Littérature scientifique sur le sujet « Chain graph models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Chain graph models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Chain graph models"
Drton, Mathias. « Discrete chain graph models ». Bernoulli 15, no 3 (août 2009) : 736–53. http://dx.doi.org/10.3150/08-bej172.
Texte intégralSkornyakov, Vladimir, Maria Skornyakova, Antonina Shurygina et Pavel Skornyakov. « Finite-state discrete-time Markov chain models of gene regulatory networks ». F1000Research 3 (12 septembre 2014) : 220. http://dx.doi.org/10.12688/f1000research.4669.1.
Texte intégralFerrándiz, Juan, Enrique F. Castillo et Pilar Sanmartín. « Temporal aggregation in chain graph models ». Journal of Statistical Planning and Inference 133, no 1 (juillet 2005) : 69–93. http://dx.doi.org/10.1016/j.jspi.2004.03.012.
Texte intégralWang, Yuhao, et Arnab Bhattacharyya. « Identifiability of Linear AMP Chain Graph Models ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 9 (28 juin 2022) : 10080–89. http://dx.doi.org/10.1609/aaai.v36i9.21247.
Texte intégralLauritzen, Steffen L., et Thomas S. Richardson. « Chain graph models and their causal interpretations ». Journal of the Royal Statistical Society : Series B (Statistical Methodology) 64, no 3 (août 2002) : 321–48. http://dx.doi.org/10.1111/1467-9868.00340.
Texte intégralVo, Thi Phuong Thuy. « Chain-referral sampling on stochastic block models ». ESAIM : Probability and Statistics 24 (2020) : 718–38. http://dx.doi.org/10.1051/ps/2020025.
Texte intégralKnudsen, Michael, et Carsten Wiuf. « A Markov Chain Approach to Randomly Grown Graphs ». Journal of Applied Mathematics 2008 (2008) : 1–14. http://dx.doi.org/10.1155/2008/190836.
Texte intégralKhudaBukhsh, Wasiur R., Arnab Auddy, Yann Disser et Heinz Koeppl. « Approximate lumpability for Markovian agent-based models using local symmetries ». Journal of Applied Probability 56, no 3 (septembre 2019) : 647–71. http://dx.doi.org/10.1017/jpr.2019.44.
Texte intégralHöfler, Michael, Tanja Brückl, Antje Bittner et Roselind Lieb. « Visualizing Multivariate Dependencies with Association Chain Graphs ». Methodology 3, no 1 (janvier 2007) : 24–34. http://dx.doi.org/10.1027/1614-2241.3.1.24.
Texte intégralAnacleto, Osvaldo, et Catriona Queen. « Dynamic Chain Graph Models for Time Series Network Data ». Bayesian Analysis 12, no 2 (juin 2017) : 491–509. http://dx.doi.org/10.1214/16-ba1010.
Texte intégralThèses sur le sujet "Chain graph models"
Drton, Mathias. « Maximum likelihood estimation in Gaussian AMP chain graph models and Gaussian ancestral graph models / ». Thesis, Connect to this title online ; UW restricted, 2004. http://hdl.handle.net/1773/8952.
Texte intégralLevitz, Michael. « Separation, completeness, and Markov properties for AMP chain graph models / ». Thesis, Connect to this title online ; UW restricted, 2000. http://hdl.handle.net/1773/9564.
Texte intégralGastaldello, Mattia. « Enumeration Algorithms and Graph Theoretical Models to Address Biological Problems Related To Symbiosis ». Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1019/document.
Texte intégralIn this thesis, we address two graph theoretical problems connected to two different biological problems both related to symbiosis (two organisms live in symbiosis if they have a close and long term interaction). The first problem is related to the size of a minimum cover by "chain subgraphs" of a bipartite graph. A chain graph is a bipartite graph whose nodes can be ordered by neighbourhood inclusion. In biological terms, the size of a minimum cover by chain subgraphs represents the number of genetic factors involved in the phenomenon of Cytoplasmic Incompatibility (CI) induced by some parasitic bacteria in their insect hosts. CI results in the impossibility to give birth to an healthy offspring when an infected male mates with an uninfected female. In the first half of the thesis we address three related problems. One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite graph G, for which we provide a polynomial delay algorithm with a delay of O(n^2m) where n is the number of nodes and m the number of edges of G. Furthermore, we show that (n/2)! and 2^(\sqrt{m} \log m) bound the number of maximal chain subgraphs of G and use them to establish the input-sensitive complexity of the algorithm. The second problem we treat is finding the minimum number of chain subgraphs needed to cover all the edges of a bipartite graph. To solve this NP-hard problem, we provide an exact exponential algorithm which runs in time O^*((2+c)^m), for every c>0, by a procedure which uses our algorithm and an inclusion-exclusion technique (by O^* we denote standard big O notation but omitting polynomial factors). Notice that, since a cover by chain subgraphs is a family of subsets of edges, the existence of an algorithm whose complexity is close to 2^m is not obvious. Indeed, the basic search space would have size 2^(2^m), which corresponds to all families of subsets of edges of a graph on $m$ edges. The third problem is the enumeration of all minimal covers by chain sugbgraphs. We show that it is possible to enumerate all such minimal covers of G in time O([(M+1)|S|]^[\log((M+1)|S|)]) where S is the number of minimal covers of G and M the maximum number of chain graphs in a minimal cover. We then present the relation between the second problem and the computation of the interval order dimension of a bipartite poset. We give an interpretation of our results in the context of poset and interval poset dimension... [etc]
NICOLUSSI, FEDERICA. « Marginal parametrizations for conditional independence models and graphical models for categorical data ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/43679.
Texte intégralSonntag, Dag. « Chain Graphs : Interpretations, Expressiveness and Learning Algorithms ». Doctoral thesis, Linköpings universitet, Databas och informationsteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125921.
Texte intégralDi, Natale Anna. « Stochastic models and graph theory for Zipf's law ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17065/.
Texte intégralMoghadasin, Babak. « An Approach on Learning Multivariate Regression Chain Graphs from Data ». Thesis, Linköpings universitet, Databas och informationsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-94019.
Texte intégralPENNONI, FULVIA. « Metodi statistici multivariati applicati all'analisi del comportamento dei titolari di carta di credito di tipo revolving ». Bachelor's thesis, Universita' degli studi di Perugia, 2000. http://hdl.handle.net/10281/50024.
Texte intégralIn this thesis work the use of graphical models is proposed to the analysis of credit scoring. In particular the applied application is related to the behavioural scoring which is defined by Thomas (1999) as ‘the systems and models that allow lenders to make better decisions in managing existing clients by forecasting their future performance’. The multivariate statistical models, named chain graph models, proposed for the application allow us to model in a proper way the relation between the variables describing the behaviour of the holders of the credit card. The proposed models are named chain graph models. They are based on a log-linear expansion of the density function of the variables. They allow to: depict oriented association between subset of variables; to detect the structure which accounts for a parsimonious description of the relations between variables; to model simultaneously more than one response variable. They are useful in particular when there is a partial ordering between variables such that they can be divided into exogenous, intermediate and responses. In the graphical models the independence structure is represented by a graph. The variables are represented by nodes, joint by edges showing the dependence in probability among variables. The missing edge means that two nodes are independent given the other nodes. Such class of models is very useful for the theory which combines them with the expert systems. In fact, once the model has been selected, it is possible to link it to the expert system to model the joint and marginal probability of the variables. The first chapter introduces the most used statistical models for the credit scoring analysis. The second chapter introduces the categorical variables. The information related to the credit card holder are stored in a contingency table. It illustrates also the notion of independence between two variables and conditional independence among more than two variables. The odds ratio is introduced as a measure of association between two variables. It is the base of the model formulation. The third chapter introduces the log-linear and logistic models belonging to the family of generalized linear models. They are multivariate methods allowing to study the association between variables considering them simultaneously. A log-linear parameterization is described in details. Its advantage is also that it allow us to take into account of the ordinal scale on which the categorical variables are measured. This is also useful to find the better categorization of the continuous variables. The results related to the maximum likelihood estimation of the model parameters are mentioned as well as the numerical iterative algorithm which are used to solve the likelihood equations with respect to the unknown parameters. The score test is illustrated to evaluate the goodness of fit of the model to the data. Chapter 4 introduces some main concepts of the graph theory in connection with their properties which allow us to depict the model through the graph, showing the interpretative advantages. The sparsity of the contingency table is also mentioned, when there are many cells. The collapsibility conditions are considered as well. Finally, Chapter 5 illustrates the application of the proposed methodology on a sample composed by 70000 revolving credit card holders. The data are released by a one of biggest Italian financial society working in this sector. The variables are the socioeconomic characteristics of the credit card holder, taken form the form filled by the customer when asking for the credit. Every months the society refines the classification of the customers in active, inactive or asleep according to the balance. The application of the proposed method was devoted to find the existing conditional independences between variables related to the two responses which are the balance of the account at two subsequent dates and therefore to define the profiles of most frequently users of the revolving credit card. The chapter ends with some conclusive remarks. The appendix of the chapter reports the code of the used statistical softwares.
Weng, Huibin. « A Social Interaction Model with Endogenous Network Formation ». University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159317152899108.
Texte intégralWang, Yan-Jiang, et yanjiang_wang@tmmu edu cn. « Clearance of amyloid-beta in Alzheimer's disease : To understand the pathogenesis and develop potential therapies in animal models ». Flinders University. School of Medicine, 2010. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20100419.124325.
Texte intégralLivres sur le sujet "Chain graph models"
Yücesan, Enver. Analysis of Markov chains using simulation graph models. Fontainebleau : INSEAD, 1990.
Trouver le texte intégralO, Seppäläinen Timo, dir. A course on large deviations with an introduction to Gibbs measures. Providence, Rhode Island : American Mathematical Society, 2015.
Trouver le texte intégralCoolen, A. C. C., A. Annibale et E. S. Roberts. Graphs with hard constraints : further applications and extensions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0007.
Texte intégralBrémaud, Pierre. Discrete Probability Models and Methods : Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding. Springer International Publishing AG, 2017.
Trouver le texte intégralBrémaud, Pierre. Discrete Probability Models and Methods : Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding. Springer, 2018.
Trouver le texte intégralBremaud, Pierre. Discrete Probability - Models and Methods : Probability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding. Springer, 2017.
Trouver le texte intégralChapitres de livres sur le sujet "Chain graph models"
Sonntag, Dag. « On Expressiveness of the AMP Chain Graph Interpretation ». Dans Probabilistic Graphical Models, 458–70. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_30.
Texte intégralNicolussi, Federica, et Manuela Cazzaro. « Context-Specific Independencies Embedded in Chain Graph Models of Type I ». Dans Statistical Learning of Complex Data, 173–80. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21140-0_18.
Texte intégralPeña, Jose M. « Every LWF and AMP Chain Graph Originates from a Set of Causal Models ». Dans Lecture Notes in Computer Science, 325–34. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20807-7_29.
Texte intégralRichardson, Thomas S. « Chain Graphs and Symmetric Associations ». Dans Learning in Graphical Models, 231–59. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5014-9_9.
Texte intégralPeña, Jose M. « Learning Marginal AMP Chain Graphs under Faithfulness ». Dans Probabilistic Graphical Models, 382–95. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11433-0_25.
Texte intégralDing, Huafeng, Wenjian Yang et Andrés Kecskeméthy. « Unified Graph Model of Planar Kinematic Chains ». Dans Springer Tracts in Mechanical Engineering, 19–28. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1508-6_3.
Texte intégralRamzy, Nour, Sören Auer, Javad Chamanara et Hans Ehm. « KnowGraph-PM : A Knowledge Graph Based Pricing Model for Semiconductor Supply Chains ». Dans Computer and Information Science 2021—Summer, 61–75. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79474-3_5.
Texte intégralLuo, Rui, Zihong Zhang et Wei Xiong. « Temperature Prediction of Grape Cold Chain Transportation Based on Multivariable Grey Model ». Dans Lecture Notes in Electrical Engineering, 968–74. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3250-4_124.
Texte intégralKausler, Bernhard X., Martin Schiegg, Bjoern Andres, Martin Lindner, Ullrich Koethe, Heike Leitte, Jochen Wittbrodt, Lars Hufnagel et Fred A. Hamprecht. « A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness ». Dans Computer Vision – ECCV 2012, 144–57. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33712-3_11.
Texte intégralBeneš, Nikola, Luboš Brim, Samuel Pastva et David Šafránek. « Computing Bottom SCCs Symbolically Using Transition Guided Reduction ». Dans Computer Aided Verification, 505–28. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_24.
Texte intégralActes de conférences sur le sujet "Chain graph models"
Dabrowski, Christopher, et Fern Hunt. « Identifying Failure Scenarios in Complex Systems by Perturbing Markov Chain Models ». Dans ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57683.
Texte intégralMohan, Prashant, Payam Haghighi, Jami J. Shah et Joseph K. Davidson. « Automatic Detection of Directions of Dimensional Control in Mechanical Parts ». Dans ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4143.
Texte intégralDing, Huafeng, Jing Zhao et Zhen Huang. « The Establishment of Novel Structure Representation Models for Several Kinds of Mechanisms ». Dans ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86074.
Texte intégralWang, Wan. « A Model for Mechanism Data Storage ». Dans ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0150.
Texte intégralLi, Zhongyang, Xiao Ding et Ting Liu. « Constructing Narrative Event Evolutionary Graph for Script Event Prediction ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/584.
Texte intégralDu, Xuehong, Mitchell M. Tseng et Jianxin Jiao. « Graph Grammar Based Product Variety Modeling ». Dans ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/dfm-14041.
Texte intégralFerri, Cèsar, José Hernández-Orallo et Jan Arne Telle. « Non-Cheating Teaching Revisited : A New Probabilistic Machine Teaching Model ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/412.
Texte intégralWang, Jiang, Filip Ilievski, Pedro Szekely et Ke-Thia Yao. « Augmenting Knowledge Graphs for Better Link Prediction ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/316.
Texte intégralAl-Ghafees, Mohammed, et James Whittaker. « Markov Chain-based Test Data Adequacy Criteria : a Complete Family ». Dans 2002 Informing Science + IT Education Conference. Informing Science Institute, 2002. http://dx.doi.org/10.28945/2435.
Texte intégral« CHAIN EVENT GRAPH MAP MODEL SELECTION ». Dans International Conference on Knowledge Engineering and Ontology Development. SciTePress - Science and and Technology Publications, 2009. http://dx.doi.org/10.5220/0002292403920395.
Texte intégralRapports d'organisations sur le sujet "Chain graph models"
Oron, Gideon, Raphi Mandelbaum, Carlos E. Enriquez, Robert Armon, Yoseph Manor, L. Gillerman, A. Alum et Charles P. Gerba. Optimization of Secondary Wastewater Reuse to Minimize Environmental Risks. United States Department of Agriculture, décembre 1999. http://dx.doi.org/10.32747/1999.7573077.bard.
Texte intégral