Littérature scientifique sur le sujet « Chromatin sequencing »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Chromatin sequencing ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Chromatin sequencing"
Soleimani, Vahab D., Gareth A. Palidwor, Parameswaran Ramachandran, Theodore J. Perkins et Michael A. Rudnicki. « Chromatin tandem affinity purification sequencing ». Nature Protocols 8, no 8 (11 juillet 2013) : 1525–34. http://dx.doi.org/10.1038/nprot.2013.088.
Texte intégralJukam, David, Charles Limouse, Owen K. Smith, Viviana I. Risca, Jason C. Bell et Aaron F. Straight. « Chromatin‐Associated RNA Sequencing (ChAR‐seq) ». Current Protocols in Molecular Biology 126, no 1 (20 février 2019) : e87. http://dx.doi.org/10.1002/cpmb.87.
Texte intégralStergachis, Andrew B., Brian M. Debo, Eric Haugen, L. Stirling Churchman et John A. Stamatoyannopoulos. « Single-molecule regulatory architectures captured by chromatin fiber sequencing ». Science 368, no 6498 (25 juin 2020) : 1449–54. http://dx.doi.org/10.1126/science.aaz1646.
Texte intégralXie, Wenhui, Yilang Ke, Qinyi You, Jing Li, Lu Chen, Dang Li, Jun Fang et al. « Single-Cell RNA Sequencing and Assay for Transposase-Accessible Chromatin Using Sequencing Reveals Cellular and Molecular Dynamics of Aortic Aging in Mice ». Arteriosclerosis, Thrombosis, and Vascular Biology 42, no 2 (février 2022) : 156–71. http://dx.doi.org/10.1161/atvbaha.121.316883.
Texte intégralWu, Weixin, Zhangming Yan, Tri C. Nguyen, Zhen Bouman Chen, Shu Chien et Sheng Zhong. « Mapping RNA–chromatin interactions by sequencing with iMARGI ». Nature Protocols 14, no 11 (16 octobre 2019) : 3243–72. http://dx.doi.org/10.1038/s41596-019-0229-4.
Texte intégralGorkin, David U., Iros Barozzi, Yuan Zhao, Yanxiao Zhang, Hui Huang, Ah Young Lee, Bin Li et al. « An atlas of dynamic chromatin landscapes in mouse fetal development ». Nature 583, no 7818 (29 juillet 2020) : 744–51. http://dx.doi.org/10.1038/s41586-020-2093-3.
Texte intégralJahan, Sanzida, Tasnim H. Beacon, Wayne Xu et James R. Davie. « Atypical chromatin structure of immune-related genes expressed in chicken erythrocytes ». Biochemistry and Cell Biology 98, no 2 (avril 2020) : 171–77. http://dx.doi.org/10.1139/bcb-2019-0107.
Texte intégralGuo, Ziwei, Xinhong Liu et Mo Chen. « Defining pervasive transcription units using chromatin RNA-sequencing data ». STAR Protocols 3, no 2 (juin 2022) : 101442. http://dx.doi.org/10.1016/j.xpro.2022.101442.
Texte intégralVega, Vinsensius B., Edwin Cheung, Nallasivam Palanisamy et Wing-Kin Sung. « Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries ». PLoS ONE 4, no 4 (15 avril 2009) : e5241. http://dx.doi.org/10.1371/journal.pone.0005241.
Texte intégralBright, Ann Rose, et Gert Jan C. Veenstra. « Assay for Transposase-Accessible Chromatin-Sequencing Using Xenopus Embryos ». Cold Spring Harbor Protocols 2019, no 1 (24 juillet 2018) : pdb.prot098327. http://dx.doi.org/10.1101/pdb.prot098327.
Texte intégralThèses sur le sujet "Chromatin sequencing"
Cook, David. « SNF2H-Mediated Chromatin Remodelling and Its Regulation of the Pluripotent State ». Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35097.
Texte intégralLUCINI, FEDERICA. « Unconventional nuclear architecture in CD4+ T lymphocytes uncouples chromatin solubility from function ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262913.
Texte intégralIn every eukaryotic cell, the genomic information coded in the DNA is packed into the small nuclear volume as chromatin, a complex of DNA and proteins. The ensemble of molecular mechanisms that organize chromatin compaction and allow the specific expression of the portions of genome useful for cell’s biological functions is known as the epigenome. As a result of epigenome activity, chromatin is folded and positioned in the nucleus in a cell-specific manner, generating areas of highly compacted, repressed, heterochromatin and areas of decondensed, gene-rich and transcriptionally active, euchromatin. In our work, we describe chromatin organization in different cell populations and analyse some of its implications in the physiological functions and pathological dysfunctions of the cell. In the first project, we focus on murine muscle stem cells lacking the nuclear structural protein Lamin A/C. We show their irregular differentiation program, due to a spreading of Polycomb group (PcG) of proteins repressors from their target genes over the flanking regions. The consequent alteration in gene expression cause premature exhaustion of quiescent stem cells and accumulation of intramuscular fat, resulting in accelerated senescence and muscular dystrophy progression. On the other hand, the progressive accumulation of a Lamin A aberrant form, Progerin, in Hutchinson-Gilford progeria syndrome (HGPS) also leads to chromatin structure disruption. In particular, it interferes with Lamina Associated Domains (LADs), the peripheral heterochromatin structures associated to the nuclear lamina. For our second project, we develop a new method, SAMMY-seq, based on high-throughput sequencing of chromatin fractions of different solubility. Thanks to this technology, we highlight early changes in heterochromatin accessibility in human HGPS primary fibroblasts. This early structural changes do not alter the deposition of the H3K9me3 heterochromatin mark but are associated with site-specific variations in the PcG-dependent transcriptional regulation. Finally, further improving SAMMY-seq technology, in our third project we describe an unconventional genome organization in resting human CD4+ T lymphocytes extracted from the peripheral blood of healthy donors. In these cells, heterochromatin is sensitive to DNAse digestion while euchromatin is resistant to serial processes of extraction. Preliminary analysis of the content of these compartments suggests that euchromatin contains, beside the actively transcribed genes, also inactive genes specific for lymphocyte activation. Further studies will elucidate the role of this unconventional chromatin organization in lymphocytes functions.
Aitken, Sarah Jane. « The pathological and genomic impact of CTCF depletion in mammalian model systems ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284403.
Texte intégralDeng, Chengyu. « Microfluidics for Low Input Epigenomic Analysis and Its Application to Brain Neuroscience ». Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101765.
Texte intégralDoctor of Philosophy
Epigenetic is the study of alternations in organisms not caused by alternation of the genetic codes. Epigenetic information plays pivotal role during growth, aging and disease. Epigenetic information is dynamic and modifiable, and thus serves as an ideal target for various diagnostic and therapeutic strategies of human diseases. Microfluidics is a technology that manipulates liquids with extremely small volumes in miniaturized devices. Microfluidics has improved the sensitivity and resolution of epigenetic analysis. In this thesis, I report three projects focusing on low-input, cell-type-specific and spatially resolved histone modification profiling on microfluidic platforms. Histone modification is one type of epigenetic information and regulates gene expression. First, we studied the influence of culture condition and bacterium infection on histone modification profile of brain tumor cells. Second, we introduced mu-CM, combining a low-input microfluidic device with indexed ChIPmentation and is capable of performing 8 assays in parallel using as few as 20 cells. Last, we investigated spatial variations in the epigenome and transcriptome across adult mouse neocortex, the outer layer of brain involving in higher-order function, such as cognition. I identified distinct spatial patterns responsible for central nervous system development using machine learning algorithm. Our method is well suited for studying scarce samples, such as cells populations isolated from patients in the context of precision medicine.
Hunt, Spencer Philip. « Whole-Genome Assembly of Atriplex hortensis L. Using OxfordNanopore Technology with Chromatin-Contact Mapping ». BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8580.
Texte intégralKremsky, Isaac Jacob 1983. « Assessing the relationship between chromatin and splicing factors in alternative splicing ». Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/316790.
Texte intégralLas proteínas que se unen al DNA o al RNA pueden influir el splicing alternativo. Sin embargo, no ha habido aún una exploración sistemática de la relación entre estos dos tipos de factores en su acción sobre el splicing. En esta tesis hacemos uso de datos públicos de secuenciación de alto rendimiento para explorar esta cuestión a escala de todo el genoma. Hemos hecho un uso sistemático de la construcción de perfiles de información genómica para abordar esta cuestión. Debido a que los métodos i comúnmente utilizados para construir perfiles hace sólo comparaciones cualitativas, la primera tarea de esta tesis consistió en desarrollar un método para cuantificar perfiles e implementarlo en una herramienta bioinformática, ProfileSeq, la cual hemos validado mediante la reproducción de resultados previamente descritos en la literatura. Posteriormente, ProfileSeq se usó con datos de actividad de unión al DNA o al RNA de distintas proteínas para estudiar la relevancia en el splicing. Se encontraron varias asociaciones significativas. Entre ellas, la del factor de transcripción CTCF y la proteína de unión a RNA LIN28A. De manera similar, se encontró una relación entre SPI1 y proteínas de unión a RNA que se unen a motivos ricos en AC, como hnRNPL. Estos resultados representan relaciones putativas relevantes para el splicing, ya que se alcanzaron por más de un método diferente y usando datos independientes, También mostramos evidencia de que CTCF actúa como una barrera entre las regiones intragénicas de marcaje diferencial con H3K4me3. También se describen otros resultados de interés potencial tanto para la bioinformática como para la biología molecular.
Sarma, Mimosa. « Microfluidic platforms for Transcriptomics and Epigenomics ». Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90294.
Texte intégralDoctor of Philosophy
This is the era of personalized medicine which means that we are no longer looking at one-size-fits-all therapies. We are rather focused on finding therapies that are tailormade to every individual’s personal needs. This has become more and more essential in the context of serious diseases like cancer where therapies have a lot of side-effects. To provide tailor-made therapy to patients, it is important to know how each patient is different from another. This difference can be found from studying how the individual is unique or different at the cellular level i.e. by looking into the contents of the cell like DNA, RNA, and chromatin. In this thesis, we discussed a number of projects which we can contribute to advancement in this field of personalized medicine. Our first project, MID-RNA-seq offers a new platform for studying the information contained in the RNA of a single cell. This platform has enough potential to be scaled up and automated into an excellent platform for studying the RNA of rare or limited patient samples. The second project discussed in this thesis involves studying the RNA of innate immune cells which defend our bodies against pathogens. The RNA data that we have unearthed in this project provides an immense scope for understanding innate immunity. This data provides our biologist collaborators the scope to test various pathways in innate immune cells and their roles in innate immune modulation. Our third project discusses a method to produce an enzyme called ‘Tn5’ which is necessary for studying the sequence of DNA. This enzyme which is commercially available has a very high cost associated with it but because we produced it in the lab, we were able to greatly reduce costs. The fourth project discussed involves the study of chromatin structure in cells and enables us to understand how our lifestyle choices change the expression or repression of genes in the cell, a study called epigenetics. The findings of this study would enable us to study epigenomic profiles from limited patient samples. Overall, our projects have enabled us to understand the information from cells especially when we have limited cell numbers. Once we have all this information we can compare how each patient is different from others. The future brings us closer to putting this into clinical practice and assigning different therapies to patients based on such data.
Tavernari, Daniele. « Statistical and network-based methods for the analysis of chromatin accessibility maps in single cells ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12297/.
Texte intégralMa, Sai. « Microfluidics for Genetic and Epigenetic Analysis ». Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78187.
Texte intégralPh. D.
Herzel, Lydia. « Co-transcriptional splicing in two yeasts ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-179274.
Texte intégralLivres sur le sujet "Chromatin sequencing"
Liang, Xiaoshan. Studies of rainbow trout Ki-ras gene : Sequencing, aflatoxin B1 binding, and chromatin structure. 1993.
Trouver le texte intégralMifsud, Borbala, Kathi Zarnack et Anaïs F. Bardet. Practical Guide to ChIP-Seq Data Analysis. Taylor & Francis Group, 2018.
Trouver le texte intégralMifsud, Borbala, Kathi Zarnack et Anais Bardet. Practical Guide to Chip-Seq Data Analysis. Taylor & Francis Group, 2021.
Trouver le texte intégralMifsud, Borbala, Kathi Zarnack et Anaïs F. Bardet. Practical Guide to ChIP-Seq Data Analysis. Taylor & Francis Group, 2018.
Trouver le texte intégralMifsud, Borbala, et Anais Bardet. Practical Guide to Chip-Seq Data Analysis. Taylor & Francis Group, 2018.
Trouver le texte intégralPractical Guide to ChIP-Seq Data Analysis. Taylor & Francis Group, 2018.
Trouver le texte intégralChapitres de livres sur le sujet "Chromatin sequencing"
Ribarska, Teodora, et Gregor D. Gilfillan. « Native Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) from Low Cell Numbers ». Dans Chromatin Immunoprecipitation, 157–66. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7380-4_14.
Texte intégralHoeijmakers, Wieteke Anna Maria, et Richárd Bártfai. « Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq) ». Dans Chromatin Immunoprecipitation, 83–101. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7380-4_8.
Texte intégralLudwig, Leif S., et Caleb A. Lareau. « Concomitant Sequencing of Accessible Chromatin and Mitochondrial Genomes in Single Cells Using mtscATAC-Seq ». Dans Chromatin Accessibility, 269–82. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2899-7_14.
Texte intégralStewart-Morgan, Kathleen R., et Anja Groth. « Profiling Chromatin Accessibility on Replicated DNA with repli-ATAC-Seq ». Dans Chromatin Accessibility, 71–84. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2899-7_6.
Texte intégralSoares, Mário A. F., et Diogo S. Castro. « Chromatin Immunoprecipitation from Mouse Embryonic Tissue or Adherent Cells in Culture, Followed by Next-Generation Sequencing ». Dans Chromatin Immunoprecipitation, 53–63. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7380-4_5.
Texte intégralDiaz, Roxanne E., Aurore Sanchez, Véronique Anton Le Berre et Jean-Yves Bouet. « High-Resolution Chromatin Immunoprecipitation : ChIP-Sequencing ». Dans The Bacterial Nucleoid, 61–73. New York, NY : Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7098-8_6.
Texte intégralBrahma, Sandipan, et Steven Henikoff. « CUT&RUN Profiling of the Budding Yeast Epigenome ». Dans Methods in Molecular Biology, 129–47. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2257-5_9.
Texte intégralSridhar, Divya, et Aziz Aboobaker. « Monitoring Chromatin Regulation in Planarians Using Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq) ». Dans Methods in Molecular Biology, 529–47. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2172-1_28.
Texte intégralLopez-Rubio, Jose-Juan, T. Nicolai Siegel et Artur Scherf. « Genome-wide Chromatin Immunoprecipitation-Sequencing in Plasmodium ». Dans Methods in Molecular Biology, 321–33. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-026-7_23.
Texte intégralRuan, Xiaoan, et Yijun Ruan. « Chromatin Interaction Analysis Using Paired-End Tag Sequencing (ChIA-PET) ». Dans Tag-Based Next Generation Sequencing, 185–210. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527644582.ch12.
Texte intégralActes de conférences sur le sujet "Chromatin sequencing"
Qiao, Yi, Xiaomeng Huang et Gabor Marth. « Abstract 40 : scBayes : A computational method to study tumor subclone-specific gene expression and chromatin accessibility using single-cell RNA sequencing and single-cell ATAC sequencing in combination of bulk DNA sequencing ». Dans Abstracts : AACR Special Conference on Advancing Precision Medicine Drug Development : Incorporation of Real-World Data and Other Novel Strategies ; January 9-12, 2020 ; San Diego, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3265.advprecmed20-40.
Texte intégralRapports d'organisations sur le sujet "Chromatin sequencing"
Gur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor et Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, janvier 2016. http://dx.doi.org/10.32747/2016.7600047.bard.
Texte intégral