Articles de revues sur le sujet « Classicalization »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Classicalization.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 31 meilleurs articles de revues pour votre recherche sur le sujet « Classicalization ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Vikman, Alexander. « Suppressing quantum fluctuations in classicalization ». EPL (Europhysics Letters) 101, no 3 (28 janvier 2013) : 34001. http://dx.doi.org/10.1209/0295-5075/101/34001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Brouzakis, N., J. Rizos et N. Tetradis. « On the dynamics of classicalization ». Physics Letters B 708, no 1-2 (février 2012) : 170–73. http://dx.doi.org/10.1016/j.physletb.2012.01.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dvali, Gia, et David Pirtskhalava. « Dynamics of unitarization by classicalization ». Physics Letters B 699, no 1-2 (mai 2011) : 78–86. http://dx.doi.org/10.1016/j.physletb.2011.03.054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bolaños, Marduk. « Classicalization by phase space measurements ». European Journal of Physics 39, no 3 (26 mars 2018) : 035405. http://dx.doi.org/10.1088/1361-6404/aab340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Percacci, R., et L. Rachwał. « On classicalization in nonlinear sigma models ». Physics Letters B 711, no 2 (mai 2012) : 184–89. http://dx.doi.org/10.1016/j.physletb.2012.03.073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dvali, Gia, et Cesar Gomez. « Ultra-high energy probes of classicalization ». Journal of Cosmology and Astroparticle Physics 2012, no 07 (6 juillet 2012) : 015. http://dx.doi.org/10.1088/1475-7516/2012/07/015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Addazi, Andrea. « Unitarization and causalization of nonlocal quantum field theories by classicalization ». International Journal of Modern Physics A 31, no 04n05 (3 février 2016) : 1650009. http://dx.doi.org/10.1142/s0217751x16500093.

Texte intégral
Résumé :
We suggest that classicalization can cure nonlocal quantum field theories from acausal divergences in scattering amplitudes, restoring unitarity and causality. In particular, in “trans-nonlocal” limit, the formation of nonperturbative classical configurations, called classicalons, in scatterings like [Formula: see text], can avoid typical acausal divergences.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kubotani, H., T. Uesugi, M. Morikawa et A. Sugamoto. « Classicalization of Quantum Fluctuation in Inflationary Universe ». Progress of Theoretical Physics 98, no 5 (1 novembre 1997) : 1063–79. http://dx.doi.org/10.1143/ptp.98.1063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Koide, T. « Classicalization of quantum variables and quantum–classical hybrids ». Physics Letters A 379, no 36 (septembre 2015) : 2007–12. http://dx.doi.org/10.1016/j.physleta.2015.06.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dvali, G., C. Gomez, R. S. Isermann, D. Lüst et S. Stieberger. « Black hole formation and classicalization in ultra-Planckian2→Nscattering ». Nuclear Physics B 893 (avril 2015) : 187–235. http://dx.doi.org/10.1016/j.nuclphysb.2015.02.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Tirandaz, Arash, Farhad Taher Ghahramani, Ali Asadian et Mehdi Golshani. « Classicalization of quantum state of detector by amplification process ». Physics Letters A 383, no 15 (mai 2019) : 1677–82. http://dx.doi.org/10.1016/j.physleta.2019.02.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Yamada, Hiroaki. « Delocalization and Classicalization of Quantum Wavepacket in Kicked Anderson Model ». Journal of the Physical Society of Japan 72, Suppl.C (janvier 2003) : 101–4. http://dx.doi.org/10.1143/jpsjs.72sc.101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kholmatov, Temurmalik. « The Origins of Classicalization Publication and Perception of Academic Heritage of S.B. Veselovskiy ». Philosophy. Journal of the Higher School of Economics VI, no 1 (31 mars 2022) : 184–212. http://dx.doi.org/10.17323/2587-8719-2022-1-184-212.

Texte intégral
Résumé :
The research of how scientific works acquire the status of “classics” is an essential aspect of studying the actualization of ideas and approaches, their circulation in the academic field, as well as the current state of a scientific direction or discipline. Based on historiographical sources and documentation, this article analyzes the role of publication and perception of academic heritage of the famous historian, academician Stepan Borisovich Veselovskiy (1876–1952) in classification. In this research, the creation and activity of the Commission for the publication of Veselovskiy's papers are considered one of the key stages in the process of classicalization. The reasons for creating the Commission and its history, personal membership, and publishing plans based on documentation materials from the Archive of the Russian Academy of Sciences (RAS) are studied. Also, the influence of Veselovskiy's literary heritage on the historiography of the late Soviet era is analyzed. The author considers the continuity of Veselovskiy's scientific views and research approaches on pre-Petrine Russia's history, the criticism of papers published both during his lifetime and posthumously. Special attention is paid to the influence of reviews on the classification of literary heritage. Further research prospects are highlighted, and it is assumed that the posthumous publication of Veselovskiy's academic works and their involvement in historiography created the basis for the classification of Veselovskiy's literary heritage in the late Soviet period.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Melia, Fulvio. « Classicalization of quantum fluctuations at the Planck scale in the Rh = ct universe ». Physics Letters B 818 (juillet 2021) : 136362. http://dx.doi.org/10.1016/j.physletb.2021.136362.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Dodonov, V. V., C. Valverde, L. S. Souza et B. Baseia. « Classicalization times of parametrically amplified “Schrödinger cat” states coupled to phase-sensitive reservoirs ». Physics Letters A 375, no 42 (octobre 2011) : 3668–76. http://dx.doi.org/10.1016/j.physleta.2011.08.058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Campos-Muñoz, Germán. « Cuzco, Urbs et Orbis : Rome and Garcilaso de la Vega's Self-Classicalization ». Hispanic Review 81, no 2 (2013) : 123–44. http://dx.doi.org/10.1353/hir.2013.0011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Barvinsky, A. O., et A. Yu Kamenshchik. « Preferred basis in quantum theory and the problem of classicalization of the quantum Universe ». Physical Review D 52, no 2 (15 juillet 1995) : 743–57. http://dx.doi.org/10.1103/physrevd.52.743.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Aurilia, Antonio, et Euro Spallucci. « Why the Length of a Quantum String Cannot Be Lorentz Contracted ». Advances in High Energy Physics 2013 (2013) : 1–7. http://dx.doi.org/10.1155/2013/531696.

Texte intégral
Résumé :
We propose a quantum gravity-extended form of the classical length contraction law obtained in special relativity. More specifically, the framework of our discussion is the UV self-complete theory of quantum gravity. We show how our results are consistent with (i) the generalized form of the uncertainty principle (GUP), (ii) the so-called hoop-conjecture, and (iii) the intriguing notion of “classicalization” of trans-Planckian physics. We argue that there is a physical limit to the Lorentz contraction rule in the form of some minimal universal length determined by quantum gravity, say the Planck Length, or any of its current embodiments such as the string length, or the TeV quantum gravity length scale. In the latter case, we determine the critical boost that separates the ordinary “particle phase,” characterized by the Compton wavelength, from the “black hole phase,” characterized by the effective Schwarzschild radius of the colliding system.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Spallucci, Euro, et Anais Smailagic. « Regular black holes from semi-classical down to Planckian size ». International Journal of Modern Physics D 26, no 07 (27 février 2017) : 1730013. http://dx.doi.org/10.1142/s0218271817300130.

Texte intégral
Résumé :
In this paper, we review various models of curvature singularity free black holes (BHs). In the first part of the review, we describe semi-classical solutions of the Einstein equations which, however, contains a “quantum” input through the matter source. We start by reviewing the early model by Bardeen where the metric is regularized by-hand through a short-distance cutoff, which is justified in terms of nonlinear electro-dynamical effects. This toy-model is useful to point-out the common features shared by all regular semi-classical black holes. Then, we solve Einstein equations with a Gaussian source encoding the quantum spread of an elementary particle. We identify, the a priori arbitrary, Gaussian width with the Compton wavelength of the quantum particle. This Compton–Gauss model leads to the estimate of a terminal density that a gravitationally collapsed object can achieve. We identify this density to be the Planck density, and reformulate the Gaussian model assuming this as its peak density. All these models, are physically reliable as long as the BH mass is big enough with respect to the Planck mass. In the truly Planckian regime, the semi-classical approximation breaks down. In this case, a fully quantum BH description is needed. In the last part of this paper, we propose a nongeometrical quantum model of Planckian BHs implementing the Holographic Principle and realizing the “classicalization” scenario recently introduced by Dvali and collaborators. The classical relation between the mass and radius of the BH emerges only in the classical limit, far away from the Planck scale.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Giusti, Andrea. « On the corpuscular theory of gravity ». International Journal of Geometric Methods in Modern Physics 16, no 03 (mars 2019) : 1930001. http://dx.doi.org/10.1142/s0219887819300010.

Texte intégral
Résumé :
The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the [Formula: see text]CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rizos, J., et N. Tetradis. « Dynamical classicalization ». Journal of High Energy Physics 2012, no 4 (avril 2012). http://dx.doi.org/10.1007/jhep04(2012)110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kovner, Alex, et Michael Lublinsky. « Classicalization and unitarity ». Journal of High Energy Physics 2012, no 11 (novembre 2012). http://dx.doi.org/10.1007/jhep11(2012)030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Dvali, Gia, Gian F. Giudice, Cesar Gomez et Alex Kehagias. « UV-completion by classicalization ». Journal of High Energy Physics 2011, no 8 (août 2011). http://dx.doi.org/10.1007/jhep08(2011)108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Rizos, J., N. Tetradis et G. Tsolias. « Classicalization as a tunnelling phenomenon ». Journal of High Energy Physics 2012, no 8 (août 2012). http://dx.doi.org/10.1007/jhep08(2012)054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Dvali, Gia, Cesar Gomez et Alex Kehagias. « Classicalization of gravitons and Goldstones ». Journal of High Energy Physics 2011, no 11 (novembre 2011). http://dx.doi.org/10.1007/jhep11(2011)070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bressanini, Gabriele, Claudia Benedetti et Matteo G. A. Paris. « Decoherence and classicalization of continuous-time quantum walks on graphs ». Quantum Information Processing 21, no 9 (17 septembre 2022). http://dx.doi.org/10.1007/s11128-022-03647-x.

Texte intégral
Résumé :
AbstractWe address decoherence and classicalization of continuous-time quantum walks (CTQWs) on graphs. In particular, we investigate three different models of decoherence and employ the quantum-classical (QC) dynamical distance as a figure of merit to assess whether, and to which extent, decoherence classicalizes the CTQW, i.e. turns it into the analogue classical process. We show that the dynamics arising from intrinsic decoherence, i.e. dephasing in the energy basis, do not fully classicalize the walker and partially preserves quantum features. On the other hand, dephasing in the position basis, as described by the Haken–Strobl master equation or by the quantum stochastic walk (QSW) model, asymptotically destroys the quantumness of the walker, making it equivalent to a classical random walk. We also investigate how fast is the classicalization process and observe a larger rate of convergence of the QC-distance to its asymptotic value for intrinsic decoherence and the QSW models, whereas in the Haken–Strobl scenario, larger values of the decoherence rate induce localization of the walker.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Dvali, Gia, et Lukas Eisemann. « Perturbative understanding of nonperturbative processes and quantumization versus classicalization ». Physical Review D 106, no 12 (29 décembre 2022). http://dx.doi.org/10.1103/physrevd.106.125019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Das, Suratna, Satyabrata Sahu, Shreya Banerjee et T. P. Singh. « Classicalization of inflationary perturbations by collapse models in light of BICEP2 ». Physical Review D 90, no 4 (5 août 2014). http://dx.doi.org/10.1103/physrevd.90.043503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Berkhahn, Felix, Dennis D. Dietrich et Stefan Hofmann. « Cosmological Classicalization : Maintaining Unitarity under Relevant Deformations of the Einstein-Hilbert Action ». Physical Review Letters 106, no 19 (11 mai 2011). http://dx.doi.org/10.1103/physrevlett.106.191102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Yuen, Horace P., et Ranjith Nair. « Classicalization of nonclassical quantum states in loss and noise : Some no-go theorems ». Physical Review A 80, no 2 (19 août 2009). http://dx.doi.org/10.1103/physreva.80.023816.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Dvali, Gia, et Raju Venugopalan. « Classicalization and unitarization of wee partons in QCD and gravity : The CGC-black hole correspondence ». Physical Review D 105, no 5 (29 mars 2022). http://dx.doi.org/10.1103/physrevd.105.056026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie