Littérature scientifique sur le sujet « Chemistry and transport model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Chemistry and transport model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Chemistry and transport model"
Wohltmann, I., et M. Rex. « The Lagrangian chemistry and transport model ATLAS : validation of transport and mixing ». Geoscientific Model Development Discussions 2, no 2 (3 juillet 2009) : 709–62. http://dx.doi.org/10.5194/gmdd-2-709-2009.
Texte intégralWohltmann, I., et M. Rex. « The Lagrangian chemistry and transport model ATLAS : validation of advective transport and mixing ». Geoscientific Model Development 2, no 2 (2 novembre 2009) : 153–73. http://dx.doi.org/10.5194/gmd-2-153-2009.
Texte intégralRiede, H., P. Jöckel et R. Sander. « Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM ». Geoscientific Model Development 2, no 2 (15 décembre 2009) : 267–80. http://dx.doi.org/10.5194/gmd-2-267-2009.
Texte intégralDeckert, R., P. Jöckel, V. Grewe, K. D. Gottschaldt et P. Hoor. « A quasi chemistry-transport model mode for EMAC ». Geoscientific Model Development Discussions 3, no 4 (19 novembre 2010) : 2189–220. http://dx.doi.org/10.5194/gmdd-3-2189-2010.
Texte intégralMenut, Laurent, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel et al. « The CHIMERE v2020r1 online chemistry-transport model ». Geoscientific Model Development 14, no 11 (5 novembre 2021) : 6781–811. http://dx.doi.org/10.5194/gmd-14-6781-2021.
Texte intégralDeckert, R., P. Jöckel, V. Grewe, K. D. Gottschaldt et P. Hoor. « A quasi chemistry-transport model mode for EMAC ». Geoscientific Model Development 4, no 1 (16 mars 2011) : 195–206. http://dx.doi.org/10.5194/gmd-4-195-2011.
Texte intégralJung, G., I. M. Hedgecock et N. Pirrone. « ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model ». Geoscientific Model Development Discussions 2, no 1 (7 mai 2009) : 385–453. http://dx.doi.org/10.5194/gmdd-2-385-2009.
Texte intégralJung, G., I. M. Hedgecock et N. Pirrone. « ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model ». Geoscientific Model Development 2, no 2 (4 novembre 2009) : 175–95. http://dx.doi.org/10.5194/gmd-2-175-2009.
Texte intégralRiede, H., P. Jöckel et R. Sander. « Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM ». Geoscientific Model Development Discussions 2, no 1 (8 mai 2009) : 455–84. http://dx.doi.org/10.5194/gmdd-2-455-2009.
Texte intégralWang, ChangJian, Jennifer Wen, ShouXiang Lu et Jin Guo. « Single-step chemistry model and transport coefficient model for hydrogen combustion ». Science China Technological Sciences 55, no 8 (29 juin 2012) : 2163–68. http://dx.doi.org/10.1007/s11431-012-4932-4.
Texte intégralThèses sur le sujet "Chemistry and transport model"
Al-Mudaris, A. A. M. « Ionic transport in model polymer electrolytes ». Thesis, University of Kent, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235984.
Texte intégralMonks, Sarah Anne. « A model study of chemistry and transport in the Arctic troposphere ». Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/2286/.
Texte intégralSim, Alec. « Unified model of charge transport in insulating polymeric materials ». Thesis, Utah State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3606878.
Texte intégralPresented here is a detailed study of electron transport in highly disordered insulating materials (HDIM). Since HDIMs do not lend themselves to a lattice construct, the question arises: How can we describe their electron transport behavior in a consistent theoretical framework? In this work, a large group of experiments, theories, and physical models are coalesced into a single formalism to better address this difficult question. We find that a simple set of macroscopic transport equations--cast in a new formalism--provides an excellent framework in which to consider a wide array of experimentally observed behaviors. It is shown that carrier transport in HDIMs is governed by the transport equations that relate the density of localized states (DOS) within the band gap and the occupation of these states through thermal and quantum interactions. The discussion is facilitated by considering a small set of simple DOS models. This microscopic picture gives rise to a clear understanding of the macroscopic carrier transport in HDIMs. We conclude with a discussion of the application of this theoretical formalism to four specific types of experimental measurements employed by the Utah State University space environments effects Materials Physics Group.
Klasen, Dagmar. « Variational assimilation of stratospheric remote sounding data by an adjoint chemistry-transport-model ». [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969576269.
Texte intégralCrone, Gilia Cornelia. « Parallel Lagrangian models for turbulent transport and chemistry ». [S.l.] : Utrecht : [s.n.] ; Universiteitsbibliotheek Utrecht [Host], 1997. http://www.ubu.ruu.nl/cgi-bin/grsn2url?01763357.
Texte intégralFollows, Michael John. « A statistical-dynamical climate model to trace gas transport and chemistry in the troposphere ». Thesis, University of East Anglia, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278041.
Texte intégralSchrödner, Roland. « Modeling the tropospheric multiphase aerosol-cloud processing using the 3-D chemistry transport model COSMO-MUSCAT ». Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-199294.
Texte intégralIn the troposphere, a vast number of interactions between gases, particles, and clouds affect their physico-chemical properties, which, therefore, highly depend on each other. Particularly, multiphase chemical processes within clouds can alter the physico-chemical properties of the gas and the particle phase from the local to the global scale. This cloud processing of the tropospheric aerosol may, therefore, affect chemical conversions in the atmosphere, the formation, extent, and lifetime of clouds, as well as the interaction of particles and clouds with incoming and outgoing radiation. Considering the relevance of these processes for Earth\'s climate and many environmental issues, a detailed understanding of the chemical processes within clouds is important. However, the treatment of aqueous phase chemical reactions in numerical models in a comprehensive and explicit manner is challenging. Therefore, detailed descriptions of aqueous chemistry are only available in box models, whereas regional chemistry transport and climate models usually treat cloud chemical processes by means of rather simplified chemical mechanisms or parameterizations. The present work aims at characterizing the influence of chemical cloud processing of the tropospheric aerosol on the fate of relevant gaseous and particulate aerosol constituents using the state-of-the-art 3‑D chemistry transport model (CTM) COSMO‑MUSCAT. For this purpose, the model was enhanced by a detailed description of aqueous phase chemical processes. In addition, the deposition schemes were improved in order to account for the deposition of cloud droplets of ground layer clouds and fogs. The conducted model enhancements provide a better insight in the tropospheric multiphase system. The extended model system was applied for an artificial mountain streaming scenario as well as for real 3‑D case studies. Process and sensitivity studies were conducted investigating the influence of (i) the detail of the used aqueous phase chemical representation, (ii) the size-resolution of the cloud droplets, and (iii) the total droplet number on the chemical model output. The studies indicated the requirement to consider chemical cloud effects in regional CTMs because of their key impacts on e.g., oxidation capacity in the gas and aqueous phase, formation of organic and inorganic particulate mass, and droplet acidity. In comparison to rather simplified aqueous phase chemical mechanisms focusing on sulfate formation, the use of the detailed aqueous phase chemistry mechanism C3.0RED leads to decreased gas phase oxidant concentrations, increased nighttime nitrate mass, decreased nighttime pH, and differences in sulfate mass. Moreover, the treatment of detailed aqueous phase chemistry enables the investigation of the formation of aqueous secondary organic aerosol mass. The consideration of size-resolved aqueous phase chemistry shows only slight effects on the chemical model output. Finally, the enhanced model was applied for case studies connected to the field experiment HCCT-2010. For the first time, an aqueous phase mechanism with the complexity of C3.0RED was applied in 3‑D chemistry transport simulations. Interesting spatial effects of real clouds on e.g., tropospheric oxidants and inorganic mass have been studied. The comparison of the model output with available measurements revealed many agreements and also interesting disagreements, which need further investigations
Janardhanan, Vinod. « A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells ». Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/986289124/34.
Texte intégralLabrador, Lorenzo. « Sensitivity of tropospheric chemistry to the source of NOx from lightning simulations with the global 3D chemistry transport model MATCH-MPIC / ». [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97690277X.
Texte intégralIbikunle, Olatunde Idris. « Modelling Chlorine Transport in Temperate Soils ». Thesis, Linköping University, Department of Water and Environmental Studies, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9524.
Texte intégralMicrobes have been suggested to have a strong impact on the transportation of chlorine in soils. There are speculations about environmental factors limiting microbial effect on chlorine movement and retention. For this study, a numerical hydrochemical model was built to describe microbial transformation of chlorine in a laboratory lysimeter experiment. Undisturbed soil cores used to set-up the experiment were collected from a coniferous forest soil in southeast Sweden. The lysimeters were modelled in groups depending on their different water and chloride treatments. Microbial transformation of chlorine was better described under high water residence times and high chloride loads compared to low water residence times and low chloride loads. Microbial activity was also shown to properly account for a sudden shift from net-chlorine retention to net chlorine release in most of the lysimeters. Oxygen proved to be very important in accounting for the short-term shift from chloride retention to release in all the lysimeters. Model outcome revealed that 0.02– 0.10 mg Cl- could be available per day in a coniferous soil depending on season and other soil conditions. This study shows that modeling enable a better understanding of chlorine biogeochemistry. It also confirms the speculated importance of microbial activities on chloride availability in soils.
Livres sur le sujet "Chemistry and transport model"
Runkel, Robert L. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) : A reactive transport model for streams and rivers. Reston, Va : U.S. Department of the Interior, U.S. Geological Survey, 2010.
Trouver le texte intégralYung, Y. L. Chemistry and transport in a multi-dimensional model : Annual performance report for NAGW-413. [Washington, DC : National Aeronautics and Space Administration, 1993.
Trouver le texte intégralMyers, Tommy E. Application of a semianalytical model to TNT transport in laboratory soil columns. Vicksburg, Miss : U.S. Army Engineer Waterways Experiment Station, 1998.
Trouver le texte intégralD, Reible Danny, dir. Diffusion models of environmental transport. Boca Raton, Fla : Lewis Publishers, 2000.
Trouver le texte intégralJanardhanan, Vinod. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells. Karlsruhe : Universita tsverlag, 2007.
Trouver le texte intégralFollows, Michael John. A statistical-dynamical climate model applied to trace gas transport and chemistry in the Troposphere. Norwich : University of East Anglia, 1990.
Trouver le texte intégralO, Manning James, et United States. National Aeronautics and Space Administration., dir. A study of carbon monoxide distribution determinations for a global transport model. [Washington, DC : National Aeronautics and Space Administration, 1987.
Trouver le texte intégralClark, Mark M. Transport modeling for environmental engineers and scientists. 2e éd. Hoboken, N.J : Wiley, 2009.
Trouver le texte intégralTransport modeling for environmental engineers and scientists. 2e éd. Hoboken, N.J : Wiley, 2009.
Trouver le texte intégralClark, Mark M. Transport modeling for environmental engineers and scientists. 2e éd. Hoboken, N.J : Wiley, 2009.
Trouver le texte intégralChapitres de livres sur le sujet "Chemistry and transport model"
Bieser, Johannes, et Martin Otto Paul Ramacher. « Multi-compartment Chemistry Transport Models ». Dans Springer Proceedings in Complexity, 119–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-63760-9_18.
Texte intégralMüller, Andreas. « Parallelization of a mesoscale atmospheric transport-chemistry model ». Dans High-Performance Computing and Networking, 200–206. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61142-8_548.
Texte intégralTung, K. K. « A Coupled Model of Zonally Averaged Dynamics, Radiation and Chemistry ». Dans Transport Processes in the Middle Atmosphere, 183–98. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3973-8_13.
Texte intégralJoly, Mathieu, Béatrice Josse, Matthieu Plu, Joaquim Arteta, Jonathan Guth et Frédérik Meleux. « High-Resolution Air Quality Forecasts with MOCAGE Chemistry Transport Model ». Dans Springer Proceedings in Complexity, 563–65. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24478-5_91.
Texte intégralVenkatram, Akula, Shuming Du, Ramamurthy Hariharan, William Carter et Robert Goldstein. « The Separation of Transport and Chemistry in a Photochemical Model ». Dans Air Pollution Modeling and Its Application XII, 459–66. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9128-0_47.
Texte intégralMichou, M., F. Brocheton, A. Dufour et V. H. Peuch. « Surface Exchanges in the Multiscale Chemistry and Transport Model MOCAGE ». Dans Air Pollution Modelling and Simulation, 578–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04956-3_60.
Texte intégralAlvarado, Matthew J., Kelley C. Barsanti, Serena H. Chung, Daniel A. Jaffe et Charles T. Moore. « Smoke Chemistry ». Dans Wildland Fire Smoke in the United States, 167–98. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87045-4_6.
Texte intégralElbern, H., H. Schmidt et A. Ebel. « Parallel 4D-Variational Data Assimilation for an Eulerian Chemistry Transport Model ». Dans Large Scale Computations in Air Pollution Modelling, 151–60. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4570-1_12.
Texte intégralOlaguer, Eduardo P. « An Efficient 3-D Model for Global Circulation, Transport and Chemistry ». Dans The IMA Volumes in Mathematics and its Applications, 205–76. New York, NY : Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-3474-4_10.
Texte intégralBotchev, Mike, István Faragó et Ágnes Havasi. « Testing Weighted Splitting Schemes on a One-Column Transport-Chemistry Model ». Dans Large-Scale Scientific Computing, 295–302. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24588-9_33.
Texte intégralActes de conférences sur le sujet "Chemistry and transport model"
Dasgupta, Debolina, Wenting Sun, Marc Day, Andy Aspden et Tim C. Lieuwen. « Transport model effects on turbulence-chemistry interactions in lean premixed flames. » Dans AIAA Scitech 2019 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0447.
Texte intégralVermael, Stefaan, Herbert De Vleeschouwer, Kristiaan Neyts, Artur Adamski et Goran Stojmenovik. « Detailed comparison of several ion-transport algorithms in a 1-dimensional liquid crystal model ». Dans XIV Conference on Liquid Crystals, Chemistry, Physics, and Applications, sous la direction de Jolanta Rutkowska, Stanislaw J. Klosowicz et Jerzy Zielinski. SPIE, 2002. http://dx.doi.org/10.1117/12.472153.
Texte intégralMaltsev, Alexander, Amsini Sadiki et Johannes Janicka. « Numerical Prediction of Partially Premixed Flames Based on Extended BML Model Coupled With Mixing Transport and ILDM Chemical Model ». Dans ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38265.
Texte intégralPenenko, Alexey, Vladimir Penenko, Roman Nuterman, Alexander Baklanov et Alexander Mahura. « Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model ». Dans XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, sous la direction de Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2206008.
Texte intégralGupta, Ankur, Jiang Zhu, M. S. Anand et Ruud Eggels. « A flame-generated-manifold chemistry based transport PDF model for gas-turbine combustor simulations ». Dans 52nd Aerospace Sciences Meeting. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-1028.
Texte intégralGoldin, Graham M., Jens Madsen, Douglas L. Straub, William A. Rogers et Kent H. Casleton. « Detailed Chemistry Simulations of a Trapped Vortex Combustor ». Dans ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38780.
Texte intégralWang, Yanqing, Zhe Liu, Xiang Li, Shiqian Xu et Jun Lu. « Seawater Breakthrough Monitoring and Reservoir-Model Improvement Using Natural Boron ». Dans SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204306-ms.
Texte intégralZhang, Ronglei, Xiaolong Yin, Yu-Shu Wu et Philip H. Winterfeld. « A Fully Coupled Model of Nonisothermal Multiphase Flow, Solute Transport and Reactive Chemistry in Porous Media ». Dans SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/159380-ms.
Texte intégralPenenko, Alexey V., Pavel N. Antokhin et Anastasia A. Grishina. « Variational data assimilation of airborne sensing profiles to the transport and transformation model of atmospheric chemistry ». Dans XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, sous la direction de Oleg A. Romanovskii. SPIE, 2017. http://dx.doi.org/10.1117/12.2288830.
Texte intégralKapoor, Abhinav, Ashoke De et Rakesh Yadav. « Multi Eulerian PDF Transport Modelling of Turbulent Swirling Flame ». Dans ASME 2012 Gas Turbine India Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gtindia2012-9543.
Texte intégralRapports d'organisations sur le sujet "Chemistry and transport model"
Atherton, C. S. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model. Office of Scientific and Technical Information (OSTI), janvier 1995. http://dx.doi.org/10.2172/130611.
Texte intégralMacKinnon, R. J., T. M. Sullivan et R. R. Kinsey. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility. Office of Scientific and Technical Information (OSTI), mai 1997. http://dx.doi.org/10.2172/491476.
Texte intégralLeGrand, Sandra, Christopher Polashenski, Theodore Letcher, Glenn Creighton, Steven Peckham et Jeffrey Cetola. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41560.
Texte intégralMacKinnon, R. J., T. M. Sullivan, S. A. Simonson et C. J. Suen. BLT-EC (Breach, Leach Transport, and Equilibrium Chemistry), a finite-element model for assessing the release of radionuclides from low-level waste disposal units : Background, theory, and model description. Office of Scientific and Technical Information (OSTI), août 1995. http://dx.doi.org/10.2172/108216.
Texte intégralSchutt, Timothy, et Manoj Shukla. Predicting the impact of aqueous ions on fate and transport of munition compounds. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41481.
Texte intégralMichaels, Michelle, Theodore Letcher, Sandra LeGrand, Nicholas Webb et Justin Putnam. Implementation of an albedo-based drag partition into the WRF-Chem v4.1 AFWA dust emission module. Engineer Research and Development Center (U.S.), janvier 2021. http://dx.doi.org/10.21079/11681/42782.
Texte intégralDudley, Lynn M., Uri Shani et Moshe Shenker. Modeling Plant Response to Deficit Irrigation with Saline Water : Separating the Effects of Water and Salt Stress in the Root Uptake Function. United States Department of Agriculture, mars 2003. http://dx.doi.org/10.32747/2003.7586468.bard.
Texte intégralMontville, Thomas J., et Roni Shapira. Molecular Engineering of Pediocin A to Establish Structure/Function Relationships for Mechanistic Control of Foodborne Pathogens. United States Department of Agriculture, août 1993. http://dx.doi.org/10.32747/1993.7568088.bard.
Texte intégralWilliam Goddard, Mario Blanco, Lawrence Cathles, Paul Manhardt, Peter Meulbroek et Yongchun Tang. Advanced Chemistry Basins Model. Office of Scientific and Technical Information (OSTI), novembre 2002. http://dx.doi.org/10.2172/901422.
Texte intégralBlanco, Mario, Lawrence Cathles, Paul Manhardt, Peter Meulbroek et Yongchun Tang. Advanced Chemistry Basins Model. Office of Scientific and Technical Information (OSTI), février 2003. http://dx.doi.org/10.2172/807772.
Texte intégral