Articles de revues sur le sujet « Chemoenzymatic catalysis »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Chemoenzymatic catalysis.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Chemoenzymatic catalysis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pauly, Jan, Harald Gröger et Anant V. Patel. « Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process ». Catalysts 9, no 6 (18 juin 2019) : 547. http://dx.doi.org/10.3390/catal9060547.

Texte intégral
Résumé :
Chemoenzymatic processes have been gaining interest to implement sustainable reaction steps or even create new synthetic routes. In this study, we combined Grubbs’ second-generation catalyst with pig liver esterase and conducted a chemoenzymatic one-pot process in a tandem mode. To address sustainability, we encapsulated the catalysts in biopolymer hydrogel beads and conducted the reaction cascade in an aqueous medium. Unfortunately, conducting the process in tandem led to increased side product formation. We then created core-shell beads with catalysts located in different compartments, which notably enhanced the selectivity towards the desired product compared to homogeneously distributing both catalysts within the matrix. Finally, we designed a specific large-sized bead with a diameter of 13.5 mm to increase the diffusion route of the Grubbs’ catalyst-containing shell. This design forced the ring-closing metathesis to occur first before the substrate could diffuse into the pig liver esterase-containing core, thus enhancing the selectivity to 75%. This study contributes to addressing reaction-related issues by designing specific immobilisates for chemoenzymatic processes.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xu, Yuanfeng, Meng Wang, Bo Feng, Ziyang Li, Yuanhua Li, Hexing Li et Hui Li. « Dynamic kinetic resolution of aromatic sec-alcohols by using a heterogeneous palladium racemization catalyst and lipase ». Catalysis Science & ; Technology 7, no 24 (2017) : 5838–42. http://dx.doi.org/10.1039/c7cy01954h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mertens, M. A. Stephanie, Daniel F. Sauer, Ulrich Markel, Johannes Schiffels, Jun Okuda et Ulrich Schwaneberg. « Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease ». Catalysis Science & ; Technology 9, no 20 (2019) : 5572–76. http://dx.doi.org/10.1039/c9cy01412h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kadokawa, Jun-ichi. « Enzymatic preparation of functional polysaccharide hydrogels by phosphorylase catalysis ». Pure and Applied Chemistry 90, no 6 (27 juin 2018) : 1045–54. http://dx.doi.org/10.1515/pac-2017-0802.

Texte intégral
Résumé :
Abstract This article reviews enzymatic preparation of functional polysaccharide hydrogels by means of phosphorylase-catalyzed enzymatic polymerization. A first topic of this review deals with the synthesis of amylose-grafted polymeric materials and their formation of hydrogels, composed of abundant natural polymeric main-chains, such as chitosan, cellulose, xantham gum, carboxymethyl cellulose, and poly(γ-glutamic acid). Such synthesis was achieved by combining the phosphorylase-catalyzed enzymatic polymerization forming amylose with the appropriate chemical reaction (chemoenzymatic method). An amylose-grafted chitin nanofiber hyrogel was also prepared by the chemoenzymatic approach. As a second topic, the preparation of glycogen hydrogels by the phosphorylase-catalyzed enzymatic reactions was described. When the phosphorylase-catalyzed enzymatic polymerization from glycogen as a polymeric primer was carried out, followed by standing the reaction mixture at room temperature, a hydrogel was obtained. pH-Responsive amphoteric glycogen hydrogels were also fabricated by means of the successive phosphorylase-catalyzed enzymatic reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Horvat, Melissa, Victoria Weilch, Robert Rädisch, Sebastian Hecko, Astrid Schiefer, Florian Rudroff, Birgit Wilding et al. « Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime ». Catalysis Science & ; Technology 12, no 1 (2022) : 62–66. http://dx.doi.org/10.1039/d1cy01694f.

Texte intégral
Résumé :
We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation and enzymatic dehydration by aldoxime dehydratase (Oxd).
Styles APA, Harvard, Vancouver, ISO, etc.
6

Reymond, Jean-Louis, et Jérémy Boilevin. « Synthesis of Lipid-Linked Oligosaccharides (LLOs) and Their Phosphonate Analogues as Probes To Study Protein Glycosylation Enzymes ». Synthesis 50, no 14 (26 juin 2018) : 2631–54. http://dx.doi.org/10.1055/s-0037-1609735.

Texte intégral
Résumé :
Here we review chemical and chemoenzymatic methods for the synthesis of lipid-linked oligosaccharides (LLOs) and their phosphonate analogues, which serve as substrates and inhibitors to investigate the structure and mechanism of protein N-glycosylation enzymes. We emphasize how to overcome the challenges pertaining to the instability and difficult physicochemical properties of this class of compounds.1 Introduction2 LLO Syntheses2.1 Glycosyl Phosphate Syntheses2.2 Glycosyl Phosphonates2.3 Lipid Elongation2.4 Lipid Phosphates2.5 Coupling Reaction Strategies3 Chemoenzymatic Synthesis of Elongated LLOs4 Biological Properties of Synthetic LLOs5 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kuska, Justyna, Freya Taday, Kathryn Yeow, James Ryan et Elaine O'Reilly. « An in vitro–in vivo sequential cascade for the synthesis of iminosugars from aldoses ». Catalysis Science & ; Technology 11, no 13 (2021) : 4327–31. http://dx.doi.org/10.1039/d1cy00698c.

Texte intégral
Résumé :
Here, we report a chemoenzymatic approach for the preparation of a small panel of biologically important iminosugars from readily available aldoses, employing a transaminase in combination with Gluconobacter oxydans whole cells.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gao, Liya, Zihan Wang, Yunting Liu, Pengbo Liu, Shiqi Gao, Jing Gao et Yanjun Jiang. « Co-immobilization of metal and enzyme into hydrophobic nanopores for highly improved chemoenzymatic asymmetric synthesis ». Chemical Communications 56, no 88 (2020) : 13547–50. http://dx.doi.org/10.1039/d0cc06431a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wu, Yuqi, Jiawei Shen, Dong Yang, Daozhu Xu, Menghan Huang et Yucai He. « Production of Furfuryl Alcohol from Corncob Catalyzed By CCZU-KF Cell Via Chemoenzymatic Approach ». Academic Journal of Science and Technology 6, no 1 (2 juin 2023) : 132–38. http://dx.doi.org/10.54097/ajst.v6i1.9022.

Texte intégral
Résumé :
In this work, the hybrid route of chemo-catalysis and bio-catalysis were used to chemoenzymatically catalyze corncob to produce furfuryl alcohol via sequential conversion with solid acid catalyst at 180 ℃ for 10 min, and E. coli CCZU-KF whole-cell biocatalyst at 35 ℃ for 72 h in 10 vol% choline chloride system. The yield of furfuryl alcohol was 97.7%. This work successfully demonstrated the green and efficient synthesis of furfuryl alcohol production from biomass via chemoenzymatic approach.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Gadler, P., S. M. Glueck, W. Kroutil, B. M. Nestl, B. Larissegger-Schnell, B. T. Ueberbacher, S. R. Wallner et K. Faber. « Biocatalytic approaches for the quantitative production of single stereoisomers from racemates ». Biochemical Society Transactions 34, no 2 (20 mars 2006) : 296–300. http://dx.doi.org/10.1042/bst0340296.

Texte intégral
Résumé :
Strategies for the chemoenzymatic transformation of a racemate into a single stereoisomeric product in quantitative yield have been developed. A range of industrially relevant α-hydroxycarboxylic acids was deracemized in a stepwise fashion via lipase-catalysed enantioselective O-acylation, followed by mandelate racemase-catalysed racemization of the remaining non-reacted substrate enantiomer. Alternatively, aliphatic α-hydroxycarboxylic acids were enzymatically isomerized using whole resting cells of Lactobacillus spp. Enantioselective hydrolysis of rac-sec-alkyl sulphate esters was accomplished using novel alkyl sulphatases of microbial origin. The stereochemical path of catalysis could be controlled by choice of the biocatalyst. Whereas Rhodococcus ruber DSM 44541 and Sulfolobus acidocaldarius DSM 639 act through inversion of configuration, stereo-complementary retaining sulphatase activity was detected in the marine planctomycete Rhodopirellula baltica DSM 10527.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Tiso, Till, Daniel F. Sauer, Klaus Beckerle, Christian C. Blesken, Jun Okuda et Lars M. Blank. « A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure ». Catalysts 10, no 8 (4 août 2020) : 874. http://dx.doi.org/10.3390/catal10080874.

Texte intégral
Résumé :
Here we report a chemoenzymatic approach to synthesize 1-octene from carbohydrates via ethenolysis of rhamnolipids. Rhamnolipids synthesized by P. putida contain a double bond between carbon five and six, which is experimentally confirmed via olefin cross metathesis. Utilizing these lipids in the ethenolysis catalyzed by a Grubbs−Hoveyda-type catalyst selectively generates 1-octene and with good conversions. This study shows the potential of chemoenzymatic approaches to produce compounds for the chemical industry from renewable resources.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Júnior, Aldo Araújo da Trindade, Yan Ferraz Ximenes Ladeira, Alexandre da Silva França, Rodrigo Octavio Mendonça Alves de Souza, Adolfo Henrique Moraes, Robert Wojcieszak, Ivaldo Itabaiana Jr. et Amanda Silva de Miranda. « Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization ». Catalysts 11, no 8 (31 juillet 2021) : 936. http://dx.doi.org/10.3390/catal11080936.

Texte intégral
Résumé :
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Tanaka, Tomonari, Ayane Matsuura, Yuji Aso et Hitomi Ohara. « One-pot chemoenzymatic synthesis of glycopolymers from unprotected sugars via glycosidase-catalysed glycosylation using triazinyl glycosides ». Chemical Communications 56, no 71 (2020) : 10321–24. http://dx.doi.org/10.1039/d0cc02838j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Rajput, Anshul, Arijit De, Amit Mondal, Kiran Das, Biswanath Maity et Syed Masood Husain. « A biocatalytic approach towards the preparation of natural deoxyanthraquinones and their impact on cellular viability ». New Journal of Chemistry 46, no 7 (2022) : 3087–90. http://dx.doi.org/10.1039/d1nj05513e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Mosley, Sylvester L., Pumtiwitt C. Rancy, Dwight C. Peterson, Justine Vionnet, Rina Saksena et Willie F. Vann. « Chemoenzymatic synthesis of conjugatable oligosialic acids ». Biocatalysis and Biotransformation 28, no 1 (24 novembre 2009) : 41–50. http://dx.doi.org/10.3109/10242420903388694.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Yang, Shangjin, Walter Hayden, Kurt Faber et Herfried Griengl. « Chemoenzymatic Synthesis of (R)-(-)-Citramalic Acid ». Synthesis 1992, no 04 (1992) : 365–66. http://dx.doi.org/10.1055/s-1992-26110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Rutjes, Floris, Stan Groothuys, Brian Kuijpers, Peter Quaedflieg, Harlof Roelen, Roel Wiertz, Richard Blaauw et Floris van Delft. « Chemoenzymatic Synthesis of Triazole-Linked Glycopeptides ». Synthesis 2006, no 18 (25 juillet 2006) : 3146–52. http://dx.doi.org/10.1055/s-2006-942509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Baisch, Gabi, et Reinhold Öhrlein. « Chemoenzymatic Synthesis of Sialyl Lewisx Glycopeptides ». Angewandte Chemie International Edition in English 35, no 16 (6 septembre 1996) : 1812–15. http://dx.doi.org/10.1002/anie.199618121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Priyanka, Pragya, Thomas B. Parsons, Antonia Miller, Frances M. Platt et Antony J. Fairbanks. « Chemoenzymatic Synthesis of a Phosphorylated Glycoprotein ». Angewandte Chemie International Edition 55, no 16 (11 mars 2016) : 5058–61. http://dx.doi.org/10.1002/anie.201600817.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Jiabin, Ding Liu, Varma Saikam, Madhusudhan R. Gadi, Christopher Gibbons, Xuan Fu, Heliang Song et al. « Machine‐Driven Chemoenzymatic Synthesis of Glycopeptide ». Angewandte Chemie International Edition 59, no 45 (31 août 2020) : 19825–29. http://dx.doi.org/10.1002/anie.202001124.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Drauz, Karlheinz, Matthias Kottenhahn, Kyriakos Makryaleas, Herbert Klenk et Michael Bernd. « Chemoenzymatic Syntheses ofω-UreidoD-Amino Acids ». Angewandte Chemie International Edition in English 30, no 6 (juin 1991) : 712–14. http://dx.doi.org/10.1002/anie.199107121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Li, Shuwei, et Dexing Zeng. « Chemoenzymatic Enrichment of Phosphotyrosine-Containing Peptides ». Angewandte Chemie International Edition 46, no 25 (18 juin 2007) : 4751–53. http://dx.doi.org/10.1002/anie.200700633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Himiyama, Tomoki, et Yasunori Okamoto. « Artificial Metalloenzymes : From Selective Chemical Transformations to Biochemical Applications ». Molecules 25, no 13 (30 juin 2020) : 2989. http://dx.doi.org/10.3390/molecules25132989.

Texte intégral
Résumé :
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: (1) the newly reported ArMs, according to their type of reaction, and (2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Dong, Mengmeng, Jiawen Chen, Jiebing Yang, Wei Jiang, Haobo Han, Quanshun Li et Yan Yang. « Chemoenzymatic synthesis of a cholesterol-g-poly(amine-co-ester) carrier for p53 gene delivery to inhibit the proliferation and migration of tumor cells ». New Journal of Chemistry 42, no 16 (2018) : 13541–48. http://dx.doi.org/10.1039/c8nj02574f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chênevert, Robert, et Michel Desjardins. « Chemoenzymatic enantioselective synthesis of baclofen ». Canadian Journal of Chemistry 72, no 11 (1 novembre 1994) : 2312–17. http://dx.doi.org/10.1139/v94-294.

Texte intégral
Résumé :
We report two different chemoenzymatic enantioselective syntheses of baclofen based on the distinction between enantiotopic ester groups in compounds bearing a prochiral centre. In the first approach, the key step is the highly stereoselective enzymatic hydrolysis of dimethyl 3-(4-chlorophenyl)glutarate by chymotrypsin in an aqueous medium. In the second approach, the key step is the enzyme-catalyzed esterification of 2-(4-chloropheny 1)-1,3-propanediol by acetic anhydride in the presence of a lipase in an organic medium.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chênevert, Robert, Ghodsi Mohammadi-Ziarani, Dave Caron et Mohammed Dasser. « Chemoenzymatic enantioselective synthesis of (-)-enterolactone ». Canadian Journal of Chemistry 77, no 2 (1 février 1999) : 223–26. http://dx.doi.org/10.1139/v98-231.

Texte intégral
Résumé :
Enterolactone, a lignan isolated from biological fluids of animals and humans, was synthesized via enzymatic desymmetrization of 2-(3-methoxybenzyl)-1,3-propanediol.Key words: enterolactone, synthesis, lipase, desymmetrization, lignan.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chen, Shaohang, Jiaan Zhang, Zhigang Zeng, Zongjie Dai, Qinhong Wang, Ron Wever, Frank Hollmann et Wuyuan Zhang. « Chemoenzymatic intermolecular haloether synthesis ». Molecular Catalysis 517 (janvier 2022) : 112061. http://dx.doi.org/10.1016/j.mcat.2021.112061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Korpak, Margarete, et Jörg Pietruszka. « Chemoenzymatic One-Pot Synthesis of γ-Butyrolactones ». Advanced Synthesis & ; Catalysis 353, no 9 (juin 2011) : 1420–24. http://dx.doi.org/10.1002/adsc.201100110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Sigmund, Amy E., Wonpyo Hong, Rafael Shapiro et Robert DiCosimo. « Chemoenzymatic Synthesis ofcis-4-Hydroxy-D-proline ». Advanced Synthesis & ; Catalysis 343, no 6-7 (août 2001) : 587–90. http://dx.doi.org/10.1002/1615-4169(200108)343:6/7<587 ::aid-adsc587>3.0.co;2-v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Thiem, Joachim, et Torsten Wiemann. « Combined Chemoenzymatic Synthesis ofN-Glycoprotein Building Blocks ». Angewandte Chemie International Edition in English 29, no 1 (janvier 1990) : 80–82. http://dx.doi.org/10.1002/anie.199000801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Thiem, Joachim, et Bernd Sauerbrei. « Chemoenzymatic Syntheses of Sialyloligosaccharides with Immobilized Sialidase ». Angewandte Chemie International Edition in English 30, no 11 (novembre 1991) : 1503–5. http://dx.doi.org/10.1002/anie.199115031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wang, Shuaishuai, Qing Zhang, CongCong Chen, Yuxi Guo, Madhusudhan Reddy Gadi, Jin Yu, Ulrika Westerlind et al. « Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans ». Angewandte Chemie International Edition 57, no 30 (18 mai 2018) : 9268–73. http://dx.doi.org/10.1002/anie.201803536.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Meng, Caicai, Aniruddha Sasmal, Yan Zhang, Tian Gao, Chang-Cheng Liu, Naazneen Khan, Ajit Varki, Fengshan Wang et Hongzhi Cao. « Chemoenzymatic Assembly of Mammalian O-Mannose Glycans ». Angewandte Chemie International Edition 57, no 29 (25 juin 2018) : 9003–7. http://dx.doi.org/10.1002/anie.201804373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lu, Weigang, Chengli Zong, Pradeep Chopra, Lauren E. Pepi, Yongmei Xu, I. Jonathan Amster, Jian Liu et Geert-Jan Boons. « Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides ». Angewandte Chemie International Edition 57, no 19 (30 mars 2018) : 5340–44. http://dx.doi.org/10.1002/anie.201800387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Doyon, Tyler J., Jonathan C. Perkins, Summer A. Baker Dockrey, Evan O. Romero, Kevin C. Skinner, Paul M. Zimmerman et Alison R. H. Narayan. « Chemoenzymatic o-Quinone Methide Formation ». Journal of the American Chemical Society 141, no 51 (16 décembre 2019) : 20269–77. http://dx.doi.org/10.1021/jacs.9b10474.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Hollmann, Frank, Andreas Kleeb, Katja Otto et Andreas Schmid. « Coupled chemoenzymatic transfer hydrogenation catalysis for enantioselective reduction and oxidation reactions ». Tetrahedron : Asymmetry 16, no 21 (octobre 2005) : 3512–19. http://dx.doi.org/10.1016/j.tetasy.2005.09.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Cao, Yuan, Giang K. T. Nguyen, James P. Tam et Chuan-Fa Liu. « Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation ». Chemical Communications 51, no 97 (2015) : 17289–92. http://dx.doi.org/10.1039/c5cc07227a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Hitt, David M., Yamina Belabassi, Joyce Suhy, Clifford E. Berkman et Charles M. Thompson. « Chemoenzymatic resolution of rac-malathion ». Tetrahedron : Asymmetry 25, no 6-7 (avril 2014) : 529–33. http://dx.doi.org/10.1016/j.tetasy.2014.02.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Li, Huanhuan, Sabry H. H. Younes, Shaohang Chen, Peigao Duan, Chengsen Cui, Ron Wever, Wuyuan Zhang et Frank Hollmann. « Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids ». ACS Catalysis 12, no 8 (4 avril 2022) : 4554–59. http://dx.doi.org/10.1021/acscatal.2c00485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Endoma-Arias, Mary Ann, Mariia Makarova, Helen Dela Paz et Tomas Hudlicky. « Chemoenzymatic Total Synthesis of (+)-Oxycodone from Phenethyl Acetate ». Synthesis 51, no 01 (20 novembre 2018) : 225–32. http://dx.doi.org/10.1055/s-0037-1611335.

Texte intégral
Résumé :
The stereoselective total synthesis of unnatural (+)-oxy­codone from phenethyl acetate is described. Absolute stereochemistry was established via microbial dihydroxylation of phenethyl acetate with the recombinant strain JM109 (pDTG601A) to the corresponding cis-cyclohexadienediol­ whose configuration provides for the absolute stereo­chemistry of the ring C of (+)-oxycodone. Intramolecular Heck cyclization was employed to establish the quaternary carbon at C-13, along with the dibenzodihydrofuran functionality. The C-14 hydroxyl was installed via SmI2-mediated radical cyclization. The synthesis of (+)-oxy­codone was completed in a total of 13 steps and an overall yield of 1.5%. Experimental and spectral data are provided for all new compounds.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Unverzagt, Carlo. « Chemoenzymatic Synthesis of a Sialylated Undecasaccharide–Asparagine Conjugate ». Angewandte Chemie International Edition in English 35, no 20 (1 novembre 1996) : 2350–53. http://dx.doi.org/10.1002/anie.199623501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Johnson, Luke A., Alice Dunbabin, Jennifer C. R. Benton, Robert J. Mart et Rudolf K. Allemann. « Modular Chemoenzymatic Synthesis of Terpenes and their Analogues ». Angewandte Chemie International Edition 59, no 22 (25 mars 2020) : 8486–90. http://dx.doi.org/10.1002/anie.202001744.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Maiti, Sampa, Saikat Manna, Nicholas Banahene, Lucynda Pham, Zhijie Liang, Jun Wang, Yi Xu et al. « From Glucose to Polymers : A Continuous Chemoenzymatic Process ». Angewandte Chemie International Edition 59, no 43 (20 août 2020) : 18943–47. http://dx.doi.org/10.1002/anie.202006468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Nikoshvili, Linda Z., et Valentina G. Matveeva. « Recent Progress in Pd-Catalyzed Tandem Processes ». Catalysts 13, no 8 (15 août 2023) : 1213. http://dx.doi.org/10.3390/catal13081213.

Texte intégral
Résumé :
In recent years, Pd-containing catalytic systems for tandem processes have gained special attention due to their enhanced catalytic properties and their possibility of performing several reactions without the necessity of separating the intermediates. In this review, recent progress in Pd-catalyzed tandem processes is considered. Three types of catalytic systems are described: homogeneous catalysts (including immobilized Pd complexes); heterogeneous catalysts supported on oxides, MOFs, COFs, etc., with particular attention to the supports containing acid/base sites; and metal-enzyme catalysts for chemoenzymatic tandem processes applied in fine organic synthesis and biotechnology. For homogeneous Pd-catalyzed reactions, different tandem reactions were considered, i.e., cross-coupling, cyclization, carbonylation, isomerization, alkylation, arylation, etc.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lima, Gledson Vieira, Marcos Reinaldo da Silva, Thiago de Sousa Fonseca, Leandro Bezerra de Lima, Maria da Conceição Ferreira de Oliveira, Telma Leda Gomes de Lemos, Davila Zampieri et al. « Chemoenzymatic synthesis of (S)-Pindolol using lipases ». Applied Catalysis A : General 546 (septembre 2017) : 7–14. http://dx.doi.org/10.1016/j.apcata.2017.08.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lin, Hening, et Christopher T. Walsh. « A Chemoenzymatic Approach to Glycopeptide Antibiotics ». Journal of the American Chemical Society 126, no 43 (novembre 2004) : 13998–4003. http://dx.doi.org/10.1021/ja045147v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Angelastro, Antonio, William M. Dawson, Louis Y. P. Luk, E. Joel Loveridge et Rudolf K. Allemann. « Chemoenzymatic Assembly of Isotopically Labeled Folates ». Journal of the American Chemical Society 139, no 37 (6 septembre 2017) : 13047–54. http://dx.doi.org/10.1021/jacs.7b06358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ko, Kwang-Seuk, Corbin J. Zea et Nicola L. Pohl. « Strategies for the Chemoenzymatic Synthesis of Deoxysugar Nucleotides : Substrate Binding versus Catalysis ». Journal of Organic Chemistry 70, no 5 (mars 2005) : 1919–21. http://dx.doi.org/10.1021/jo048424p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Mathew, Sam, Arunachalam Sagadevan, Dominik Renn et Magnus Rueping. « One-Pot Chemoenzymatic Conversion of Alkynes to Chiral Amines ». ACS Catalysis 11, no 20 (29 septembre 2021) : 12565–69. http://dx.doi.org/10.1021/acscatal.1c03474.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chakraborti, Asit, U. Banerjee, Linga Banoth, Bhukya Chandarrao et Brahmam Pujala. « Efficient Chemoenzymatic Synthesis of (RS)-, (R)-, and (S)-Bunitrolol ». Synthesis 46, no 04 (11 décembre 2013) : 479–88. http://dx.doi.org/10.1055/s-0033-1340465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie