Articles de revues sur le sujet « Chun qiu jing jie »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Chun qiu jing jie.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 19 meilleurs articles de revues pour votre recherche sur le sujet « Chun qiu jing jie ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Shin, Ji-Youn. « The Kanaonchu in the Middle of Kunaichoshoryobuzo “Chun qiu jing zhuan ji jie” Kamakura ». East Asian Ancient Studies 39 (30 septembre 2015) : 333–57. http://dx.doi.org/10.17070/aeaas.2015.09.39.333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shin, Ji-Youn. « The Tone in the Middle of Kunaichoshoryobuzo “Chun qiu jing zhuan ji jie” Kamakura ». Journal of Japanology 51 (31 août 2020) : 83–101. http://dx.doi.org/10.21442/djs.2020.51.04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shin, Ji-youn. « About Tone in the Late Muromachi “Chun qiu jing zhuan ji jie” - Through comparison with Kamakura Mid-term - ». East Asian Ancient Studies 70 (30 juin 2023) : 61–85. http://dx.doi.org/10.17070/aeaas.2023.6.70.61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shin, Jiyoun. « On Fanqie Bottom Words of group Xie, in the Middle of Kunaichoshoryobuzo “Chun qiu jing zhuan ji jie” Kamakura ». Korean Journal of Japanology 119 (31 mai 2019) : 37–53. http://dx.doi.org/10.15532/kaja.2019.05.119.37.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shin, Ji-youn. « A study on the jionchu of “Chun qiu jing zhuan ji jie” marked by Kiyohara-Senken - Focus on the Guo (果) group and the Jia (假) group - ». East Asian Ancient Studies 67 (30 septembre 2022) : 325–48. http://dx.doi.org/10.17070/aeaas.2022.9.67.325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shin, Ji-Youn. « Contemplation on Fanqie Top Words in the Middle of Kunaichoshoryobuzo “Chun qiu jing zhuan ji jie” Kamakura - Focusing on tongue sounds and tooth sounds - ». East Asian Ancient Studies 42 (30 juin 2016) : 269–93. http://dx.doi.org/10.17070/aeaas.2016.06.42.269.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

申智娟 et 宋在漢. « Contemplation on Fanqie Bottom Words in the Middle of Kunaichoshoryobuzo “Chun qiu jing zhuan ji jie” Kamakura ─ Focusing on the group of Guo(果)・Jia(假)・Xiao(效) ─ ». Journal of Japanese Studies 49 (30 septembre 2016) : 263–84. http://dx.doi.org/10.18841/2016.49.11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shin, Jiyoun. « Contemplation on Fanqie Bottom Words in the Middle of Kunaichoshoryobuzo "Chun qiu jing zhuan ji jie" Kamakura : Focusing on the group of Yu[遇] Liu[流] ». Korean Journal of Japanology 117 (30 novembre 2018) : 1–18. http://dx.doi.org/10.15532/kaja.2018.11.117.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Blazhkina, Anastasia Yu. « Some aspects of the authorship of the treatise “Xiao Jing” ». Orientalistica 4, no 5 (27 décembre 2021) : 1279–300. http://dx.doi.org/10.31696/2618-7043-2021-4-5-1279-1300.

Texte intégral
Résumé :
The article deals with the authorship of the Confucian treatise Xiao Jing (“The Classic of Filial Piety”). Xiao Jing is one of the classical treatises that constitutes a part of the Confucian corpus Shisan Jing (“The Thirteen Classics”). This confirms the importance and high significance of this text for the traditional philosophical thought of China. The earliest mention of the title “Xiao Jing” was recorded in the work from the 3rd century BC, Lu shi chun qiu (“Spring and Autumn of Mr Liu”), which indicates the terminus ante quem non for the treatise Xiao Jing. According to some Russian scholars, the treatise Xiao Jing was compiled in the IV-II centuries BC. The Chinese scholarship acknowledges eight main versions of authorship, and therefore dating of Xiao Jing. The author stresses the importance to establish the authorship of the Xiao Jing treatise since this can be a piece of additional information for a comprehensive understanding of the philosophical heritage of the Confucian tradition of this text. After presenting an outline of the main versions of authorship of the Xiao Jing treatise, the author states that this issue can hardly be solved unambiguously. Therefore, this article can be considered as a preliminary essay for further research. The appendix offers a complete Russian translation of the Xiao Jing made by the author of the present article.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Thuler, Luiz Claudio Santos, Guilherme Jorge Costa, Maria Júlia Gonçalves de Mello et Carlos Gil Ferreira. « Response to “Commentary on : Undertreatment trend in elderly lung cancer patients in Brazil”—Jing-lan Tang, Chun-jie Hou ». Journal of Cancer Research and Clinical Oncology 143, no 10 (5 septembre 2017) : 2145–46. http://dx.doi.org/10.1007/s00432-017-2511-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wang, Bu Hai, Cai Yue Chen, Xian Zhang, Yu Xiang Huang, Yi Chun Zeng, Lei Li, Mao Qi Wang et al. « Abstract 5091 : The early change of serum interleukin 14α levels predicts the response to anti-PD-1 therapy in cancer ». Cancer Research 82, no 12_Supplement (15 juin 2022) : 5091. http://dx.doi.org/10.1158/1538-7445.am2022-5091.

Texte intégral
Résumé :
Abstract Background: Targeting programmed cell death-1 (PD-1) or programmed cell death ligand-1 (PD-L1) has been shown improved clinical efficacy in a wide range of tumor types. We evaluated serum interleukin 14α (IL14α) as a biomarker to predict the response of anti- PD-1 therapy. Patients and methods: Thirty advanced cancer patients treated with PD-1 inhibitor were enrolled in this study. Serum levels of IL-14α were tested at baseline and after 2 cycles of treatment. Result: Among these 30 patients, the mean expression level of IL14α before treatment was 2.1±1.21, whereas the mean level of IL14α after 2 cycles was 1.99±0.82. There were no association between the expression levels of IL14α and clinical outcome. Early change of IL14α after 2-cycles of anti-PD-1 therapy was calculated as delta IL14α % change = (IL14α level after 2 cycles - IL14α level before treatment)/IL14α level before treatment*100%. Receiver operating characteristic (ROC) was analyzed to get a cutoff point of delta IL14α % change as 2.46% (Sensitivity 85.71%, Specificity 62.5%; AUC=0.7277, P=0.034). Using this cutoff to subgroup the patients, we found higher delta IL14α % change was significantly associated with superior overall response to anit-PD-1 therapy (p=0.0072) and had a better progression free survival (p=0.0039). Conclusion: Early changes of serum IL14α level may be a useful predicting factor in advanced cancer patients with anti-PD-1 therapy. Keywords: IL14α, serum biomarker, anti-PD-1 therapy response, cancer Citation Format: Bu Hai Wang, Cai Yue Chen, Xian Zhang, Yu Xiang Huang, Yi Chun Zeng, Lei Li, Mao Qi Wang, Jing Liang Guo, Qiu Xian Li, Long Shen, Juan J. Gu, Yi Chen Liang. The early change of serum interleukin 14α levels predicts the response to anti-PD-1 therapy in cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5091.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Liu, Ziqi, Min Hwan Lee et ThomasJae Garcia. « 3D Metal-Organic Framework Based Layered Double Hydroxide Core Shell Structure for Enhanced Oxygen Evolution Reaction ». ECS Meeting Abstracts MA2022-02, no 44 (9 octobre 2022) : 1684. http://dx.doi.org/10.1149/ma2022-02441684mtgabs.

Texte intégral
Résumé :
Electrochemical water splitting, an effective approach of generating high purity hydrogen in a clean way, is composed of two half reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER).[1] OER is the main rate-limiting half reaction for water splitting due to its sluggish four-electron transfer process.[2] , [3] An efficient electrocatalyst is indispensable to minimize the activation barrier for the reaction and achieve a high efficiency. Recently, two-dimensional (2D) layered double hydroxides (LDHs) have shown promises as one of the most effective electrocatalysts towards OER. However, the confined nanostructure with poor electronic conductivity inhibits their further enhanced catalytic performance towards OER. Herein, a 3D core-shell LDH structure is synthesized through a facile one-step reaction strategy, in which the terephthalic acid and urea is employed as the organic ligand for the metal organic framework (MOF) precursor and surface coordination buffer between LDH and MOF. Benefiting from the hierarchical 3D microstructure with uniformly nanosheets grown on the surface, the as prepared electrocatalyst exhibits rich edge active sites and enormous electrochemical surface area. The representative sample (namely, CoNi-LDH@BDC) achieves an excellent OER activity with a low overpotential of 280 mV at 100 mA cm-2 and robust cyclic stability. In addition, quasi-operando studies using X-ray absorption and X-ray photoelectron spectroscopy further elucidate that the Co-Ni dual metal sites act as the main active site while Ni of high valence state is a favorable site to oxygen for the O-O bond formation. The prominent OER performance is also attributed to the synergistic effect between different transition metal atoms. References [1] L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2017, 10, 1820. [2] Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, Adv. Funct. Mater. 2018, 28, 1703363. [3] L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater. 2017, 29, 1606793. [4] R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. L. Stephens, I. Chorkendorff, ChemElectroChem 2014, 1, 2075. [5] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid and alkaline solutions, Vol. 3, American Chemical Society, 2012, pp. 399–404. [6] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J. Am. Chem. Soc. 2014, 136, 7077.
Styles APA, Harvard, Vancouver, ISO, etc.
13

김예신. « Zuo-zhuan(左傳) School’s View of Nature and Zai-yi(災異) Theory During the Later Han Dynasty : Focusing on Chun-qiu Zuo-shi Zhuan Jie-yi(春秋左氏傳解誼) Written by Fu-qian(服虔) ». Historical Studies of Ancient and Medieval China ll, no 37 (août 2015) : 151–95. http://dx.doi.org/10.15840/amch.2015..37.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

黃聖松, 黃聖松. « 楊伯峻《春秋左傳注》考訂六則——以《左傳》隱公至僖公時期為範圍 ». 人文研究學報 55 (octobre 2021) : 039–56. http://dx.doi.org/10.53106/241195042021105500003.

Texte intégral
Résumé :
<p>本文討論楊伯峻《春秋左傳注》釋《左傳》魯隱公至魯僖公時期六則有待商榷字詞,計有「季年」、「征伐以討其不然」、「不以阻隘」、「薄而觀之」、「獻狀」、「鄉役之三月」。一、「季年」專指某位國君在位最末年,非泛指最後一段時間。二、「征伐以討其不然」之「不然」有「不如此」義,「征伐以討其不然」指可征伐不遵「會」、「朝」之「禮」之諸侯。三、「不以阻隘」之「阻」、「隘」於傳文相對舉,故仍應從《春秋左傳集解》釋為同義詞。四、「薄而觀之」之「薄」仍應釋為「迫」,表現曹共公欲詳觀重耳駢脅而無禮之狀。五、「獻狀」之「獻」當讀為《說文解字》之「𤅊」,即典籍所見「讞」,有議罪、辨別是非之意。「獻狀」乃如《國語.晉語四》「誅觀狀」,謂議曹共公觀駢脅之罪。六、「鄉役之三月」之「三月」,依《左傳》「某公之某年」、「謚號之某年」句法與僖公二十八年《春秋經》、《左傳》記載,「三月」當為序數,釋為魯僖公二十八年(632 B.C.)三月。</p> <p>&nbsp;</p><p>This article discusses six phrases on Y&aacute;ng B&oacute;-j&ugrave;n’s &quot;Chun Qiu Zuo Zhuan Zhu&quot; which based on the period of Lǔ Yǐn Gōng to Lǔ Xī Gōng in Zuo Zhuan. They are &quot;j&igrave; ni&aacute;n&quot;, &quot;zhēng f&aacute; yǐ tǎo q&iacute; b&ugrave; r&aacute;n&quot;, &quot;b&ugrave; yǐ zǔ &agrave;i&quot;, &quot;b&aacute;o &eacute;r guān zhī&quot;, &quot;xi&agrave;n(獻) zhu&agrave;ng&quot; and &quot;xiāng y&igrave; zhī sān yu&egrave;&quot; 1. The meaning of the phrase &quot;j&igrave; ni&aacute;n&quot; is the last year of a certain monarch’s reign only, not the last period of his reign. 2. The phrase &quot;b&ugrave; r&aacute;n&quot; has the meaning of disobeying the agreement; therefore, the sentence &quot;zhēng f&aacute; yǐ tǎo q&iacute; b&ugrave; r&aacute;n&quot; means to go on a&nbsp;punitive expedition to those vassals who disobeyed the rules of &quot;hu&igrave;&quot; and &quot;ch&aacute;o&quot;. 3. Although the words &quot;zǔ&quot; and &quot;&agrave;i&quot; in the phrase &quot;b&ugrave; yǐ zǔ &agrave;i&quot; are contrastive meanings in &quot;Zhuan&quot;; however, from &quot;Ji Jie&quot;, they should be still interpreted as synonyms. 4. The word &quot;b&aacute;o&quot; should be interpreted as &quot;p&ograve;&quot; in the phrase &quot;b&aacute;o &eacute;r guān zhī&quot;. The whole meaning of this phrase is C&aacute;o G&ograve;ng Gōng heard that Zh&ograve;ng Er’s ribs were connected together, and wanted to take a look at him while he was taking a bath. That was so rude. 5. According to &quot;Shuō W&eacute;n Jiě Z&igrave;&quot;, the word &quot;xi&agrave;n(獻)&quot; should read as &quot;y&agrave;n(𤅊)&quot; in the phrase &quot;xi&agrave;n(獻) zhu&agrave;ng&quot;. The words &quot;y&agrave;n(𤅊)&quot; and &quot;y&agrave;n(讞)&quot; are the same in ancient books and records. It means to judge the cases and distinguish right from wrong. For example, C&aacute;o G&ograve;ng Gōng wanted to take a look at Zh&ograve;ng’ Er’s ribs and that was a case so-called &quot;Zhū guān zhu&agrave;ng&quot; in Gu&oacute; Yǔ. 6. The grammar of the phrase &quot;sān yu&egrave;&quot; in the sentence &quot;xiāng y&igrave; zhī sān yu&egrave;&quot; is quite similar to the sentences &quot;mǒu gōng zhī mǒu ni&aacute;n&quot; and &quot;sh&igrave; h&agrave;o zhī mǒu ni&aacute;n&quot; in Zhun. According to &quot;Jīng&quot; and &quot;Zhu&aacute;n&quot;, &quot;sān yu&egrave;&quot; should be an ordinal number ,and it means the March in 632 B. C.</p> <p>&nbsp;</p>
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ghimire, Govinda, Archana Loganathan, Osama Awadallah et Bilal El-Zahab. « Sulfurized Electrolyte Additives for Stable Lithium Metal Anodes ». ECS Meeting Abstracts MA2022-02, no 3 (9 octobre 2022) : 187. http://dx.doi.org/10.1149/ma2022-023187mtgabs.

Texte intégral
Résumé :
Researchers around the world are striving to develop new materials for energy-efficient and high energy density lithium-ion batteries [1]. Lithium metal with a theoretical specific capacity of 3860 mAh/g, low density (0.534 g/cm3), and the lowest potential (−3.040 V vs. standard hydrogen electrode) is consider the ultimate anode material for high specific energy batteries [2]. However, various issues remain to be address that hinder its use in commercial batteries, namely, cycling stability, Coulombic efficiency, and safety aspects associated with dendritic growth [3]. Inactive lithium, also known as “dead lithium,” originating from the dendrites that become separated from the surface over prolonged cycling contribute to anode capacity loss and require high negative to positive electrode capacity ratio (N/P). In addition, due to the extremely low standard redox potential of lithium, electrolytes readily react with the lithium metal surface even without any potential polarization. These reactions lead to the formation of mostly insoluble species in a layer often referred to as solid electrolyte interface, SEI. Ideally, the SEI layer is self-terminating; however, as fresh lithium gets exposed via dendritic growth, SEI formation continues. The steady and uncontrollable growth of SEI throughout the functional life of the battery leads to gradual resistant growth responsible for the capacity fade and eventual “death” of the battery. In previous art, alternative electrolytes, electrolyte additives, and artificial SEIs were studied [4] [5]. For example, the electrolyte additive lithium fluoride (LiF) was used in carbonate electrolytes and provided a strong protective layer that reduced side reactions and improved the life capacity of the battery [6]. Recently, 3-dimensional design of the anode’s current collector was shown to accommodate Li deposition resulting in suppressed SEI growth and volume expansion during cycling [7]. In the present work, we use sulfur-containing compounds as additives at a very low concentration (1 – 50 mM) in standard 1M LiPF6 EC:DMC (v:v = 1:1). Coin cells (2032) were assembled using lithium foil (100 mm thick), separator (Celgard), and NMC811 cathode (> 10 mg/cm2). Cells were first rested and activated at a slow rate then cycled at C/3 and 1C for charge and discharge respectively in prescribed voltage cutoff window. As shown in Figure 1, the sulfur-containing cell had more than 300 cycles before 90% capacity retention relative to the beginning of life (BOL) capacity. The sulfur-free control cell lasted less than 150 cycles above the 90% retention line. Electrochemical impedance spectroscopy (EIS) measurements for cycled cells showed lower interfacial resistance for cells with sulfur-containing additives compared to control cells. The reason for the improved cycle stability can be attributed to the stability afforded by the additives to the SEI layer. Figure 1: A comparison of cell performance between control (black) and sulfur-containing additive (green). The Red line indicates the 90% retention of the battery. References Yoshio, Masaki, Ralph J. Brodd, and Akiya Kozawa. Lithium-ion batteries. Vol. 1. New York: Springer, 2009. Liu, Bin, Ji-Guang Zhang, and Wu Xu. "Advancing lithium metal batteries." Joule2, no. 5 (2018): 833-845. Xiao, Jie, Qiuyan Li, Yujing Bi, Mei Cai, Bruce Dunn, Tobias Glossmann, Jun Liu et al. "Understanding and applying coulombic efficiency in lithium metal batteries." Nature Energy5, no. 8 (2020): 561-568. Tikekar, Mukul D., Snehashis Choudhury, Zhengyuan Tu, and Lynden A. Archer. "Design principles for electrolytes and interfaces for stable lithium-metal batteries." Nature Energy1, no. 9 (2016): 1-7. Wang, Qian, Chengkai Yang, Jijin Yang, Kai Wu, Cejun Hu, Jing Lu, Wen Liu, Xiaoming Sun, Jingyi Qiu, and Henghui Zhou. "Dendrite‐free lithium deposition via a superfilling mechanism for high‐performance Li‐metal batteries." Advanced Materials31, no. 41 (2019): 1903248. Choudhury, Snehashis. "Lithium fluoride additives for stable cycling of lithium batteries at high current densities." In Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries, pp. 81-94. Springer, Cham, 2019. Yun, Qinbai, Yan‐Bing He, Wei Lv, Yan Zhao, Baohua Li, Feiyu Kang, and Quan‐Hong Yang. "Chemical dealloying derived 3D porous current collector for Li metal anodes." Advanced Materials28, no. 32 (2016): 6932-6939. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
16

張, 高評. « 杜甫詩史與《春秋》書法——以宋代詩話筆記之詮釋爲核心 ». 人文中國學報, 1 septembre 2010, 55–96. http://dx.doi.org/10.24112/sinohumanitas.162522.

Texte intégral
Résumé :
LANGUAGE NOTE | Document text in Chinese; abstract also in English. 稱美杜甫詩爲“詩史”,始於晚唐孟綮《本事詩》。推崇安史之亂前後杜甫所作敘事詩,以爲富於“推見至隱”之《春秋》書法,識見超拔,可謂杜詩知音。杜甫《祭遠祖當陽君文》,贊揚遠祖杜預:“《春秋》主解,稿隸躬親”,感慨“鳴呼筆跡,流宕何人”?文中杜甫既以“不敢忘本,不敢違仁”自惕自勉,發爲詩歌,遂多“推見至隱”之《春秋》書法。諸如微婉顯晦、據事直書、褒貶勸懲、諱言諱書等,宋代詩學討論之“詩史”論述,杜甫敘事歌行,多有具體而微之體現。本論文考察杜甫詩史,專取《春秋》書法爲視角,援引20餘首杜甫敘事歌行爲例,結合65則宋代詩話筆記,8則明清詩話之論述,借鏡兩宋《公羊》學、《左傳》學之理論,聨結經學、史學,與文學作一學科整合之探討。同時類比白居易、元稹、韓愈、李商隱等有關楊貴妃、馬嵬坡諸詩篇,以見宋人以《春秋》書法論詩之一斑。從此可見《春秋》與詩,皆杜甫“吾家事”,於是詩與《春秋》相表裏,而蔚爲詩史之特筆書寫。 Meng Qi’s Ben Shi Shi (本事詩) began to praise Du Fu’s poetry as “Shishi” (詩史) in late Tang. Meng praised highly for Du Fu’s narrative poems during An Shi Rebellion (安史之亂), and affirmed it’s “represent the obvious to the concealed” and Chun Qiu Shufa (《春秋》書法). He was indeed a transcendent insight and the expert of Du’s poetry. Du Fu “Ji Yuan Jie Dangyang text” (《祭遠祖當陽君文》) commend his ancestor Du Yu: “Chun Qiu is mainly for explanation, Personally writing draft”, sighed “Wuhu handwriting, who owns it?" In the text, Du Fu encouraged and alerted himself as "Not forgetting his roots, not disobeying illegally” for poetries. Chun Qiu Shufa of “Represent the obvious to the concealed” like the Song Dynasty poetics called “Shishi”, Du Fu's XuShiGexing (敍事歌行) almost showed Specifically such as implicit declare obscurely, traightforwarded recording according to events, praised good belittled evil, Said and written indirectly etc. This paper inspects Du Fu’s ‘‘Shishi”, detailed others neglected, varied different from the same. Chun Qiu Shufa of Du Fu's XuShiGexing inspected 60 of Song Dynasty Shihua (詩話) and Biji (筆記), expositions of 6 of the Ming and Qing Dynasties Shihua. To learn northern and southern Song the theory of Gong Yang study (《公羊》學) and ZuoZhuan study (《左傳》學), linking the morality, historiography and literature, discussed the integration of subjects for a study. To analog Bai Juyi (白居易), Yuan Zhen (元稹), Han Yu (韓愈), Li Shangyin (李商隱) s’ various poems about Yang Guifei (楊貴妃), Ma WeiPo (馬嵬坡), understood Chun Qiu Shufa reflected poems.
Styles APA, Harvard, Vancouver, ISO, etc.
17

« Yi da li yu ge ju jiao ben zi dui zi jing zhun jie xi xi lie cong shu ed. by Stella Chen Guo and Carlo Alberto Petruzzi, and : "Ai de gan chun" zi dui zi jing zhun jie xi by Felice Romani, and : "Cha hua nü" zi dui zi jing zhun jie xi by Francesco Maria Piave, and : "Nong chen" zi dui zi jing zhun jie xi by F. M. Piave, and : "Tuo si ka" zi dui zi jing zhun jie xi by Giuseppe Giacosa and Luigi Illica, and : "Yi shu jia de sheng ya" zi dui zi jing zhun jie xi by G. Giacosa and L. Illica, and : "Xiang cun qi shi—Cho jue" zi dui zi jing zhun jie xi by Giovanni Targioni-Tozzetti, Guido Menasci, and Ruggiero Leoncavallo (review) ». Notes 80, no 1 (septembre 2023) : 145–49. http://dx.doi.org/10.1353/not.2023.a905328.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho et Nguyen Xuan Viet. « Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue ». VNU Journal of Science : Natural Sciences and Technology 35, no 3 (20 septembre 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Texte intégral
Résumé :
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h. Keywords Graphene-based composite, methylene blue, Fenton-like reaction. References [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Van Nga, Vu, Le Thi Kim Anh, Dinh Thi My Dung, Nguyen Thi Binh Minh, Le Thi Diem Hong et Vu Thi Thom. « Applying Logistic Regression to Predict Diabetic Nephropathy Based on Some Clinical and Paraclinical Characteristics of Type 2 Diabetic Patients ». VNU Journal of Science : Medical and Pharmaceutical Sciences 37, no 2 (28 juin 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4312.

Texte intégral
Résumé :
Today, the incidence of type 2 diabetes mellitus is increasing rapidly on global. This disease is shown with many complications that significantly affect public health. One of them is kidney complications, which have a high incidence among diabetic patients in Vietnam (25.6-33.1%). Age, history of hypertension, and dyslipidemia are considered to be the main risk factors for diabetic nephropathy. Thus, early detection of these factors for kidney damage is significant for diagnosing, monitoring, treatment, and prognosis of diabetic patients. Our descriptive, cross-sectional study conducting on 120 diabetic patients at E Hospital has observed that blood cholesterol levels, HbA1c levels were independently related to eGFR decline below 60 mL/min/1.73m2. From those data, an equation to predict the risk of diabetic kidney disease was estimated as p = with k = Keyword: Type 2 diabetes, Diabetic nephropathy, Risk factor Today, the incidence of type 2 diabetes mellitus is increasing rapidly on global. This disease is shown with many complications that significantly affect public health. One of them is kidney complications, which have a high incidence among diabetic patients in Vietnam (25.6-33.1%). Age, history of hypertension, and dyslipidemia are considered to be the main risk factors for diabetic nephropathy. Thus, early detection of these factors for kidney damage is significant for diagnosing, monitoring, treatment, and prognosis of diabetic patients. Our descriptive, cross-sectional study conducting on 120 diabetic patients at E Hospital has observed that blood cholesterol levels, HbA1c levels were independently related to eGFR decline below 60 mL/min/1.73m2. From those data, an equation to predict the risk of diabetic kidney disease was estimated as p = with k = Keyword Type 2 diabetes, Diabetic nephropathy, Risk factor. References [1] N. H. Cho, J. Kirigia, J. C. Mnanya, K. Ogurstova, L. Guraiguata, W. Rathmann, G. Roglic, N. Forouhi, R. Dajani, A. Esteghmati, E. Boyko, L. Hambleton, O. L. M. Neto, P. A. Montoya, S. Joshi, J. Chan, J. Shaw, T.A. Samuels, M. Pavkov, A. Reja, IDF Diabetes Atlas Eight Edition, International Diabete Federation, England, 2017.[2] N. T. Khue, Diabetes – General Endocrinology, Ho Chi Minh Publisher, Ho Chi Minh city, 2003 (in Vietnamese). [3] H. H. Kiem, Clinical Nephrology, Medical Publishing House, Hanoi, 2010 (in Vietnamese). [4] T. H. Quang, Practice Diabetes - Endocrine Disease, Medical Publishing House Hanoi, Hanoi, 2010 (in Vietnamese). [5] D. T. M. Hao, T. T. A. Thu, Diabetic Kidney Disease: Attention Problems, Vietnam Journal of Diabetes and Endocrinology, Vol. 38, 2020, pp. 12-17 (in Vietnamese), https://doi.org/10.47122/vjde.2020.38.2. [6] K. Tziomalos, A. Vasilios G, Diabetic Nephropathy: New Risk Factors and Improvements in Diagnosis, The Review of Diabetic Studies: RDS, Vol. 12, No. 1-2, 2015, pp. 110-118, https://doi.org/10.1900/RDS.2015.12.110.[7] American Diabetes Association, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020, Journal Diabetes Care, Vol. 43, No. 1, 2020, pp. S14, https://doi.org/10.2337/dc20-S002.[8] A. S. Levey, J. Coresh, E. Balk, A. T. Kausz, A. Levin, M. W. Steffes, R. J. Hogg, R. D. Perrone, J. Lau, G. Eknoyan, National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification, Ann Intern Med, Vol. 139, 2003, pp. 137-147, https://doi.org/10.7326/0003-4819-139-2-200307150-00013.[9] D. S. Freedman, M. Horlick, G. S. Berenson, A Comparison of The Slaughter Skinfold-thickness Equations and BMI in Predicting Body Fatness and Cardiovascular Disease Risk Factor Levels in Children, The American Journal of Clinical Nutrition, Vol. 98, No. 6, 2013, pp. 1417-1424, https://doi.org/10.3945/ajcn.113.065961.[10] National Heart, Lung and Blood Institutes, National Cholesterol Education Program: ATP III Guidelines at-a-glance Quick Desk Reference, https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf, (accessed on: 5th April 2021).[11] K. Eckardt, B. Kasiske, D. Wheeler, K. Uhlig, D. Miskulin, A. Earley, S. Haynes, J. Lamont, KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease: Definition and Classification of CKD, Kidney International Supplements, Vol. 3, 2013, pp. 5-14, https://doi.org/10.1038/kisup.2012.77.[12] I. H. Boer, M. L. Caramori, J. C. N. Chan, H. J. L. Heerspink, C. Hurst, K. Khunti, A. Liew, E. D. Michos, S. D. navaneethan, P. Rossing, W. A. Olowu, T. Sadusky, N. Tandon, K. R. Tuttle, C. Wanner, K. G. Wilkens, S. Zoungas, KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease, Kidney international, Vol. 98, No. 4S, 2020, pp. S1-S115, http://dx.doi.org/10.1016/j.kint.2020.06.019.[13] B. T. T. Huong, N. T. Giang, Values of Cystatin C in Early Diagnosis of Renal Disease in Patients with Typ 2 Diabetes in Thai Nguyen National Hospital, Vietnam Medical Journal, Vol. 498, No. 2, 2021, pp. 13-17 (in Vietnamese).[14] L. X. Truong, N. D. Tai, T. Q. P. Linh, T. T. Nhung, The Prevalence of The Positive Microalbumin Urine in The Type 2 Diabetic Patients at District 2 Hospital, Y Hoc TP. Ho Chi Minh, Vol. 22, No. 2, 2018, pp. 139-143 (in Vietnamese).[15] S. Yi, S. Park, Y. Lee, H Park, B. Balkau, J. Yi, Association Between Fasting Glucose and All-cause Mortality According to Sex and Age: A Prospective Cohort Study, Scientific Reports, Vol. 7, No. 1, 2017, pp. 1-9, https://doi.org/10.1038/s41598-017-08498-6.[16] R. Gupta, M. Sharma, N. K. Goyal, P. S. Lodha, K. K. Sharma, Gender Differences in 7 Years Trends in Cholesterol Lipoproteins and Lipids in India: Insights From A Hospital Database, Indian Journal of Endocrinology Metabolism, Vol. 20, No. 2, 2016, pp. 211-8, https://doi.org/10.4103/2230-8210.176362.[17] X. Zhang, Z. Meng, X. Li, M. Liu, X. Ren, M. Zhu, Q. He, Q Zhang, K. Song, Q. Jia, C. Zhang, X Wang, X. Liu, The Association Between Total Bilirubin and Serum Triglyceride in Both Sexes in Chinese, Lipids In Health and Disease, Vol. 17, No. 1, 2017, pp. 1-8, https://doi.org/10.1186/s12944-018-0857-7.[18] S. Palazhy, V. Viswanathan, Lipid Abnormalities in Type 2 Diabetes Mellitus Patients with Overt Nephropathy, Diabetes Metabolism Journal, Vol. 41, No. 2, 2017, pp. 128-134, https://doi.org/ 10.4093/dmj.2017.41.2.128.[19] R. I. Papacocea, D. Timofte, M. Tanasescu, A. Balcangiu stroescu, D. G. Balan, A. Tulin, O. Stiru, I. A. Vacaroiu, A. Mihai, C. C. Popa, C. Cosconel, M. Enyedi, D. Miricescu, L. Raducu, D. Ionescu, Kidney Aging Process and The Management of The Elderly Patient with Renal Impairment, Experimental and Therapeutic Medicine, Vol. 21, 2021, pp. 266, https://doi.org/10.3892/etm.2021.9697.[20] R. D. Lindeman, Overview: Renal Physiology and Pathophysiology of Aging, Am J Kidney Dis, Vol. 16, 1990, pp. 275–282, https://doi.org/10.1016/s0272-6386(12)80002-3.[21] G. Zoppini, G. Targher, M. Chonchol, V. Ortalda, C. Negri, V. Stoicio, E. Bonora, Predictors of Estimated GFR Decline in Patients With Type 2 Diabetes and Preserved Kidney Function, Clinical Journal of the American Society of Nephrology, Vol. 7, No. 3, 2012, pp. 401-408, https://doi.org/10.2215/CJN.07650711.[22] R. Trevisan, A. R. Dodesini, G. Lepore, Lipids and Renal Disease, Journal of the American Society of Nephrology, Vol. 17, No. 2-4, 2006, pp. S145-S147. https://doi.org/10.1681/ASN.2005121320.[23] V. T. Samuel, G. I. Shulman, Mechanisms for Insulin Resistance: Common Threads and Missing Links, Cell, Vol. 148, No. 5, 2012, pp. 852-871, https://doi.org/10.1016/j.cell.2012.02.017.[24] W. Patricia, D. Gloria Michelle, F. Alessia, Systemic and Renal Lipids in Kidney Disease Development and Progression, American Journal of Physiology-Renal Physiology, Vol. 310, No. 6, 2016, pp. F433-F445, https://doi.org/ 10.1152/ajprenal.00375.2015.[25] F. M. Sacks, M. P. Hermans, P. Fioretto, P. Valensi, T. Davis, E. Horton, C. Wanner, K. A. Rubeaan, I. Barzon, L. Bishop, E. Bonora, P. Bunnag, L. Chuang, C. Deerochanawong, R. Goldenberg, B. Harshfiled, C. Hernandez, S. H. Botein, H. Itoh, W. Jia, Y. Jiang, T. Kadowaki, N. Laranjo, L. Leiter, T. Miwwa, M. Odawara, K. Ohashi, A. Ohno, C. Pan, J. Pan, J. P. Botet, Z. Reiner, C. M. Rotella, R. Simo, M. Tanaka, E. T. Reiner, D. T. Barima, G. Zoppini, V. J. Carey, Association between Plasma Triglycerides and High-density Lipoprotein Cholesterol and Microvascular Kidney Disease and Retinopathy in Type 2 Diabetes Mellitus: A Global Case–control Study In 13 Countries, Circulation. Vol. 129, No. 9, 2014, pp. 999-1008, https://doi.org/10.1161/CIRCULATIONAHA.113.002529.[26] Y. Wang, X. Qiu, L. Lv, C. Wang, Z. Ye, S. Li, Q. Liu, T. Lou, X. Liu, Correlation Between Serum Lipid Levels and Measured Glomerular Filtration Rate In Chinese Patients With Chronic Kidney Disease, PLoS One, Vol. 11, No. 10, 2016, pp. e0163767, https://doi.org/10.1371/journal.pone.0163767.[27] N. J. Radcliffe, J. Seah, M. Clarke, R. J. Maclsaac, G. Jerrums, E. I. Ekinci, Clinical Predictive Factors in Diabetic Kidney Disease Progression, Journal of Diabetes Investigation, Vol. 8, No. 1, 2017, pp. 6-18, https://doi.org/10.1111/jdi.12533.[28] D. D. Miao, E. C. Pan, Q. Zhang, Z. M. Sun, Y. Qin, M. Wu, Development and Validation of A Model for Predicting Diabetic Nephropathy in Chinese People, Biomedical and Environmental Sciences, Vol. 30, No. 2, 2017, pp. 106-112, https://doi.org/10.3967/bes2017.014.[29] R. G. Nelson, M. E. Grams, S. H. Ballew, Y. Sang, F. Azizi, S. J. Chadban, L. Chaker, S. C. Dunning, C. Fox, Y. Hirakawa, K. Iseki, J. Ix, T. H. Jafar, A. Kottgen, D. M. J. Naimark, T. Ohjubo, G. J. Prescott, C. M. Bebholz, C. Sabanayagam, T. Sairenchi, B. Schottker, Y. Shibagaki, M. Tonelli, L. Zhang, R. T. Gansevoort, K. Matsushita, M. Woodward, J. Coresh, V. Shalev, Development of Risk Prediction Equations For Incident Chronic Kidney Disease, Jama, Vol. 322, No. 21, 2019, pp. 2104-2114, https://doi.org/10.1001/jama.2019.17379.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie