Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Chemoselective glycosylation.

Articles de revues sur le sujet « Chemoselective glycosylation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 45 meilleurs articles de revues pour votre recherche sur le sujet « Chemoselective glycosylation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nguyen, Hien M., Jennifer L. Poole et David Y. Gin. « Chemoselective Iterative Dehydrative Glycosylation ». Angewandte Chemie 113, no 2 (19 janvier 2001) : 428–31. http://dx.doi.org/10.1002/1521-3757(20010119)113:2<428 ::aid-ange428>3.0.co;2-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nguyen, Hien M., Jennifer L. Poole et David Y. Gin. « Chemoselective Iterative Dehydrative Glycosylation ». Angewandte Chemie International Edition 40, no 2 (19 janvier 2001) : 414–17. http://dx.doi.org/10.1002/1521-3773(20010119)40:2<414 ::aid-anie414>3.0.co;2-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yang, Weizhun, Bo Yang, Sherif Ramadan et Xuefei Huang. « Preactivation-based chemoselective glycosylations : A powerful strategy for oligosaccharide assembly ». Beilstein Journal of Organic Chemistry 13 (9 octobre 2017) : 2094–114. http://dx.doi.org/10.3762/bjoc.13.207.

Texte intégral
Résumé :
Most glycosylation reactions are performed by mixing the glycosyl donor and acceptor together followed by the addition of a promoter. While many oligosaccharides have been synthesized successfully using this premixed strategy, extensive protective group manipulation and aglycon adjustment often need to be performed on oligosaccharide intermediates, which lower the overall synthetic efficiency. Preactivation-based glycosylation refers to strategies where the glycosyl donor is activated by a promoter in the absence of an acceptor. The subsequent acceptor addition then leads to the formation of the glycoside product. As donor activation and glycosylation are carried out in two distinct steps, unique chemoselectivities can be obtained. Successful glycosylation can be performed independent of anomeric reactivities of the building blocks. In addition, one-pot protocols have been developed that have enabled multiple-step glycosylations in the same reaction flask without the need for intermediate purification. Complex glycans containing both 1,2-cis and 1,2-trans linkages, branched oligosaccharides, uronic acids, sialic acids, modifications such as sulfate esters and deoxy glycosides have been successfully synthesized. The preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide assembly complementing the more traditional premixed method.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Figuereido, Ines, Alice Paiotta, Roberta Dal Magro, Francesca Tinelli, Roberta Corti, Francesca Re, Valeria Cassina, Enrico Caneva, Francesco Nicotra et Laura Russo. « A New Approach for Glyco-Functionalization of Collagen-Based Biomaterials ». International Journal of Molecular Sciences 20, no 7 (9 avril 2019) : 1747. http://dx.doi.org/10.3390/ijms20071747.

Texte intégral
Résumé :
The cell microenvironment plays a pivotal role in mediating cell adhesion, survival, and proliferation in physiological and pathological states. The relevance of extracellular matrix (ECM) proteins in cell fate control is an important issue to take into consideration for both tissue engineering and cell biology studies. The glycosylation of ECM proteins remains, however, largely unexplored. In order to investigate the physio-pathological effects of differential ECM glycosylation, the design of affordable chemoselective methods for ECM components glycosylation is desirable. We will describe a new chemoselective glycosylation approach exploitable in aqueous media and on non-protected substrates, allowing rapid access to glyco-functionalized biomaterials.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xiao, Ke, Yongxin Hu, Yongyong Wan, XinXin Li, Qin Nie, Hao Yan, Liming Wang et al. « Hydrogen bond activated glycosylation under mild conditions ». Chemical Science 13, no 6 (2022) : 1600–1607. http://dx.doi.org/10.1039/d1sc05772c.

Texte intégral
Résumé :
A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nguyen, Hien M., Jennifer L. Poole et David Y. Gin. « ChemInform Abstract : Chemoselective Iterative Dehydrative Glycosylation. » ChemInform 32, no 21 (26 mai 2010) : no. http://dx.doi.org/10.1002/chin.200121063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Calce, Enrica, Giuseppe Digilio, Valeria Menchise, Michele Saviano et Stefania De Luca. « Chemoselective Glycosylation of Peptides through S-Alkylation Reaction ». Chemistry - A European Journal 24, no 23 (14 avril 2018) : 6231–38. http://dx.doi.org/10.1002/chem.201800265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Langenhan, Joseph M., Edouard Mullarky, Derek K. Rogalsky, James R. Rohlfing, Anja E. Tjaden, Halina M. Werner, Leonardo M. Rozal et Steven A. Loskot. « Amphimedosides A–C : Synthesis, Chemoselective Glycosylation, And Biological Evaluation ». Journal of Organic Chemistry 78, no 4 (7 février 2013) : 1670–76. http://dx.doi.org/10.1021/jo302640y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yang, You, Yao Li et Biao Yu. « Chemoselective glycosylation of carboxylic acid with glycosyl ortho-hexynylbenzoates as donors ». Tetrahedron Letters 51, no 11 (mars 2010) : 1504–7. http://dx.doi.org/10.1016/j.tetlet.2010.01.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chiba, Hiroyuki, Setsuo Funasaka, Koichi Kiyota et Teruaki Mukaiyama. « Catalytic and Chemoselective Glycosylation between “Armed” and “Disarmed” Glycosylp-Trifluoromethylbenzylthio-p-trifluoromethylphenyl Formimidates ». Chemistry Letters 31, no 7 (juillet 2002) : 746–47. http://dx.doi.org/10.1246/cl.2002.746.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Smoot, James T., Papapida Pornsuriyasak et Alexei V. Demchenko. « Development of an Arming Participating Group for Stereoselective Glycosylation and Chemoselective Oligosaccharide Synthesis ». Angewandte Chemie 117, no 43 (4 novembre 2005) : 7285–88. http://dx.doi.org/10.1002/ange.200502694.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Smoot, James T., Papapida Pornsuriyasak et Alexei V. Demchenko. « Development of an Arming Participating Group for Stereoselective Glycosylation and Chemoselective Oligosaccharide Synthesis ». Angewandte Chemie International Edition 44, no 43 (4 novembre 2005) : 7123–26. http://dx.doi.org/10.1002/anie.200502694.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Peri, Francesco. « ChemInform Abstract : Chemoselective Glycosylation Techniques for the Synthesis of Bioactive Neoglycoconjugates, Glyconanoparticles and Glycoarrays ». ChemInform 44, no 31 (11 juillet 2013) : no. http://dx.doi.org/10.1002/chin.201331233.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Choudhury, Ambar Kumar, Indrani Mukherjee, Balaram Mukhopadhyay et Nirmolendu Roy. « Communication : Chemoselective Glycosylation Based on Difference in the Reactivities of Ethyl and p-Tolyl Thioglycosides ». Journal of Carbohydrate Chemistry 18, no 3 (1 janvier 1999) : 361–67. http://dx.doi.org/10.1080/07328309908544001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Geurtsen, Richard, François Côté,, Michael G. Hahn et Geert-Jan Boons. « Chemoselective Glycosylation Strategy for the Convergent Assembly of Phytoalexin-Elicitor Active Oligosaccharides and Their Photoreactive Derivatives ». Journal of Organic Chemistry 64, no 21 (octobre 1999) : 7828–35. http://dx.doi.org/10.1021/jo990836o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ni, Jiahong, Suddham Singh et Lai-Xi Wang. « Synthesis of Maleimide-Activated Carbohydrates as Chemoselective Tags for Site-Specific Glycosylation of Peptides and Proteins ». Bioconjugate Chemistry 14, no 1 (janvier 2003) : 232–38. http://dx.doi.org/10.1021/bc025617f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Tsai, Yow-Fu, Cheng-Hua Shih, Yu-Ting Su, Chun-Hsu Yao, Jang-Feng Lian, Chun-Chen Liao, Ching-Wu Hsia, Hao-Ai Shui et Rashmi Rani. « The total synthesis of a ganglioside Hp-s1 analogue possessing neuritogenic activity by chemoselective activation glycosylation ». Org. Biomol. Chem. 10, no 5 (2012) : 931–34. http://dx.doi.org/10.1039/c2ob06827c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Chiba, Hiroyuki, Setsuo Funasaka, Koichi Kiyota et Teruaki Mukaiyama. « ChemInform Abstract : Catalytic and Chemoselective Glycosylation Between “Armed” and “Disarmed” Glycosyl p-Trifluoromethylbenzylthio-p-trifluoromethylphenyl Formimidates. » ChemInform 33, no 48 (18 mai 2010) : no. http://dx.doi.org/10.1002/chin.200248200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Choudhury, Ambar Kumar, Indrani Mukherjee, Balaram Mukhopadhyay et Nirmolendu Roy. « ChemInform Abstract : Chemoselective Glycosylation Based on Difference in the Reactivities of Ethyl and p-Tolyl Thioglycosides. » ChemInform 30, no 36 (13 juin 2010) : no. http://dx.doi.org/10.1002/chin.199936237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Verma, Nitish, Zhijay Tu, Ming-Shiuan Lu, Shih-Hao Liu, Septila Renata, Riping Phang, Peng-Kai Liu, Bhaswati Ghosh et Chun-Hung Lin. « Threshold of Thioglycoside Reactivity Difference Is Critical for Efficient Synthesis of Type I Oligosaccharides by Chemoselective Glycosylation ». Journal of Organic Chemistry 86, no 1 (15 décembre 2020) : 892–916. http://dx.doi.org/10.1021/acs.joc.0c02422.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dutta, Samrat, Swarbhanu Sarkar, Shyam Ji Gupta et Asish Kumar Sen. « Use of iodine for efficient and chemoselective glycosylation with glycosyl ortho-alkynylbenzoates as donor in presence of thioglycosides ». Tetrahedron Letters 54, no 8 (février 2013) : 865–70. http://dx.doi.org/10.1016/j.tetlet.2012.11.101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zeng, Chen, Bin Sun, Xuefeng Cao, Hailiang Zhu, Olawale Micheal Oluwadahunsi, Ding Liu, He Zhu et al. « Chemical Synthesis of Homogeneous Human E-Cadherin N-Linked Glycopeptides : Stereoselective Convergent Glycosylation and Chemoselective Solid-Phase Aspartylation ». Organic Letters 22, no 21 (12 octobre 2020) : 8349–53. http://dx.doi.org/10.1021/acs.orglett.0c02971.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Geurtsen, Richard, Francois Cote, Michael G. Hahn et Geert-Jan Boons. « ChemInform Abstract : Chemoselective Glycosylation Strategy for the Convergent Assembly of Phytoalexin-Elicitor Active Oligosaccharides and Their Photoreactive Derivatives. » ChemInform 31, no 5 (11 juin 2010) : no. http://dx.doi.org/10.1002/chin.200005237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Jeanneret, Robin A., Charlotte E. Dalton et John M. Gardiner. « Synthesis of Heparan Sulfate- and Dermatan Sulfate-Related Oligosaccharides via Iterative Chemoselective Glycosylation Exploiting Conformationally Disarmed [2.2.2] l-Iduronic Lactone Thioglycosides ». Journal of Organic Chemistry 84, no 23 (novembre 2019) : 15063–78. http://dx.doi.org/10.1021/acs.joc.9b01594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Simeonova, Gergana, et Boyan Todorov. « MODIFICATION OF [18F]FDG BY THE FORMATION OF A HYDRAZONE BOND ». Journal of IMAB - Annual Proceeding (Scientific Papers) 29, no 1 (27 janvier 2023) : 4784–88. http://dx.doi.org/10.5272/jimab.2023291.4784.

Texte intégral
Résumé :
Purpose: The [18F]-fluorodeoxyglucose ([18F]-FDG) is known to be one of the most used radio-pharmaceuticals for positron emission tomography. [18F]-FDG allows the assessment of glycolytic activity, which is more enhanced in tumor cells than in normal cells. It is also used in the assessment of heart and neurological diseases. The aim of our work is to follow the possibility of modifying [18F]-fluorodeoxyglucose and to develop an indirect radiofluorination procedure applicable under standard clinical conditions. Material/Methods: In the clinic of nuclear medicine at the University Hospital Sta. Marina-Varna, for routine clinical purposes, [18F]-FDG is produced by the nucleophilic method of fluorination, using mannose triflate as a precursor. In addition to being used as a universal radiopharmaceutical, [18F]-FDG may be involved as a prosthetic group in biorthogonal reactions. [18F]-glycosylation by oxime or hydrazone formation is a chemoselective method for indirect radiofluorination of sensitive molecules. The process can improve the pharmacokinetics and stability of the labeled compounds in the blood. Results: We developed a method for modifying fluorine-deoxyglucose by forming a hydrazone bond with bifunctional tetrazine {3-[4-(6-phenyl-[1,2,4,5]-tetrazine-3-yl)-phenoxy]-propyl}-hydrazine) (Tz). The progress of the process and the product obtained were monitored by radio TLC. The radiolabeled tetrazine product will be used for future biorthogonal click reactions with trans-cyclooctene under physiological conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ohira, Shuichi, Yoshiki Yamaguchi, Takashi Takahashi et Hiroshi Tanaka. « The chemoselective O-glycosylation of alcohols in the presence of a phosphate diester and its application to the synthesis of oligomannosylated phosphatidyl inositols ». Tetrahedron 71, no 37 (septembre 2015) : 6602–11. http://dx.doi.org/10.1016/j.tet.2015.06.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Nakahara, Taku, Diane McCarthy, Yoshiaki Miura et Hidehisa Asada. « High-throughput glycomics for discovery of cancer biomarkers. » Journal of Clinical Oncology 30, no 30_suppl (20 octobre 2012) : 9. http://dx.doi.org/10.1200/jco.2012.30.30_suppl.9.

Texte intégral
Résumé :
9 Background: While the importance of glycosylation in many cancers is well established, the use of glycomics in biomarker research has lagged behind genomics and proteomics. This is due, in part, to the lack of practical platforms capable of analyzing clinically relevant sample numbers. To address these challenges, we have developed a novel glycomics technology (the GlycanMap platform) that combines a high-throughput assay with custom bioinformatics and rapidly provides both biomarker candidates and information on the underlying biology. Methods: N-glycans were enzymatically released from their parent glycoproteins and captured on chemoselective beads. After washing to remove non-glycan components, purified glycans were derivatized to stabilize labile sialic acids and released from the beads. The steps described above were automated on a 96-well format robotics system to maximize throughput and reduce variability and can be performed in less than 24 hours. Released glycans were analyzed by MALDI-TOF MS using internal standards to facilitate quantitation. In addition to comparing individual glycans between groups, glycan changes were also analyzed with respect to known glycan biosynthetic pathways. Results: The automated assay was compatible with multiple biological sample types, including serum/plasma, tissue, and cell lysates. Human serum was used to assess assay performance and yielded 50-60 glycans with CVs of 10-15% and good linearity. The lower limit of detection was approximately 100 nM. The assay was applied to drug-treated colon cancer cells (HCT116) and revealed significant (> 2-fold) changes in 17 glycans. Projection of these glycan changes on the known N-glycan pathway showed that the most significant changes occurred in the medial-Golgi. Conclusions: We have developed and optimized a high-throughput glycomics platform to facilitate large-scale biomarker studies and assured its practical performance in terms of sensitivity, repeatability, and linearity. Application of this assay to drug-treated colon cancer cells demonstrated that projection of individual glycan changes against known glycan pathways provided additional information about biological mechanism and relevance.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Geurtsen, Richard, Duncan S. Holmes et Geert-Jan Boons. « Chemoselective Glycosylations. 2. Differences in Size of Anomeric Leaving Groups Can Be Exploited in Chemoselective Glycosylations ». Journal of Organic Chemistry 62, no 23 (novembre 1997) : 8145–54. http://dx.doi.org/10.1021/jo971233k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Boons, Geert-Jan, Richard Geurtsen et Duncan Holmes. « Chemoselective glycosylations (part 1) : Differences in size of anomeric leaving groups can be exploited in chemoselective glycosylations ». Tetrahedron Letters 36, no 35 (août 1995) : 6325–28. http://dx.doi.org/10.1016/0040-4039(95)01222-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Geurtsen, Richard, et Geert-Jan Boons. « Chemoselective glycosylations of sterically hindered glycosyl acceptors ». Tetrahedron Letters 43, no 51 (décembre 2002) : 9429–31. http://dx.doi.org/10.1016/s0040-4039(02)02334-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Codée, Jeroen D. C., Leendert J. van den Bos, Remy E. J. N. Litjens, Herman S. Overkleeft, Constant A. A. van Boeckel, Jacques H. van Boom et Gijs A. van der Marel. « Chemoselective glycosylations using sulfonium triflate activator systems ». Tetrahedron 60, no 5 (janvier 2004) : 1057–64. http://dx.doi.org/10.1016/j.tet.2003.11.084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

GEURTSEN, R., D. S. HOLMES et G. J. BOONS. « ChemInform Abstract : Chemoselective Glycosylations. Part 2. Differences in Size of Anomeric Leaving Groups Can Be Exploited in Chemoselective Glycosylations. » ChemInform 29, no 15 (23 juin 2010) : no. http://dx.doi.org/10.1002/chin.199815218.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

BOONS, G. J., R. GEURTSEN et D. HOLMES. « ChemInform Abstract : Chemoselective Glycosylations. Part 1. Differences in Size of Anomeric Leaving Groups can be Exploited in Chemoselective Glycosylations. » ChemInform 26, no 50 (16 août 2010) : no. http://dx.doi.org/10.1002/chin.199550196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kusumi, Shunichi, Kaname Sasaki, Sainan Wang, Tatsuya Watanabe, Daisuke Takahashi et Kazunobu Toshima. « Effective and chemoselective glycosylations using 2,3-unsaturated sugars ». Organic & ; Biomolecular Chemistry 8, no 14 (2010) : 3164. http://dx.doi.org/10.1039/c004204h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kusumi, Shunichi, Sainan Wang, Tatsuya Watanabe, Kaname Sasaki, Daisuke Takahashi et Kazunobu Toshima. « Chemoselective glycosylations using 2,3-unsaturated-4-keto glycosyl donors ». Organic & ; Biomolecular Chemistry 8, no 5 (2010) : 988. http://dx.doi.org/10.1039/b925587g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhu, Tong, et Geert-Jan Boons. « Thioglycosides Protected as Trans-2,3-Cyclic Carbonates in Chemoselective Glycosylations ». Organic Letters 3, no 26 (décembre 2001) : 4201–3. http://dx.doi.org/10.1021/ol016869j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Boons, Geert-Jan, et Tong Zhu. « Novel Regioselective Glycosylations for the Convergent and Chemoselective Assembly of Oligosaccharides ». Synlett 1997, no 7 (juillet 1997) : 809–11. http://dx.doi.org/10.1055/s-1997-5767.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Codée, Jeroen D. C., Remy E. J. N. Litjens, René den Heeten, Herman S. Overkleeft, Jacques H. van Boom et Gijs A. van der Marel. « Ph2SO/Tf2O : a Powerful Promotor System in Chemoselective Glycosylations Using Thioglycosides ». Organic Letters 5, no 9 (mai 2003) : 1519–22. http://dx.doi.org/10.1021/ol034312t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zhu, Tong, et Geert-Jan Boons. « ChemInform Abstract : Thioglycosides Protected as trans-2,3-Cyclic Carbonates in Chemoselective Glycosylations. » ChemInform 33, no 22 (21 mai 2010) : no. http://dx.doi.org/10.1002/chin.200222190.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

BOONS, G. J., et T. ZHU. « ChemInform Abstract : Novel Regioselective Glycosylations for the Convergent and Chemoselective Assembly of Oligosaccharides. » ChemInform 28, no 46 (3 août 2010) : no. http://dx.doi.org/10.1002/chin.199746221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Miermont, Adeline, Youlin Zeng, Yuqing Jing, Xin-shan Ye et Xuefei Huang. « Syntheses of LewisXand Dimeric LewisX : Construction of Branched Oligosaccharides by a Combination of Preactivation and Reactivity Based Chemoselective One-Pot Glycosylations ». Journal of Organic Chemistry 72, no 23 (novembre 2007) : 8958–61. http://dx.doi.org/10.1021/jo701694k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Si, Anshupriya, et Steven J. Sucheck. « Synthesis of Aminooxy Glycoside Derivatives of the Outer Core Domain of Pseudomonas aeruginosa Lipopolysaccharide ». Frontiers in Molecular Biosciences 8 (8 novembre 2021). http://dx.doi.org/10.3389/fmolb.2021.750502.

Texte intégral
Résumé :
Pseudomonas aeruginosa is a highly prevalent gram-negative bacterium that is becoming more difficult to treat because of increasing antibiotic resistance. As chemotherapeutic treatment options diminish, there is an increased need for vaccines. However, the creation of an effective P. aeruginosa vaccine has been elusive despite intensive efforts. Thus, new paradigms for vaccine antigens should be explored to develop effective vaccines. In these studies, we have focused on the synthesis of two L-rhamnose–bearing epitopes common to glycoforms I and II of the outer core domain of Pseudomonas aeruginosa lipopolysaccharide, α-L-Rha-(1→6)-α-D-Glc-(1→4)-α-D-GalN-(Ala)-α-aminooxy (3) and α-L-Rha-(1→3)-β-D-Glc-(1→3)-α-D-GalN-(Ala)-α-aminooxy (4), respectively. The target trisaccharides were both prepared starting from a suitably protected galactosamine glycoside, followed by successive deprotection and glycosylation with suitably protected D-glucose and L-rhamnose thioglycosides. Global deprotection resulted in the formation of targets 3 and 4 in 22 and 35% yield each. Care was required to modify basic reaction conditions to avoid early deprotection of the N-oxysuccinamido group. In summary, trisaccharides related to the L-rhamnose–bearing epitopes common to glycoforms I and II of the outer core domain of Pseudomonas aeruginosa lipopolysaccharide have been prepared as their aminooxy glycosides. The latter are expected to be useful in chemoselective oxime-based bioconjugation reactions to form Pseudomonas aeruginosa vaccines.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Codee, Jeroen D. C., Leendert J. van den Bos, Remy E. J. N. Litjens, Herman S. Overkleeft, Constant A. A. van Boeckel, Jacques H. van Boom et Gijs A. van der Marel. « Chemoselective Glycosylations Using Sulfonium Triflate Activator Systems. » ChemInform 35, no 24 (15 juin 2004). http://dx.doi.org/10.1002/chin.200424166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Codee, Jeroen D. C., Remy E. J. N. Litjens, Rene den Heeten, Herman S. Overkleeft, Jacques H. van Boom et Gijs A. van der Marel. « Ph2SO/Tf2O : A Powerful Promotor System in Chemoselective Glycosylations Using Thioglycosides. » ChemInform 34, no 35 (2 septembre 2003). http://dx.doi.org/10.1002/chin.200335160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Miermont, Adeline, Youlin Zeng, Yuqing Jing, Xin-shan Ye et Xuefei Huang. « ChemInform Abstract : Syntheses of LewisXand Dimeric LewisX : Construction of Branched Oligosaccharides by a Combination of Preactivation and Reactivity Based Chemoselective One-Pot Glycosylations. » ChemInform 39, no 5 (29 janvier 2008). http://dx.doi.org/10.1002/chin.200805195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie