotiations. If achieving international cooperation is still not possible, chapter 3 suggests that regional cooperation may supplement global treaties. Chapter 1 presents an example of such a regional agreement to reduce CO2 emissions. The EU emissions trading system is a cornerstone of the European Union's policy to combat climate change. However, as it is highlighted in chapter 1, the design of such regional carbon markets really matters for their success in reducing carbon emissions. This chapter shows the interactions between intertemporal permit trading and the incentives of firms to undertake long-term investments in abatement technologies.
Doctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Styles APA, Harvard, Vancouver, ISO, etc.
25

Cario, Cara Hinkson. « Elevated atmospheric carbon dioxide and chronic atmospheric nitrogen deposition change nitrogen dynamics associated with two Mediterranean climate evergreen oaks / ». For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Krukowski, Elizabeth Gayle. « Carbon dioxide (CO2) sorption to Na-rich montmorillonite at Carbon Capture, Utilization and Storage (CCUS) P-T conditions in saline formations ». Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/49615.

Texte intégral
Résumé :
Carbon capture, utilization and storage (CCUS) in confined saline aquifers in sedimentary formations has the potential to reduce the impact of fossil fuel combustion on climate change by storing CO2 in geologic formations in perpetuity. At PT conditions relevant to CCUS, CO2 is less dense than the pre-existing brine in the formation, and the more buoyant CO2 will migrate to the top of the formation where it will be in contact with cap rock. A typical cap rock is clay-rich shale, and interactions between shales and CO2 are poorly understood at PT conditions appropriate for CCUS in saline formations. In this study, the interaction of CO2 with clay minerals in the cap rock overlying a saline formation has been examined, using Na-rich montmorillonite as an analog for clay-rich shale. Attenuated Total Reflectance -- Fourier Transform Infrared Spectroscopy (ATR -FTIR) was used to identify potential crystallographic sites (AlAlOH, AlMgOH and interlayer space) where CO2 could interact with montmorillonite at 35"C and 50"C and from 0-1200 psi.  Analysis of the data indicates that CO2 that is preferentially incorporated into the interlayer space, with dehydrated montmorillonite capable of incorporating more CO2 than hydrated montmorillonite. No evidence of chemical interactions between CO2 and montmorillonite were identified, and no spectroscopic evidence for carbonate mineral formation was observed.  Further work is needed to determine if reservoir seal quality is more likely to be degraded or enhanced by CO2 - montmorillonite interactions.
Master of Science
Styles APA, Harvard, Vancouver, ISO, etc.
27

Case, Sean Daniel Charles. « Biochar amendment and greenhouse gas emissions from agricultural soils ». Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8049.

Texte intégral
Résumé :
The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions in a bioenergy and arable crop soil, at a range of temperatures and with or without wetting/drying cycles. More detailed investigation on the underlying mechanisms focused on soil N2O emissions. I tested how biochar altered soil physico-chemical properties and the subsequent effects on soil N2O emissions. In addition, 15N pool dilution techniques were used to investigate the effect of biochar on soil N transformations. Biochar amendment significantly suppressed soil GHG emissions for two years within a bioenergy soil in the field and for several months in an arable soil. I hypothesised that soil CO2 emissions were suppressed under field conditions by a combination of mechanisms: biochar induced immobilisation of soil inorganic-N (BII), increased C-use efficiency, reduced C-mineralising enzyme activity and adsorption of CO2 to the biochar surface. Soil CO2 emissions were increased for two days following wetting soil due to the remobilisation of biochar-derived labile C within the soil. Soil N2O emissions were suppressed in laboratory incubations within several months of biochar addition due to increased soil aeration, BII or increased soil pH that reduced the soil N2O: N2 ratio; effects that varied depending on soil inorganic-N concentration and moisture content. These results are significant as they consistently demonstrate that fresh hardwood biochar has the potential to reduce soil GHG emissions over a period of up to two years in bioenergy crop soil, while simultaneously sequestering C within the soil. They also contribute greatly to understanding of the mechanisms underlying the effect of biochar addition on soil N transformations and N2O emissions within bioenergy and arable soils. This study supports the hypothesis that if scaled up, biochar amendment to soil may contribute to significant reductions in global GHG emissions, contributing to climate change mitigation. Further studies are needed to ensure that these conclusions can be extrapolated over the longer term to other field sites, using other types of biochar.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Albright, Rebecca. « Effects of Ocean Acidification on Early Life History Stages of Caribbean Scleractinian Corals ». Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/574.

Texte intégral
Résumé :
Ocean acidification (OA) refers to the increase in acidity (decrease in pH) of the ocean’s surface waters resulting from oceanic uptake of atmospheric carbon dioxide (CO2). Mounting experimental evidence suggests that OA threatens numerous marine organisms, including reef-building corals; however, few studies have focused on the effects on early life history stages. Coral recruitment is critical to the persistence and resilience of coral reefs and is regulated by several early life processes, including: larval availability (gamete production, fertilization, etc.), larval settlement, post-settlement growth, and survival. Environmental factors that disrupt these early life processes can result in compromised or failed recruitment and profoundly affect future population dynamics. To evaluate the effects of OA on the sexual recruitment of corals, sexual reproduction (including fertilization and sperm swimming speeds) and several critical early life history stages (including larval metabolism, larval settlement, and post-settlement growth) were tested in common Caribbean coral species. Three pCO2 levels were used: ambient seawater (380 µatm) and two pCO2 scenarios that are projected to occur by the middle (560 µatm) and end (800 µatm) of the century as determined by the Intergovermental Panel on Climate Change. Results show that fertilization success, larval metabolic rates, larval settlement rates, and post-settlement growth rates are all compromised with increasing pCO2. This dissertation demonstrates that OA has the potential to negatively impact sexual reproduction and multiple early life history processes of several common Caribbean coral species and may contribute to substantial declines in sexual recruitment that are felt at the community and/or ecosystem scale.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Barlow, James Mathew. « Interpretation of observed atmospheric variations of CO2 and CH4 ». Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10507.

Texte intégral
Résumé :
The overarching theme of my thesis is understanding observed variations of northern hemisphere atmospheric carbon dioxide (CO2) and methane (CH4) concentrations. I focus my analysis on high-latitude observations of these gases, as there are large stores of carbon in boreal vegetation and tundra which are vulnerable to rapid warming in the Arctic. My thesis is split into two parts. First, I use the wavelet transform to spectrally decompose observed multi-decadal timeseries for CO2 and CH4. I perform a series of numerical experiments based on synthetic data in order to characterise the errors associated with the analysis. For CO2, I analyse the phase and amplitude of the detrended seasonal cycle of CO2 to infer changes about carbon uptake by northern vegetation. I do not find a long-term change in the length of the carbon uptake period despite significant changes in the spring and autumn phase. I do find an increase in the rate of peak uptake which coincides with the observed increase in seasonal amplitude. These results suggest that the carbon uptake period of boreal vegetation has become more intense but has not changed in length, which provides evidence for an increase in net uptake of CO2 in the high latitudes. For CH4, I test the hypothesis that an increase in Arctic wetland emissions could result in a decrease in the seasonal amplitude of CH4 in the high latitudes. This hypothesis is based on the fact that the seasonal minima of CH4 roughly coincides with the peak of high latitude wetland CH4 emissions. I find that the CH4 seasonal amplitude has significantly decreased at a number of high-latitude sites. However I also find that atmospheric transport appears to drive much of the variability in high-latitude CH4 and that transport could also be responsible for the observed changes in amplitude. I show that an increase in wetland emissions is likely to have a more pronounced effect on the high-latitude CH4 seasonal cycle in the future. In the second section of my thesis, I describe a series of experiments in collaboration with the UK Astronomy Technology Centre, in which I characterise a new instrument technology for satellite applications to observe changes in CO2 from low-Earth orbit. The proof of concepts experiments were performed with a bench top hyperspectral imager. I show that the instrument is able to capture clean spectra at the wavelengths required for CO2 with low levels of scattered light between spectra.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Charalambous, Charithea. « Temperature swing adsorption process for carbon dioxide capture, purification and compression directly from atmospheric air ». Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33311.

Texte intégral
Résumé :
Many reports, scientific papers, patents, and scientific news investigate the feasibility and affordability of direct carbon dioxide capture from the atmospheric air (DAC). Since carbon dioxide (CO2) is extremely diluted in the atmosphere, large volumes of air have to be handled to capture comparable amounts of CO2. Therefore, both the energy consumption and the plant size are expected to be 'prohibitive'. On the other hand, some analyses have shown that DAC is feasible and can become affordable with essential research and development. DAC has been regarded as an optional bridging or a transitional technology for mitigating CO2 emissions in the medium-term. Priorities include investing in renewable and low-carbon technologies, efficiency and integration of energy systems, and realisation of additional environmental benefits. A heavy reliance on negative emission technologies (NETs), and consequently DAC, may be extremely risky as NETs interact with a number of societal challenges, i.e. food, land, water and energy security. Although, "... capturing carbon from thin air may turn out to be our last line of defence, if climate change is as bad as the climate scientists say, and if humanity fails to take the cheaper and more sensible option that may still be available today" MacKay (2009). Certainly, more research is necessary to bring down both cost and energy requirements for DAC. This work firstly predicts the adsorption equilibrium behaviour of a novel temperature swing adsorption process, which captures carbon dioxide directly from the air, concentrates, and purifies it at levels compatible to geological storage. The process consists of an adsorption air contactor, a compression and purification train, which is a series of packed beds reduced in size and connected in-line for the compression and purification purposes, and a final storage bed. The in-line beds undergo subsequent adsorption and desorption states. The final desorbed stream is stored in a storage bed. This cyclic process is repeated for a number of times imposed by the required purity and pressure in the final bed. The process is been thermodynamically verified and optimised. Since, the overall performance of this process does not only depend on the design of the process cycle and operating conditions but also on the chosen adsorbent material, further optimisation of the adsorptive and physical properties of the solid adsorbent is investigated. Thus, the optimal parameters of the potentially used porous materials is identified. Continuing the research on different adsorbent materials, an experimental investigation on the equilibrium properties of two competitive adsorbents is also performed. Besides the thermodynamic analysis, a dynamic model is presented for the investigation of the mass and heat transfer and its influence on the adsorption rate and consequently on the overall process performance. Since the initial stream is very dilute, it is expected that the adsorption rate will be low compared to other temperature swing processes and the capture rate will be affected by the heat transfer. Finally, the design and development of an experimental laboratory-scale apparatus is presented and analysed. Future design improvements are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Bista, Deepesh R. « Effect of Climate Change on Nutrient Uptake and Nutrient-Uptake Proteins in Roots ». University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513286902000333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Petrucco, Toffolo Edoardo. « Climate change and pine processionary moth role of the host plant ». Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Schmidt, Nicholas Andrew. « Climate change and transportation challenges and opportunities / ». Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Helmle, Kevin P. « Coral Schlerochronology and the Relationship Between Coral Growth Records and Climate Change ». NSUWorks, 2009. http://nsuworks.nova.edu/occ_stuetd/60.

Texte intégral
Résumé :
The presence of annual density banding in certain long-lived reef-building corals provides a record of the coral’s growth rate over time in response to changing environmental conditions. Coral growth is best described by three parameters: linear extension, bulk density, and calcification. Coral growth is generally controlled by the combined influences of light, temperature, and water quality; however, corals are highly responsive to their surrounding conditions and thus record environmental variations through their rates and patterns of skeletal accretion. Because coral growth rates reflect environmental conditions over time, they allow testing of hypotheses regarding the effects of climate change, more specifically global warming which affects sea surface temperatures and rising atmospheric carbon dioxide which affect the aragonite saturation state of seawater. Influences on coral growth include local changes in sea surface temperature and rainfall as well as large scale climatic indices such as the Atlantic Multidecadal Oscillation (AMO), the North Atlantic Oscillation (NAO), and the Southern Oscillation Index (SOI). Chapter 1, Background, reviews the current state of knowledge in three primary areas: 1) coral biology, growth, density band formation, and measurement of extension, density, and calcification, 2) potential climate change impacts on coral growth, and 3) long-term coral growth records. This section is broadly intended to review the literature, identify possible information gaps, and recognize current debate within coral and climate change research. Chapter 2, Sample Size for Coral Sclerochronology, presents data of sample size correlations based on statistical analyses of annual extension rates. A standardized period (1970-1985) of annual extension rates from the largest number of Montastraea faveolata samples available from southeast Florida (136 corals) was used to test correlation on varying spatial scales and to determine sample size requirements for desired levels of correlation based on objective criteria. The results provide basic information on masterchronology construction for sclerochronological growth rate studies and provide a framework from which further growth rate variability can be assessed. Extension and bulk density can be measured from X-ray films of coral skeletal slabs and can be used to calculate calcification. Chapter 3, Relative Optical Densitometry, describes the techniques and associated errors through the process of coral coring, sectioning, X-raying, developing, digitizing, calibrating and analyzing. The principles of relative optical densitometry and the calculation of mass absorption coefficient ratios for aragonite and aluminum standards are explained. Calculated and measured errors are quantified to define the accuracy and precision of these techniques necessary to detect potentially subtle changes in coral growth caused by climate change. Coral cores from the Florida Key, USA, were used to construct growth records over a 60-yr period from 1973-1996. Chapter 4, Coral Growth Records and Climate Change, uses linear extension rate, bulk-density, and calcification rate from annual and sub-annual bands in order to assess: 1) growth averages, variability, and relationships between growth parameters, 2) long term trends with respect to rising carbon dioxide levels and sea surface temperature, 3) correlation with local environmental variables of temperature and rainfall, and 4) correlation with major climate indices of Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and the Southern Oscillation.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Graham, Tabitha. « INVESTIGATION OF MEDIA INGREDIENTS AND WATER SOURCES FOR ALGAE CO2 CAPTURE AT DIFFERENT SCALES TO DEMONSTRATE THE CORRELATIONS BETWEEN LAB-SCALE AND LARGE-SCALE GROWTH ». UKnowledge, 2013. http://uknowledge.uky.edu/bae_etds/16.

Texte intégral
Résumé :
As energy use increases globally the environmental burdens increase alike. Many accusations have been made that carbon dioxide is a culprit of climate change. The University of Kentucky and Duke Energy Power have partnered to test carbon capture technology in a large scale project. To this end, the objective of this thesis is to investigate potential water media sources and nutrient sources at different volume scales for algae cultivation to help create a more environmentally viable and economically feasible solution. This work will conduct a life cycle assessment of water media sources and the effects of the inputs and outputs needed for each medium. The up-scaling objective of the research is to identify which parameters vary as a result of up-scaling and how to maintain a culture at the large scale that is standardized to the lab scale culture.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Heck, Vera. « Interference in the Earth system through terrestrial carbon dioxide removal ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17774.

Texte intégral
Résumé :
Biomasseplantagen und Aufforstung zur terrestrischen Kohlenstoffdioxid-Entfernung werden derzeit als Möglichkeit diskutiert um dem anthropogenen Treibhauseffekt entgegenzuwirken. Für die Bewertung solcher Maßnahmen ist ein umfassendes Verständnis ihrer Nachhaltigkeit und möglichen Konsequenzen erforderlich. In dieser Arbeit werden biogeochemische und hydrologische Auswirkungen von Biomasseplantagen und Aufforstung quantitativ und im Kontext der Planetarischen Grenzen (PG) analysiert. Simulationen mit einem globalen Vegetationsmodell zeigen, dass die Auswirkungen von Biomasseplantagen auf die Biosphäre nicht zu vernachlässigen sind und die der historischen landwirtschaftlichen Bodennutzung noch überschreiten können. Außerdem werden Szenarien zur räumlichen Verteilung von Biomasseplantagen unter Berücksichtigung von regionalen und globalen PG für biogeochemische Flüsse, Intaktheit der Biosphäre, Landnutzungswandel und Süßwassernutzung evaluiert. Unter Einhaltung regionaler PG können nur marginale Potentiale erzielt werden. Unter kompletter Ausnutzung des Risikobereichs könnten 1.4-6.9 GtC/a entzogen werden, abhängig von Biomasseverwertungs- und Kohlenstoffspeicherungseffizienzen. Die Relevanz von koevolutionärer Dynamik zwischen dem Kohlenstoffkreislauf und gesellschaftlichem Eingreifen wird mit einem konzeptionellen Modellierungsansatz im Kontext der PG aufgezeigt. Eine Fokussierung auf das Klimaproblem ohne die ganzheitliche Berücksichtigung von erdsystemischen Interaktionen kann ungewollte Überschreitung anderer PG zur Folge haben. Die Kombination von Bevölkerungswachstum und Nahrungsmittelbedarf mit der Minimierung von Kohlenstoff- und Biodiversitätsverlusten zeigt Möglichkeiten und Grenzen für terrestrische Kohlenstoffspeicherung auf. Räumliche Umverteilung in hochproduktive Regionen sowie substantielle landwirtschaftliche Produktivitätssteigerungen ermöglichen die Ernährung von 9 Milliarden Menschen sowie ein Kohlenstoffspeicherungspotential von bis zu 98 GtC.
Terrestrial carbon dioxide removal (tCDR) via afforestation or biomass plantations are discussed as options to counteract anthropogenic global warming. Therefore, it is important to understand sustainability limits and implications of tCDR in the context of Earth system dynamics. This thesis provides a model based assessment of biogeochemical and hydrological side-effects of biomass plantations and afforestation in the context of planetary boundaries (PBs), delimiting a safe operating space for humanity. Simulations with a global vegetation model indicate considerable biogeochemical and hydrological consequences of biomass plantations which are even larger than those of historical agricultural land use. Further, land use scenarios of biomass plantations are developed with a multi-objective optimisation model considering the PBs for biogeochemical flows, biosphere integrity, land system change and freshwater use. Respecting PBs yields almost zero tCDR potential. The transgression of PBs into a zone of increasing risk of feedbacks at the planetary scale can provide considerable tCDR potentials of 1.4-6.9 GtC/a, depending on efficiency of biomass conversion and carbon capture and storage. The importance of co-evolutionary dynamics of the Earth''s carbon cycle and societal interventions through tCDR is demonstrated with a conceptual modelling approach in the context of carbon-related PBs. A focus on climate change without an integrated trade-off assessment may lead to navigating the Earth system out of the safe operating space due to collateral transgression of other PBs. Integrating population growth and food demand while minimising carbon and biodiversity loss demonstrates opportunities and limitations for tCDR. Substantial improvements of crop and livestock productivities and the displacement of agricultural production into regions of high productivity yield sustainable terrestrial carbon sequestration potentials of up to 98 GtC while feeding 9 billion people.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Jayawardena, Dileepa M. « Effects of Elevated Carbon Dioxide Plus Chronic Warming on Plant Nitrogen Relations and Leaf Hyponasty ». University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1588865503446332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Maran, Audrey M. « Predator Contributions to Belowground Responses to Warming ». Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434114404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Burdick, Timothy E. « Seasonal effects of elevated carbon dioxide, competition, and water stress on gas exchange and growth of loblolly pine and sweetgum grown in open-top chambers ». Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-11182008-063327/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Denfeld, Blaize Amber. « Greenhouse Gas Dynamics in Ice-covered Lakes Across Spatial and Temporal Scales ». Doctoral thesis, Uppsala universitet, Limnologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-275018.

Texte intégral
Résumé :
Lakes play a major role in the global carbon (C) cycle, despite making up a small area of earth’s surface. Lakes receive, transport and process sizable amounts of C, emitting a substantial amount of the greenhouse gases, carbon dioxide (CO2) and methane (CH4), into the atmosphere. Ice-covered lakes are particularly sensitive to climate change, as future reductions to the duration of lake ice cover will have profound effects on the biogeochemical cycling of C in lakes. It is still largely unknown how reduced ice cover duration will affect CO2 and CH4 emissions from ice-covered lakes. Thus, the primary aim of this thesis was to fill this knowledge gap by monitoring the spatial and temporal dynamics of CO2 and CH4 in ice-covered lakes. The results of this thesis demonstrate that below ice CO2 and CH4 were spatially and temporally variable. Nutrients were strongly linked to below ice CO2 and CH4 oxidation variations across lakes. In addition, below ice CO2 was generally highest in small shallow lakes, and in bottom waters. Whilst below ice CH4 was elevated in surface waters near where bubbles from anoxic lake sediment were trapped. During the ice-cover period, CO2 accumulation below ice was not linear, and at ice-melt incomplete mixing of lake waters resulted in a continued CO2 storage in bottom waters. Further, CO2 transported from the catchment and bottom waters contributed to high CO2 emissions. The collective findings of this thesis indicate that CO2 and CH4 emissions from ice-covered lakes will likely increase in the future. The strong relationship between nutrients and C processes below ice, imply that future changes to nutrient fluxes within lakes will influence the biogeochemical cycling of C in lakes. Since catchment and lake sediment C fluxes play a considerable role in below ice CO2 and CH4 dynamics, changes to hydrology and thermal stability of lakes will undoubtedly alter CO2 and CH4 emissions. Nevertheless, ice-covered lakes constitute a significant component of the global C cycle, and as such, should be carefully monitored and accounted for when addressing the impacts of global climate change.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Sakian, Nicholas A. « Seasonal Trends and Variability of Temperature, Precipitation, and Diurnal Temperature Range in U.S. Climate Divisions ». The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440428134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Lanfelt, Katrine. « Are Renewable Energy Policies Effective ? : A panel data study concerning the impact policies have on the reduction of carbon dioxide emissions through renewable energy production ». Thesis, Uppsala universitet, Nationalekonomiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-450801.

Texte intégral
Résumé :
Climate change has been a topic of interest both in politics and academics during the last decades and it is only becoming more prominent. The relationship between energy usage and greenhouse gas emissions is of particular interest both in politics and in the world of business. With help from the STIRPAT model this paper examines the elasticity between energy production from renewable sources and carbon dioxide emissions and how it changes when introducing policies for increasing the use of renewable energy. Investigating OECD countries between 2007 and 2015, the paper hopes to add to the existing research of environmental policies on an international level by primarily focusing on the 2009/28/EC policy concerning the European Union and comparing it to some national strategies. Through IV-regressions based on the STIRPAT model this paper examines whether policies regarding renewable energy production increase the effect that renewable energy have on reducing carbon dioxide emissions. The results display a positive change in the elasticity between renewable energy and carbon dioxide emissions when introducing the 2009/28/EC policy as an instrumental variable but is unable to identify significant change when using national policies.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lindfeldt, Erik G. « A trinity of sense : Using biomass in the transport sector for climate change mitigation ». Doctoral thesis, KTH, Energiprocesser, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9292.

Texte intégral
Résumé :
This thesis analyses two strategies for decreasing anthropogenic carbon dioxide (CO2) emissions: to capture and store CO2, and to increase the use of biomass. First, two concepts for CO2 capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO2 is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO2 will always induce significant efficiency penalties. Other strategies are also needed if CO2 emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO2 emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO2 emissions by comparatively easy and cost-efficient CO2 capture from concentrated CO2 streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production – since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO2-inefficient use of biomass, but the thesis explores how biofuels’ climate change mitigation effects may be increased by introducing low-cost CO2 capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels – among them their climate change mitigation benefits – are far greater than the disadvantages and that they should be promoted. Another conclusion of the thesis is that biofuels alone are not enough to drastically decrease transport CO2 emissions; a variety of measures are needed such as fuels from renewable electricity and improvements of vehicle fuel economy.
QC 20100823
Styles APA, Harvard, Vancouver, ISO, etc.
44

Nesongano, Wellencia Clara [Verfasser], et Katja [Akademischer Betreuer] Tielbörger. « The effects of climate change, land-use and elevated carbon dioxide on tree-grass interactions in southern African savannas / Wellencia Clara Nesongano ; Betreuer : Katja Tielbörger ». Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/1199356247/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gória, Marina Meloni [UNESP]. « Impacto do aumento da concentração de CO2 do ar sobre a brusone do arroz ». Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/97211.

Texte intégral
Résumé :
Made available in DSpace on 2014-06-11T19:28:37Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-11-10Bitstream added on 2014-06-13T20:18:27Z : No. of bitstreams: 1 goria_mm_me_botfca.pdf: 385248 bytes, checksum: aedd73597ba4895b9c4451da9ed36770 (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O impacto da elevação da concentração de CO2 do ar sobre a brusone do arroz foi avaliado em estufas de topo aberto (OTCs) na Embrapa Meio Ambiente, Jaguariúna/SP, por dois anos. Foram realizados ensaios com cultivares de arroz em estufas com injeção de CO2, estufas sem injeção de CO2, e campo aberto, sem injeção de CO2 e sem estufa. Avaliaram-se as características de desenvolvimento das plantas, a incidência e a severidade da brusone do arroz, a caracterização química e microbiológica da rizosfera de plantas de arroz, e o teor de silício acumulado na parte aérea das plantas. No primeiro ensaio foi avaliada também a ocorrência de bactérias diazotróficas endofíticas nas raízes das plantas. A concentração média de CO2 atmosférico do tratamento em campo aberto foi 459,4 e 447,4 μmol mol-1 na safra 2007/08 e safra 2008/09, respectivamente. Por outro lado, as concentrações médias de CO2 foram 490,1 e 480,4 μmol mol-1 para o tratamento em estufa sem injeção de CO2 e 531,9 e 608,6 μmol mol-1 para o tratamento com estufa com injeção de CO2 na safra 2007/08 e safra 2008/09, respectivamente. Nos resultados obtidos, verificou-se o aumento significativo na altura de plantas das cultivares Agulha Precoce e Shao Tiao Tsao, na safra 2008/09, no tratamento com injeção do gás. Nas cultivares Caloro e Agulha Precoce, nas safras 2007/08 e 2008/09, respectivamente, o ambiente com a concentração de CO2 do ar elevada aumentou a severidade da brusone nas folhas das plantas. A análise química e microbiológica da rizosfera não apresentou diferenças entre os ambientes com e sem injeção do gás. A massa seca da parte aérea das plantas, a massa das panículas e a massa dos grãos não sofreram alteração devido à elevação do CO2 atmosférico. O aumento da concentração de CO2 do ar pode alterar o crescimento das plantas e a severidade da brusone, acarretando...
The impact of elevated atmospheric CO2 concentration on rice blast disease was evaluated in open-top chambers (OTCs) in Embrapa Meio Ambiente, Jaguariúna /SP, for two years. Trials were developed under OTCs with injection of CO2, OTCs without injection of CO2, and field, without injection of CO2 and without OTC. The characteristics of rice plants growth, the incidence and severity of rice blast, chemical and microbial characterization of rizosphere of rice plants, and leaf silicon content were evaluated. On the first trial it was also examined the occurrence of diazotrophic bacteria in rice plant´s root. Actual season-long average CO2 concentration in field without injection of CO2 and without OTC were 459,4 e 447,4 μmol mol-1 in 2007/08 and 2008/09, respectively. For the other hand, actual season-long average CO2 concentration were 490,1 and 480,4 μmol mol-1 in OTCs without injection of CO2 and 531,9 and 608,6 μmol mol-1 for the treatment under OTCs with CO2 enrichment in 2007/08 and 2008/09, respectively. As results, Agulha Precoce and Shao Tiao Tsao, in 2008/09, it was found a significant increase on rice growth, on treatment with CO2 injection. On Caloro and Agulha Precoce, in 2007/08 and 2008/09, respectively, the atmosphere with elevated CO2 increased the severity of leaf blast. No significant difference was detected on rizhosphere chemical and microbiological analysis in the atmosphere with injection of the gas. CO2 enrichment resulted in a non-significant increase in grain weight, plant dry weight and the panicles weight. The increase of CO2 atmospheric concentration may alter the rice plant´s growth and the severity of rice blast, and consequently, the strategies of disease management.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ka, Seon Young. « Studies on the Reactivity of a Bis–Mesityl Imidazolyl Carbene Intermediate toward Carbon Dioxide and Stability of the Resulting Carboxylate ». Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1566315034568426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Vural, Asli. « Clean Coal And Carbon Capture And Storage Technology Roadmap Of Turkey ». Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611709/index.pdf.

Texte intégral
Résumé :
The present study presents a draft national CCT (Clean Coal Technologies) and CCS (Carbon Capture and Storage) technology roadmap to policy makers. Various technical and non-technical (economic and social) challenges that currently prevent CCT and CCS from being a widely used commercial technology are discussed and the goals for each research pathway are defined. The process of creating the roadmap started with a review and assessment of the existing national and international technology roadmaps which represent a global picture of the state of the art and national and international plans for future on CCT and CCS research development, demonstration and deployment (R&
D&
D). Following this step, the national situation, capacities and priorities were examined. Finally, R&
D&
D actions discussed in the existing roadmaps and/or new actions were carefully selected and suggested as a draft Turkish CCT and CCS Roadmap that needs further development and discussion by the input of interdisciplinary national stakeholders. As a conclusion a number of technical and non-technical suggestions are delivered.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Stigson, Peter. « Reducing Swedish Carbon Dioxide Emissions from the Basic Industry and Energy Utilities : An Actor and Policy Analysis ». Licentiate thesis, Department of Public Technology Institutionen för samhällsteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Olivas, Paulo C. « Arctic Ecosystem Responses to Changes in Water Availability and Warming : Short and Long-Term Responses ». FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/333.

Texte intégral
Résumé :
Arctic soils store close to 14% of the global soil carbon. Most of arctic carbon is stored below ground in the permafrost. With climate warming the decomposition of the soil carbon could represent a significant positive feedback to global greenhouse warming. Recent evidence has shown that the temperature of the Arctic is already increasing, and this change is associated mostly with anthropogenic activities. Warmer soils will contribute to permafrost degradation and accelerate organic matter decay and thus increase the flux of carbon dioxide and methane into the atmosphere. Temperature and water availability are also important drivers of ecosystem performance, but effects can be complex and in opposition. Temperature and moisture changes can affect ecosystem respiration (ER) and gross primary productivity (GPP) independently; an increase in the net ecosystem exchange can be a result of either a decrease in ER or an increase in GPP. Therefore, understanding the effects of changes in ecosystem water and temperature on the carbon flux components becomes key to predicting the responses of the Arctic to climate change. The overall goal of this work was to determine the response of arctic systems to simulated climate change scenarios with simultaneous changes in temperature and moisture. A temperature and hydrological manipulation in a naturally-drained lakebed was used to assess the short-term effect of changes in water and temperature on the carbon cycle. Also, as part of International Tundra Experiment Network (ITEX), I determined the long-term effect of warming on the carbon cycle in a natural hydrological gradient established in the mid 90’s. I found that the carbon balance is highly sensitive to short-term changes in water table and warming. However, over longer time periods, hydrological and temperature changed soil biophysical properties, nutrient cycles, and other ecosystem structural and functional components that down regulated GPP and ER, especially in wet areas.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Jayawardena, Dileepa M. « Effects of Elevated Carbon Dioxide and Chronic Warming on Nitrogen (N) Uptake and Assimilatory Proteins of Tomato Roots Provided Different Forms of Inorganic N (Nitrate and Ammonium) ». University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1449767930.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie