Littérature scientifique sur le sujet « Cellule neuronali »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cellule neuronali ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cellule neuronali"
Lledo, Pierre-Marie. « Cellules souches neuronales ». Morphologie 99, no 327 (décembre 2015) : 154. http://dx.doi.org/10.1016/j.morpho.2015.09.012.
Texte intégralCorner, M. A. « Neuronal and cellular oscillators ». Journal of the Neurological Sciences 92, no 2-3 (septembre 1989) : 349. http://dx.doi.org/10.1016/0022-510x(89)90150-0.
Texte intégralKorn, H. « Neuronal and cellular oscillators ». Biochimie 72, no 5 (mai 1990) : 376. http://dx.doi.org/10.1016/0300-9084(90)90037-h.
Texte intégralYoung, Fraser I., Vsevolod Telezhkin, Sarah J. Youde, Martin S. Langley, Maria Stack, Paul J. Kemp, Rachel J. Waddington, Alastair J. Sloan et Bing Song. « Clonal Heterogeneity in the Neuronal and Glial Differentiation of Dental Pulp Stem/Progenitor Cells ». Stem Cells International 2016 (2016) : 1–10. http://dx.doi.org/10.1155/2016/1290561.
Texte intégralWylie, Steven R., et Peter D. Chantler. « Myosin IIC : A Third Molecular Motor Driving Neuronal Dynamics ». Molecular Biology of the Cell 19, no 9 (septembre 2008) : 3956–68. http://dx.doi.org/10.1091/mbc.e07-08-0744.
Texte intégralBoulant, Jack A. « Cellular mechanisms of neuronal thermosensitivity ». Journal of Thermal Biology 24, no 5-6 (octobre 1999) : 333–38. http://dx.doi.org/10.1016/s0306-4565(99)00038-8.
Texte intégralAgnati, Luigi F., Diego Guidolin, Chiara Carone, Mauro Dam, Susanna Genedani et Kjell Fuxe. « Understanding neuronal molecular networks builds on neuronal cellular network architecture ». Brain Research Reviews 58, no 2 (août 2008) : 379–99. http://dx.doi.org/10.1016/j.brainresrev.2007.11.002.
Texte intégralLillycrop, K. A., Y. Z. Liu, T. Theil, T. Möröy et D. S. Latchman. « Activation of the herpes simplex virus immediate-early gene promoters by neuronally expressed POU family transcription factors ». Biochemical Journal 307, no 2 (15 avril 1995) : 581–84. http://dx.doi.org/10.1042/bj3070581.
Texte intégralDale, Nicholas. « Neuronal and cellular oscillators (cellular clocks series, vol. 2) ». Trends in Neurosciences 12, no 12 (janvier 1989) : 521–22. http://dx.doi.org/10.1016/0166-2236(89)90114-8.
Texte intégralKristan,, William B. « Neuronal and Cellular Oscillators.Jon W. Jacklet ». Quarterly Review of Biology 65, no 1 (mars 1990) : 73–74. http://dx.doi.org/10.1086/416613.
Texte intégralThèses sur le sujet "Cellule neuronali"
CAPORALI, SIMONA. « Cellule staminali neuronali e microglia : cross - talk in modello in vitro di neuroinfiammazione ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7547.
Texte intégralFabbri, Roberta. « Dispositivi biomedici avanzati per il controllo selettivo della funzionalità di cellule cerebrali non neuronali ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19539/.
Texte intégralMARACCHIONI, ALESSIA. « Il danno mitocondriale modula lo splicing alternativo in cellule neuronali : implicazioni per la neurodegenerazione ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/851.
Texte intégralMitochondrial damage is linked to many neurodegenerative deseases, such as Parkinson, Alzheimer and Amyotrophic Lateral Sclerosis. These diseases are linked to changes in the splicing pattern of individual mRNAs. Here, we test the hypothesis that mitochondrial damage modulates alternative splicing, not only of a few mRNAs, but in a general manner. We incubated cultured human neuroblastoma cells with the chemical agent paraquat (a neurotoxin that interferes with mitochondrial function, causing energy deficit and oxidative stress) and analysed the splicing pattern of 13 genes by RT-PCR. For each alternatively spliced mRNA, we observed a dose and time dependent increase of the smaller isoforms. In contrast, splicing of all constitutive exons we monitored did not change after paraquat treatment. In addition, we prove that the modulation of alternative splicing by using different drugs correlates with ATP depletion, not with oxidative stress. Such drastic changes in alternative splicing haven’t been observed in cell lines of non-neuronal origin, suggesting a selective susceptibility of neuronal cells to modulation of splicing. Since a significant percentage of all mammalian mRNAs undergoes alternative splicing, we predict that mitochondrial failure will unbalance a large number of isoform equilibriums, thus permitting an important contribution to neurodegeneration. To identify possible drug targets, we tried to understand which is the signal trasduction trasmitting the mitochondrial damage to the splicing machinery. Two classes of proteins determine splice site selection: the hnRNP and the SR proteins. Both of them are phosphorylated and phosphorylation is important for their activity. We have purified hnRNPs and SR proteins from both paraquat-treated and human neuroblastoma control cells and we have studied them with a sub-proteomic approach. While the maps of paraquat-treated and control hnRNPs do not show up significant modifications, the SR proteins appear hypophosphorylated and downregulated by paraquat treatment. Finally, using different inhibitors involving different pathways in the cell, we demonstrate that calcium has a role in the signal trasduction that we are observing. The obtained data are not yet conclusive, but certainly have shown us a correlation between the neurodegeneration and Alternative Splicing. They have laid down the foundation for understanding the way by which the Alternative Splicing is modulated in neurons depending on external stimuli.
Padovan, Marco. « Interfacce nanostrutturate, dispositivi ottici ed elettronici per lo studio della fisiologia di cellule cerebrali non neuronali ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16293/.
Texte intégralTorricella, Giulia. « Bioelettronica organica : Nuovi approcci tecnologici per la stimolazione e la rilevazione della comunicazione di cellule neuronali ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8520/.
Texte intégralNizzardo, M. « UTILIZZO E CONFRONTO TRA CELLULE STAMINALI NEURONALI DI DIVERSA ORIGINE : EFFICACIA TERAPEUTICA IN UN MODELLO MURINO DI ATROFIA MUSCOLARE SPINALE ». Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/157862.
Texte intégralMERLO, SARA. « Effetti degli estrogeni sul differenziamento e sulla neurodegenerazione in sistemi neuronali in vitro ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2004. http://hdl.handle.net/2108/208233.
Texte intégralThe aim of the present study was the identification of a role for estrogen receptor (ER) in neurodevelopment and neurodegeneration, focusing on the involvement of glial cells. Estrogen is in fact known to affect development, maturation and differentiation of neurons in the central nervous system and its receptors exhibit a peak of expression during early phases of neurodevelopment. The subventricular zone of the adult mouse brain is a source of progenitor cells which can be grown as neurospheres in a chemically defined medium supplemented with epidermal growth factor (EGF), and are able to differentiate into neurons and glia when plated on laminin in the absence of EGF. The present study has indicated that ERs are expressed by both floating and adherent neurospheres, with ER showing a peak of expression during the earlier phases of neurosphere differentiation (6-24 hrs). Treatment with 10 nM 17-Estradiol (17-E2) did not significantly affect proliferation in floating neurospheres, but modified progenitor differentiation as early as 6 hours after plating on laminin, with a marked increase in the percentage of PSA-NCAM-positive neuroblasts, and later on at 3 days post-plating with an increase in MAP2-positive neurons. Treatment with 17-E2 also increased the number of GFAP-positive cells and the levels of GFAP protein with a major effect at 24 hours. In a parallel study, the ability of glia to mediate the neuroprotective effect of estrogen has been evaluated. 17-E2 is known to exert neuroprotective activity also against ß-amyloid (ßAP). To evaluate the involvement of astroglia in this effect, the conditioned medium from astrocytes preexposed to 17-E2 for 4 h was transferred to pure rat cortical neurons challenged with 25M AP25-35 for 24 h. The results obtained have shown an increased viability of cortical neurons. This effect is not modified by treatment with the estrogen receptor antagonist ICI 182,780 added directly to neurons. TGF-1 has been identified as the soluble factor responsible for 17-E2-induced neuroprotection. Accordingly, the intracellular and released levels of TGF-1 are increased by 17-E2 treatment, and the intracellular content of TGF-1 in immunopositive cells is reduced, suggesting that 17-E2 stimulates mainly the release of the cytokine. Finally, incubation with a neutralizing anti-TGF-1 antibody significantly modifies the decrease in neuronal death induced by 17-E2 -treated astrocyte-conditioned medium. Taken together these results point to a key role for estrogen receptor both in neurodevelopment and neurodegeneration and identify glia as a major target for estrogen action.
Mastromauro, Michela Pia. « La Bioelettronica Organica : approcci tecnologici per la registrazione, stimolazione e la modulazione di segnali elettrofisiologici di cellule neuronali per finalità terapeutiche nell'ambito della medicina neuro-rigenerativa ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Trouver le texte intégralRonsisvalle, Nicole Victoria. « Effetti protettivi del 1-(3',4'-Dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclo-propanecarboxylic Acid (CHF5074) su cellule neuronali sottoposte a stimoli tossici in vitro ». Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1114.
Texte intégralBOVIO, FEDERICA. « The cadmium altered oxidative homeostasis leads to energetic metabolism rearrangement, Nrf2 activation with increased GSH production and reduced SOD1 activity in neural cells ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/309982.
Texte intégralThe heavy metal cadmium is a widespread toxic pollutant, released into the environment mainly by anthropogenic activities. Human exposure can occur through different sources: occupationally or environmentally, with its uptake through inhalation of polluted air, cigarette smoking or ingestion of contaminated food and water. It mainly enters the human body through the respiratory and the gastrointestinal tract and it accumulates in liver and kidneys. Brain is also a target of cadmium toxicity, since this toxicant may enter the central nervous system by increasing blood brain barrier permeability or through the olfactory nerves. In fact, cadmium exposure has been related to impaired functions of the nervous system and to neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS). ALS is a fatal motor neuron pathology with the 90-95% of ALS cases being sporadic (sALS), while the remaining 5-10% of familial onset (fALS); among fALS, the 15-20% is attributed to mutations in superoxide dismutase 1 (SOD1). SOD1 is an antioxidant protein responsible for superoxide anions disruption and it is a homodimeric metalloenzyme of 32 kDa mainly located in the cytoplasm, with each monomer binding one catalytic copper ion and one structural zinc ion within a disulfide bonded conformer. Since oxidative stress is one of the major mechanisms of cadmium induced toxicity and an alteration of oxidative homeostasis, through depletion of antioxidant defences, is responsible for a plethora of adverse outcoming mainly leading to cell death; we focused on cadmium effect (1) on the energetic metabolism in human neuroblastoma SH-SY5Y cell line, (2) on the oxidative defences responses in differentiated human LUHMES neural cell line and (3) on the function of human SOD1 in a three models approach (recombinant protein in E. coli, in SH-SY5Y cell line and in the nematode Caenorhabditis elegans). The evaluation of energetic metabolism of SH-SY5Y neural cells treated with sub-lethal CdCl2 doses for 24 hours, showed an increase in glycolysis compared to control. This shift to anaerobic metabolism has been confirmed by both glycolytic parameters and greater ATP production from glycolysis than oxidative phosphorylation, index of less mitochondrial functionality in cadmium treated cells. Regarding the fuel oxidation cadmium caused an increase in glutamine dependency and a specular reduction in the fatty acids one, without altering the glucose dependency. Moreover, we observed an increase in total GSH, in the GSSG/GSH ratio and in lipid peroxidation, all index of an altered oxidative homeostasis better investigated in LUHMES cells. In this model a 24h cadmium administration enhanced the total GSH content at the lower doses, at which also activates Nrf2 through a better protein stabilization via p21 and P-Akt. The metal adverse effects on cell viability can be rescued by GSH addition and by cadmium treatment in astrocytes- or microglia-conditioned medium. In the latter cases the total GSH level remains comparable to untreated cells even at higher CdCl2 concentrations. Finally, SOD1 catalytical activity has been investigated in the presence of cadmium. The first evaluation of this metal combined with fixed copper and/or zinc on the recombinant GST-SOD1, expressed in E. coli BL21, showed a dose-dependent reduction in SOD1 activity only when copper is added to cellular medium, while the expression remains always constant. Similar results were obtained in SH-SY5Y cell line, in which SOD1 enzymatic activity decreased in a dose- and time-dependent way after cadmium treatment for 24 and 48 hours, without altering its expression; as well as in the Caenorhabditis elegans model, where a 16 hours cadmium treatment caused a 25% reduction only in SOD1 activity. In conclusion, cadmium caused a shift to anaerobiosis, a Nrf2 activation, with increased GSH production, and a reduction in SOD1 activity.
Livres sur le sujet "Cellule neuronali"
1935-, Jacklet Jon W., dir. Neuronal and cellular oscillators. New York : Marcel Dekker, 1989.
Trouver le texte intégralM, Baudry, Thompson Richard F et Davis Joel L. 1942-, dir. Synaptic plasticity : Molecular, cellular, and functional aspects. Cambridge, Mass : MIT Press, 1993.
Trouver le texte intégralEhrlich, Yigal H., dir. Molecular and Cellular Mechanisms of Neuronal Plasticity. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4869-0.
Texte intégralNguyen, Laurent, et Simon Hippenmeyer, dir. Cellular and Molecular Control of Neuronal Migration. Dordrecht : Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7687-6.
Texte intégralGregory, Bock, O'Connor Maeve et Ciba Foundation, dir. Selective neuronal death. Chichester : Wiley, 1987.
Trouver le texte intégralT, Roska, dir. Cellular neural networks and visual computing : Foundation and applications. Cambridge : Cambridge University Press, 2002.
Trouver le texte intégralC, O'Neill, et Anderton B, dir. Neuronal signal transduction and Alzheimer's disease. London : Portland Press, 2001.
Trouver le texte intégralA, Boulton A., Baker Glen B. 1947- et Walz Wolfgang, dir. The Neuronal microenvironment. Clifton, N.J : Humana Press, 1988.
Trouver le texte intégralTime to eat : Links between neuronal function and cellular phagocytosis. [New York, N.Y.?] : [publisher not identified], 2015.
Trouver le texte intégralWalkinshaw, Gail. An investigation into cellular and molecular mechanisms of neurotoxin-induced neuronal celldeath. Manchester : University of Manchester, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Cellule neuronali"
Goldman, Jennifer S., et Timothy E. Kennedy. « Neuronal Domains ». Dans Cellular Domains, 371–90. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015759.ch22.
Texte intégralGustafsson, L. E., C. U. Wiklund, N. P. Wiklund et L. Stelius. « Subclassification of Neuronal Adenosine Receptors ». Dans Purines in Cellular Signaling, 200–205. New York, NY : Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3400-5_30.
Texte intégralBruzzone, Matteo, Enrico Chiarello, Andrea Maset, Aram Megighian, Claudia Lodovichi et Marco dal Maschio. « Light-Based Neuronal Circuit Probing in Living Brains at High Resolution : Constraints and Layouts for Integrating Neuronal Activity Recording and Modulation in Three Dimensions ». Dans Neuromethods, 75–100. New York, NY : Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_3.
Texte intégralSotelo, J. R., J. M. Verdes, A. Kun, J. C. Benech, J. R. A. Sotelo Silveira et A. Calliari. « Regulation of Neuronal Protein Synthesis by Calcium ». Dans Calcium and Cellular Metabolism, 125–42. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9555-4_11.
Texte intégralHara, Hirokazu, et Elias Aizenman. « Oxidative Stress and Neuronal Zinc Signaling ». Dans Zinc Signals in Cellular Functions and Disorders, 55–87. Tokyo : Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55114-0_4.
Texte intégralNakaishi, Hitoshi. « Functionally Distinct Oncogenes Differently Regulate Cellular Expression of Gangliosides ». Dans Gangliosides and Modulation of Neuronal Functions, 325–26. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71932-5_30.
Texte intégralTimofeev, Igor, Maxime E. Bonjean et Maksim Bazhenov. « Cellular Mechanisms of Thalamocortical Oscillations in the Sleeping Brain ». Dans Neuronal Oscillations of Wakefulness and Sleep, 119–70. New York, NY : Springer New York, 2020. http://dx.doi.org/10.1007/978-1-0716-0653-7_5.
Texte intégralAugusti-Tocco, G., S. Biagioni, M. Plateroti, G. Scarsella et A. L. Vignoli. « Cellular and Molecular Aspects of Neuronal Differentiation ». Dans The Changing Visual System, 311–18. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3390-0_23.
Texte intégralNeumann, H., et H. Wekerle. « Neuronal Modulation of the Immune Response in Nervous Tissue : Implications for Neurodegenerative and Autoimmune Diseases ». Dans Cellular Therapy, 119–28. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03509-2_8.
Texte intégralMoorhouse, A. A., et J. Nabekura. « Cellular Mechanisms of Neuronal Cl− Homeostasis and its Modulation by Neuronal Injury ». Dans Inhibitory Synaptic Plasticity, 123–34. New York, NY : Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6978-1_9.
Texte intégralActes de conférences sur le sujet "Cellule neuronali"
Shin, Sangho, Davide Sacchetto, Yusuf Leblebici et Sung-Mo Steve Kang. « Neuronal spike event generation by memristors ». Dans 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2012). IEEE, 2012. http://dx.doi.org/10.1109/cnna.2012.6331427.
Texte intégralRoukes, Michael L. « The Integrated Neurophotonics Paradigm ». Dans CLEO : Applications and Technology. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.ath4i.6.
Texte intégralLi, Lulu, Alexander Davidovich, Jennifer Schloss, Uday Chippada, Rene Schloss, Noshir Langrana et Martin Yarmush. « Control of Neural Lineage Differentiation in an Alginate Encapsulation Microenvironment via Cellular Aggregation ». Dans ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206496.
Texte intégralWagner, Omer, Alexander K. Winkel, Eva Kreysing et Kristian Franze. « Multimodal imaging using combined Optical Fourier Ptychographic Microscopy and Atomic Force Microscopy for biological measures ». Dans CLEO : Applications and Technology. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu5i.3.
Texte intégralMe´ndez-Rojas, Miguel A., Claudia Cravioto Guzman et Oscar Arias-Carrion. « Synthesis and Chemical Functionalization of Ferromagnetic Nanoparticles to Manipulate Stem Cells Using External Magnetic Fields ». Dans ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30188.
Texte intégralLi, Lulu, Rene Schloss, Noshir Langrana et Martin Yarmush. « Effects of Encapsulation Microenvironment on Embryonic Stem Cell Differentiation ». Dans ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192587.
Texte intégralSilvestri, Ludovico, Nikita Rudinskiy, Marco Paciscopi, Marie Caroline Müllenbroich, Irene Costantini, Leonardo Sacconi, Paolo Frasconi, Bradley T. hyman et Francesco S. Pavone. « Brain-wide charting of neuronal activation maps with cellular resolution ». Dans Bio-Optics : Design and Application. Washington, D.C. : OSA, 2015. http://dx.doi.org/10.1364/boda.2015.brm3b.6.
Texte intégralHyttinen, Jari, Barbara Genocchi, Annika Ahtiainen, Jarno M. A. Tanskanen, Kerstin Lenk et Michael Taynnan Barros. « Astrocytes in modulating subcellular, cellular and intercellular molecular neuronal communication ». Dans NANOCOM '21 : The Eighth Annual ACM International Conference on Nanoscale Computing and Communication. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3477206.3477460.
Texte intégralSilvestri, Ludovico, Nikita Rudinskiy, Marco Paciscopi, Marie Caroline Müllenbroich, Irene Costantini, Leonardo Sacconi, Paolo Frasconi, Bradley T. Hyman et Francesco S. Pavone. « Brain-wide charting of neuronal activation maps with cellular resolution ». Dans Optics and the Brain. Washington, D.C. : OSA, 2015. http://dx.doi.org/10.1364/brain.2015.brm3b.6.
Texte intégralBrattain, Laura J., Brian A. Telfer, Siddharth Samsi, Taeyun Ku, Heejin Choi et Kwanghun Chung. « Automated dense neuronal fiber tracing and connectivity mapping at cellular level ». Dans 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE, 2017. http://dx.doi.org/10.1109/isbi.2017.7950531.
Texte intégral