Littérature scientifique sur le sujet « Classification of biomedical time series »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Classification of biomedical time series ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Classification of biomedical time series"
Ramanujam, E., et S. Padmavathi. « Genetic time series motif discovery for time series classification ». International Journal of Biomedical Engineering and Technology 31, no 1 (2019) : 47. http://dx.doi.org/10.1504/ijbet.2019.101051.
Texte intégralJin, Lin-peng, et Jun Dong. « Ensemble Deep Learning for Biomedical Time Series Classification ». Computational Intelligence and Neuroscience 2016 (2016) : 1–13. http://dx.doi.org/10.1155/2016/6212684.
Texte intégralIvaturi, Praharsh, Matteo Gadaleta, Amitabh C. Pandey, Michael Pazzani, Steven R. Steinhubl et Giorgio Quer. « A Comprehensive Explanation Framework for Biomedical Time Series Classification ». IEEE Journal of Biomedical and Health Informatics 25, no 7 (juillet 2021) : 2398–408. http://dx.doi.org/10.1109/jbhi.2021.3060997.
Texte intégralWang, Jin, Ping Liu, Mary F. H. She, Saeid Nahavandi et Abbas Kouzani. « Bag-of-words representation for biomedical time series classification ». Biomedical Signal Processing and Control 8, no 6 (novembre 2013) : 634–44. http://dx.doi.org/10.1016/j.bspc.2013.06.004.
Texte intégralKu-Maldonado, Carlos Alejandro, et Erik Molino-Minero-Re. « Performance Evaluation of Biomedical Time Series Transformation Methods for Classification Tasks ». Revista Mexicana de Ingeniería Biomédica 44, no 4 (17 août 2023) : 105–16. http://dx.doi.org/10.17488/rmib.44.4.7.
Texte intégralGupta, R., A. Mittal, K. Singh, V. Narang et S. Roy. « Time-series approach to protein classification problem ». IEEE Engineering in Medicine and Biology Magazine 28, no 4 (juillet 2009) : 32–37. http://dx.doi.org/10.1109/memb.2009.932903.
Texte intégralWang, Will Ke, Ina Chen, Leeor Hershkovich, Jiamu Yang, Ayush Shetty, Geetika Singh, Yihang Jiang et al. « A Systematic Review of Time Series Classification Techniques Used in Biomedical Applications ». Sensors 22, no 20 (20 octobre 2022) : 8016. http://dx.doi.org/10.3390/s22208016.
Texte intégralLemus, Mariano, João P. Beirão, Nikola Paunković, Alexandra M. Carvalho et Paulo Mateus. « Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data ». Entropy 22, no 1 (30 décembre 2019) : 49. http://dx.doi.org/10.3390/e22010049.
Texte intégralAthavale, Yashodhan, Sridhar Krishnan et Aziz Guergachi. « Pattern Classification of Signals Using Fisher Kernels ». Mathematical Problems in Engineering 2012 (2012) : 1–15. http://dx.doi.org/10.1155/2012/467175.
Texte intégralCarreiro, André V., Orlando Anunciação, João A. Carriço et Sara C. Madeira. « Prognostic Prediction through Biclustering-Based Classification of Clinical Gene Expression Time Series ». Journal of Integrative Bioinformatics 8, no 3 (1 décembre 2011) : 73–89. http://dx.doi.org/10.1515/jib-2011-175.
Texte intégralThèses sur le sujet "Classification of biomedical time series"
Rajan, Jebu Jacob. « Time series classification ». Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339538.
Texte intégralMatam, Basava R. « Watermarking biomedical time series data ». Thesis, Aston University, 2009. http://publications.aston.ac.uk/15351/.
Texte intégralKhessiba, Souhir. « Stratégies d’optimisation des hyper-paramètres de réseaux de neurones appliqués aux signaux temporels biomédicaux ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE003.
Texte intégralThis thesis focuses on optimizing the hyperparameters of convolutional neural networks (CNNs) in the medical domain, proposing an innovative approach to improve the performance of decision-making models in the biomedical field. Through the use of a hybrid approach, GS-TPE, to effectively adjust the hyperparameters of complex neural network models, this research has demonstrated significant improvements in the classification of temporal biomedical signals, such as vigilance states, from physiological signals such as electroencephalogram (EEG). Furthermore, by introducing a new DNN architecture, STGCN, for the classification of gestures associated with pathologies such as knee osteoarthritis and Parkinson's disease from video gait analysis, these works offer new perspectives for enhancing medical diagnosis and management through advancements in artificial intelligence
Al-Wasel, Ibrahim A. « Spectral analysis for replicated biomedical time series ». Thesis, Lancaster University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412585.
Texte intégralEsling, Philippe. « Multiobjective time series matching and classification ». Paris 6, 2012. http://www.theses.fr/2012PA066704.
Texte intégralMillions of years of genetic evolution have shaped our auditory system, allowing to discriminate acoustic events in a flexible manner. We can perceptually process multiple de-correlated scales in a multidimensional way. In addition, humans have a natural ability to extract a coherent structure from temporal shapes. We show that emulating these mechanisms in our algorithmic choices, allow to create efficient approaches to perform matching and classification, with a scope beyond musical issues. We introduce the problem of multiobjective Time Series (MOTS) and propose an efficient algorithm to solve it. We introduce two innovative querying paradigms on audio files. We introduce a new classification paradigm based on the hypervolume dominated by different classes called hypervolume-MOTS (HV-MOTS). This system studies the behavior of the whole class by its distribution and spread over the optimization space. We show an improvement over the state of the art methods on a wide range of scientific problems. We present a biometric identification systems based on the sounds produced by heartbeats. This system is able to reach low error rates equivalent to other biometric features. These results are confirmed by the extensive cardiac data set of the Mars500 isolation study. Finally, we study the problem of generating orchestral mixtures that could best imitate a sound target. The search algorithm based on MOTS problem allows to obtain a set of solutions to approximate any audio source
Nunes, Neuza Filipa Martins. « Algorithms for time series clustering applied to biomedical signals ». Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/5666.
Texte intégralThe increasing number of biomedical systems and applications for human body understanding creates a need for information extraction tools to use in biosignals. It’s important to comprehend the changes in the biosignal’s morphology over time, as they often contain critical information on the condition of the subject or the status of the experiment. The creation of tools that automatically analyze and extract relevant attributes from biosignals, providing important information to the user, has a significant value in the biosignal’s processing field. The present dissertation introduces new algorithms for time series clustering, where we are able to separate and organize unlabeled data into different groups whose signals are similar to each other. Signal processing algorithms were developed for the detection of a meanwave, which represents the signal’s morphology and behavior. The algorithm designed computes the meanwave by separating and averaging all cycles of a cyclic continuous signal. To increase the quality of information given by the meanwave, a set of wave-alignment techniques was also developed and its relevance was evaluated in a real database. To evaluate our algorithm’s applicability in time series clustering, a distance metric created with the information of the automatic meanwave was designed and its measurements were given as input to a K-Means clustering algorithm. With that purpose, we collected a series of data with two different modes in it. The produced algorithm successfully separates two modes in the collected data with 99.3% of efficiency. The results of this clustering procedure were compared to a mechanism widely used in this area, which models the data and uses the distance between its cepstral coefficients to measure the similarity between the time series.The algorithms were also validated in different study projects. These projects show the variety of contexts in which our algorithms have high applicability and are suitable answers to overcome the problems of exhaustive signal analysis and expert intervention. The algorithms produced are signal-independent, and therefore can be applied to any type of signal providing it is a cyclic signal. The fact that this approach doesn’t require any prior information and the preliminary good performance make these algorithms powerful tools for biosignals analysis and classification.
Lines, Jason. « Time Series classification through transformation and ensembles ». Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/53360/.
Texte intégralGhalwash, Mohamed. « Interpretable Early Classification of Multivariate Time Series ». Diss., Temple University Libraries, 2013. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/239730.
Texte intégralPh.D.
Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems, e.g. a time series of several different classes can be created, by observing various patient attributes over time and the task is to classify unseen patient based on his temporal observations. In time-sensitive applications such as medical applications, some certain aspects have to be considered besides providing accurate classification. The first aspect is providing early classification. Accurate and timely diagnosis is essential for allowing physicians to design appropriate therapeutic strategies at early stages of diseases, when therapies are usually the most effective and the least costly. We propose a probabilistic hybrid method that allows for early, accurate, and patient-specific classification of multivariate time series that, by training on a full time series, offer classification at a very early time point during the diagnosis phase, while staying competitive in terms of accuracy with other models that use full time series both in training and testing. The method has attained very promising results and outperformed the baseline models on a dataset of response to drug therapy in Multiple Sclerosis patients and on a sepsis therapy dataset. Although attaining accurate classification is the primary goal of data mining task, in medical applications it is important to attain decisions that are not only accurate and obtained early, but can also be easily interpreted which is the second aspect of medical applications. Physicians tend to prefer interpretable methods rather than black-box methods. For that purpose, we propose interpretable methods for early classification by extracting interpretable patterns from the raw time series to help physicians in providing early diagnosis and to gain insights into and be convinced about the classification results. The proposed methods have been shown to be more accurate and provided classifications earlier than three alternative state-of-the-art methods when evaluated on human viral infection datasets and a larger myocardial infarction dataset. The third aspect has to be considered for medical applications is the need for predictions to be accompanied by a measure which allows physicians to judge about the uncertainty or belief in the prediction. Knowing the uncertainty associated with a given prediction is especially important in clinical diagnosis where data mining methods assist clinical experts in making decisions and optimizing therapy. We propose an effective method to provide uncertainty estimate for the proposed interpretable early classification methods. The method was evaluated on four challenging medical applications by characterizing decrease in uncertainty of prediction. We showed that our proposed method meets the requirements of uncertainty estimates (the proposed uncertainty measure takes values in the range [0,1] and propagates over time). To the best of our knowledge, this PhD thesis will have a great impact on the link between data mining community and medical domain experts and would give physicians sufficient confidence to put the proposed methods into real practice.
Temple University--Theses
Owsley, Lane M. D. « Classification of transient events in time series / ». Thesis, Connect to this title online ; UW restricted, 1998. http://hdl.handle.net/1773/5989.
Texte intégralBotsch, Michael-Felix. « Machine learning techniques for time series classification ». Göttingen Cuvillier, 2009. http://d-nb.info/994721455/04.
Texte intégralLivres sur le sujet "Classification of biomedical time series"
Melin, Patricia, Martha Ramirez et Oscar Castillo. Clustering, Classification, and Time Series Prediction by Using Artificial Neural Networks. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71101-5.
Texte intégralAbel, Jaison R. A time series and cross-sectional classification of state regulatory policy adopted for local exchange carriers : Divestiture to present, 1984-1998. Columbus, Ohio : National Regulatory Research Institute, 1998.
Trouver le texte intégralTime Series Clustering and Classification. Chapman and Hall/CRC, 2019.
Trouver le texte intégralMaharaj, Elizabeth Ann, Pierpaolo D'Urso et Jorge Caiado. Time Series Clustering and Classification. Taylor & Francis Group, 2019.
Trouver le texte intégralMaharaj, Elizabeth Ann, Pierpaolo D'Urso et Jorge Caiado. Time Series Clustering and Classification. Taylor & Francis Group, 2019.
Trouver le texte intégralMaharaj, Elizabeth Ann, Pierpaolo D'Urso et Jorge Caiado. Time Series Clustering and Classification. Taylor & Francis Group, 2019.
Trouver le texte intégralMaharaj, Elizabeth Ann, Pierpaolo D'Urso et Jorge Caiado. Time Series Clustering and Classification. Taylor & Francis Group, 2019.
Trouver le texte intégralMaharaj, Elizabeth Ann, Jorge Caiado et Pierpaolo DUrso. Time Series Clustering and Classification. Taylor & Francis Group, 2021.
Trouver le texte intégralBuza, Krisztian. Fusion Methods for Time-Series Classification. Lang GmbH, Internationaler Verlag der Wissenschaften, Peter, 2011.
Trouver le texte intégralVolna, Eva, Martin Kotyrba et Michal Janosek. Pattern Recognition and Classification in Time Series Data. IGI Global, 2016.
Trouver le texte intégralChapitres de livres sur le sujet "Classification of biomedical time series"
Jović, Alan, Karla Brkić et Nikola Bogunović. « Decision Tree Ensembles in Biomedical Time-Series Classification ». Dans Lecture Notes in Computer Science, 408–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32717-9_41.
Texte intégralBock, Christian, Michael Moor, Catherine R. Jutzeler et Karsten Borgwardt. « Machine Learning for Biomedical Time Series Classification : From Shapelets to Deep Learning ». Dans Methods in Molecular Biology, 33–71. New York, NY : Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0826-5_2.
Texte intégralAbid, M., Y. Ouakrim, A. Mitiche, P. A. Vendittoli, N. Hagemeister et N. Mezghani. « A Comparative Study of End-To-End Discriminative Deep Learning Models for Knee Joint Kinematic Time Series Classification ». Dans Biomedical Signal Processing, 33–61. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67494-6_2.
Texte intégralAcerbi, Enzo, Caroline Chénard, Stephan C. Schuster et Federico M. Lauro. « Discovering Trends in Environmental Time-Series with Supervised Classification of Metatranscriptomic Reads and Empirical Mode Decomposition ». Dans Biomedical Engineering Systems and Technologies, 192–210. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29196-9_11.
Texte intégralDe, Bikram, Mykhailo Sakevych et Vangelis Metsis. « The Impact of Data Augmentation on Time Series Classification Models : An In-Depth Study with Biomedical Data ». Dans Artificial Intelligence in Medicine, 192–203. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66538-7_20.
Texte intégralGrabocka, Josif, Alexandros Nanopoulos et Lars Schmidt-Thieme. « Invariant Time-Series Classification ». Dans Machine Learning and Knowledge Discovery in Databases, 725–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33486-3_46.
Texte intégralKotsifakos, Alexios, et Panagiotis Papapetrou. « Model-Based Time Series Classification ». Dans Advances in Intelligent Data Analysis XIII, 179–91. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12571-8_16.
Texte intégralRoychoudhury, Shoumik, Mohamed Ghalwash et Zoran Obradovic. « Cost Sensitive Time-Series Classification ». Dans Machine Learning and Knowledge Discovery in Databases, 495–511. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71246-8_30.
Texte intégralCamiz, Sergio. « Exploratory Classification of Time-Series ». Dans Handbook of Research on Emerging Theories, Models, and Applications of Financial Econometrics, 1–29. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54108-8_1.
Texte intégralHong, Yi, Yundi Shi, Martin Styner, Mar Sanchez et Marc Niethammer. « Simple Geodesic Regression for Image Time-Series ». Dans Biomedical Image Registration, 11–20. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31340-0_2.
Texte intégralActes de conférences sur le sujet "Classification of biomedical time series"
Kim, Boah, Tejas Sudharshan Mathai, Kimberly Helm et Ronald M. Summers. « Automated Classification of Multi-Parametric Body MRI Series ». Dans 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635686.
Texte intégralCasella, Bruno, Matthias Jakobs, Marco Aldinucci et Sebastian Buschjäger. « Federated Time Series Classification with ROCKET features ». Dans ESANN 2024, 87–92. Louvain-la-Neuve (Belgium) : Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-61.
Texte intégralFong, Simon, Kun Lan, Paul Sun, Sabah Mohammed et Jinan Fiaidhi. « A Time-Series Pre-Processing Methodology for Biosignal Classification using Statistical Feature Extraction ». Dans Biomedical Engineering. Calgary,AB,Canada : ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.791-100.
Texte intégralMatarmaa, Jarno, et Anton Dolganov. « Sport Activity Classification Using Interlaced Multivariate Time Series Signals ». Dans 2023 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE, 2023. http://dx.doi.org/10.1109/usbereit58508.2023.10158886.
Texte intégralWang, Qian, Zhenguo Zhang et Rongyi Cui. « Classification-oriented Feature Extraction from Time Series by Comparing Learning ». Dans 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2019. http://dx.doi.org/10.1109/cisp-bmei48845.2019.8965685.
Texte intégralMure, Simon, Thomas Grenier, Charles R. G. Guttmann, Francois Cotton et Hugues Benoit-Cattin. « Classification of multiple sclerosis lesion evolution patterns a study based on unsupervised clustering of asynchronous time-series ». Dans 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493509.
Texte intégralMbouopda, Michael Franklin. « Uncertain Time Series Classification ». Dans Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/683.
Texte intégralKrawczak, Maciej, et Grazyna Szkatula. « Time series envelopes for classification ». Dans 2010 5th IEEE International Conference Intelligent Systems (IS). IEEE, 2010. http://dx.doi.org/10.1109/is.2010.5548371.
Texte intégralLi, Sheng, Yaliang Li et Yun Fu. « Multi-View Time Series Classification ». Dans CIKM'16 : ACM Conference on Information and Knowledge Management. New York, NY, USA : ACM, 2016. http://dx.doi.org/10.1145/2983323.2983780.
Texte intégralHsieh, Tsung-Yu, Suhang Wang, Yiwei Sun et Vasant Honavar. « Explainable Multivariate Time Series Classification ». Dans WSDM '21 : The Fourteenth ACM International Conference on Web Search and Data Mining. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3437963.3441815.
Texte intégralRapports d'organisations sur le sujet "Classification of biomedical time series"
Gupta, Maya R., Nathan Parrish et Hyrum S. Anderson. Early time-series classification with reliability guarantee. Office of Scientific and Technical Information (OSTI), août 2012. http://dx.doi.org/10.2172/1051704.
Texte intégralSinkovits, Robert. Optimization and Parallelization of a Time Series Classification Algorithm. Extreme Science and Engineering Discovery Environment (XSEDE), août 2019. http://dx.doi.org/10.21900/xsede-2019.1.
Texte intégralSchryver, J. C., et N. Rao. Classification of time series patterns from complex dynamic systems. Office of Scientific and Technical Information (OSTI), juillet 1998. http://dx.doi.org/10.2172/663242.
Texte intégralDanvers, Alexander, Evan Carter, Matthias Mehl et Esther Sternberg. Time-Series Classification for Predicting Self-Reported Job Performance. Aberdeen Proving Ground, MD : DEVCOM Army Research Laboratory, novembre 2021. http://dx.doi.org/10.21236/ad1153640.
Texte intégralSenin, Pavel, et Sergey Malinchik. SAX-VSM : Interpretable Time Series Classification Using SAX and Vector Space Model. Fort Belvoir, VA : Defense Technical Information Center, janvier 2013. http://dx.doi.org/10.21236/ada603196.
Texte intégralLasko, Kristofer, Francis O’Neill et Elena Sava. Automated mapping of land cover type within international heterogenous landscapes using Sentinel-2 imagery with ancillary geospatial data. Engineer Research and Development Center (U.S.), septembre 2024. http://dx.doi.org/10.21079/11681/49367.
Texte intégralArévalo-Sáenz, Alejandra, Borja Ferrández Pujante et Fernando J. Rascón-Ramírez. Peritumoral Edema in Resected Meningiomas : Study of Factors Associated with the Variability of Postoperative Duration. Science Repository, mars 2024. http://dx.doi.org/10.31487/j.scr.2024.01.05.
Texte intégralBerney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman et John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), avril 2021. http://dx.doi.org/10.21079/11681/40401.
Texte intégralResearch, IFF. FSA and Official Controls : Research with Food Business Operators. Food Standards Agency, février 2023. http://dx.doi.org/10.46756/sci.fsa.drn484.
Texte intégral