Littérature scientifique sur le sujet « Cell Immunotherapy »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cell Immunotherapy ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cell Immunotherapy"
McKee, Mark, D. « T cell immunotherapy ». Frontiers in Bioscience 12, no 1 (2007) : 919. http://dx.doi.org/10.2741/2114.
Texte intégralSabado, Rachel Lubong, et Nina Bhardwaj. « Dendritic cell immunotherapy ». Annals of the New York Academy of Sciences 1284, no 1 (mai 2013) : 31–45. http://dx.doi.org/10.1111/nyas.12125.
Texte intégralOsada, Takuya, Timothy M. Clay, Christopher Y. Woo, Michael A. Morse et H. Kim Lyerly. « Dendritic Cell-Based Immunotherapy ». International Reviews of Immunology 25, no 5-6 (janvier 2006) : 377–413. http://dx.doi.org/10.1080/08830180600992456.
Texte intégralVelardi, Andrea. « NK cell adoptive immunotherapy ». Blood 105, no 8 (15 avril 2005) : 3006. http://dx.doi.org/10.1182/blood-2005-01-0322.
Texte intégralSabado, Rachel L., Sreekumar Balan et Nina Bhardwaj. « Dendritic cell-based immunotherapy ». Cell Research 27, no 1 (27 décembre 2016) : 74–95. http://dx.doi.org/10.1038/cr.2016.157.
Texte intégralLee, Jong-Hoon, et Harvey G. Klein. « Mononuclear Cell Adoptive Immunotherapy ». Hematology/Oncology Clinics of North America 8, no 6 (décembre 1994) : 1203–22. http://dx.doi.org/10.1016/s0889-8588(18)30130-8.
Texte intégralFeldmann, Marc, Carl H. June, Andrew McMichael, Ravinder Maini, Elizabeth Simpson et James N. Woody. « T-cell-targeted immunotherapy ». Immunology Today 13, no 3 (janvier 1992) : 84–85. http://dx.doi.org/10.1016/0167-5699(92)90146-x.
Texte intégralRazzak, Mina. « New cell-based immunotherapy ? » Nature Reviews Urology 9, no 3 (21 février 2012) : 122. http://dx.doi.org/10.1038/nrurol.2012.18.
Texte intégralBakulesh, Khamar. « Immunotherapy of Bladder Cancer ». Cancer Medicine Journal 3, no 2 (31 décembre 2020) : 49–62. http://dx.doi.org/10.46619/cmj.2020.3-1020.
Texte intégralY, Elshimali. « Chimeric Antigen Receptor T-Cell Therapy (Car T-Cells) in Solid Tumors, Resistance and Success ». Bioequivalence & ; Bioavailability International Journal 6, no 1 (2022) : 1–6. http://dx.doi.org/10.23880/beba-16000163.
Texte intégralThèses sur le sujet "Cell Immunotherapy"
Opel, Cary F. (Cary Francis). « T cell mediated combination immunotherapy ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/107075.
Texte intégralCataloged from PDF version of thesis. "September 2015."
Includes bibliographical references (pages 128-131).
Immunotherapy is a broad treatment strategy that harnesses the immune system to fight off a particular condition or disease. Cancer immunotherapy is the specific application of agents designed to interact or stimulate the immune system to fight off tumors. Treatments as diverse as passive antibody therapy, cytokine support, and comprehensive adoptive T cell transfer make up the broad field of immunotherapeutics. Due to the naturally complex interactions inherent in the immune system, there are many options for therapeutic intervention, however, this same complexity makes it extremely difficult to optimize treatment strategies. Because of this, research into developing new immunotherapies, optimizing existing immunotherapies, and designing new combinations of immunotherapies is still critical in the fight against cancer. Although there have been ongoing successes of individual immunotherapies in the clinic, the complexity and interdependence of the immune system suggests that any single therapeutic intervention will be insufficient to reject established malignancies. Increased interest in applying combinations of immunotherapies in the clinic requires more thorough preclinical work to guide the designs of these studies. The work presented in this thesis focuses on developing combinations of immunotherapies to treat preclinical models of cancer, as well as studying the underlying mechanism of tumor control. T cells are potent mediators of cytotoxicity and when properly used in adoptive cell transfer (ACT) protocols, can be highly effective in the treatment of cancer. ACT consists of three steps: 1) harvesting and purifying T cells from the patient, 2) enriching or modifying the T cells to become tumor specific, and 3) reinfusing the T cells along with supporting therapies. Therapies given alongside ACT are often adjuvants designed to enhance T cell response. However, focusing therapies only on enhancing the activity of the transferred T cells may miss out on synergistic effects when other parts of the immune system are simultaneously engaged. To study the effect of adjuvant therapy on ACT, a preclinical murine model was analyzed. Large, established B16F10 tumors were controlled when pmel-1 T cells were given with a course of supportive MSA-IL2 cytokine therapy, however, no cures were observed. When a course of TA99 antibody therapy was added alongside ACT, a high rate of cures was observed. Flow cytometry of both circulating and tumor infiltrating pmel-1 cells showed massive expansion and activation. Additionally, tumor infiltration of neutrophils, NK cells, and DCs were greatly enhanced by adjuvant therapy. DCs in the tumor draining lymph nodes were largely unchanged by the therapies. Engagement of the humoral immune response was also observed in both treatment cases. Surprisingly, antibody therapy did not substantially alter any of the mechanistic observations made in this study, despite its critical role in achieving cures of tumors. While ACT is a highly effective therapy, its clinical applicability is hindered by the complexity of performing T cell transplants and manipulations. A more optimal solution would involve purely injectable treatments that could elicit the same level of tumor specific T cell response in conjunction with potent recruitment of the adaptive immune system against tumors. To achieve this, working in collaboration with the Irvine Lab, combinations of immunotherapy using up to four different components were tested to identify critical factors in the successful rejection of established tumors in preclinical models. The four components of tumor targeting antibody, cytokine support, checkpoint blockade, and cancer vaccine acted synergistically to reject tumors from B16F10, TC-1, and DD-Her2/neu cell lines. The cancer vaccine elicited large numbers of tumor-specific T cells, and acted as a replacement for ACT. By analyzing subset combinations of this full treatment, the roles of each therapeutic component were identified. CD8 T cells and cross-presenting DCs were critical to curing subcutaneous tumors. Cytokine therapy was indispensable for effective tumor control, promoted immune cell infiltration into the tumor, and led to an increase in DCs. In combination with the other therapies, vaccination against a tumor antigen elicited a strong immunological memory response that was able to reject subsequent tumor rechallenge, as well as promote antigen spreading to new epitopes. Successful combinations were demonstrated to be dependent on the recruitment of both the adaptive and innate branches of the immune system. Finally, the efficacy of this combination of treatments was demonstrated by controlling the growth of induced tumors in a BRaf/Pten model. Combination immunotherapy promises a future where synergistic treatments are specifically tailored to individual cancers leading to highly effective responses. However, determining the optimal combination of therapies, the complexity of dosing strategies, and the availability of targeted treatments are all barriers that must be overcome. The analysis presented here will make a significant contribution to the body of knowledge on immunotherapy as it has shown the importance of combining orthogonal immunotherapies in order to get durable cures to established tumors. These results will hopefully encourage combinations of orthogonally acting therapies based on T cells to achieve stronger clinical responses. By determining the necessary requirements for a strong, synergistic response to tumorous growths, more effective combination immunotherapy protocols may be designed in the future.
by Cary F. Opel.
Ph. D.
Goddard, Ruth Victoria. « Generation of in vitro B-cell chronic lymphocytic leukaemia-specific T cell responses using dendritic cells ». Thesis, University of Plymouth, 2002. http://hdl.handle.net/10026.1/2695.
Texte intégralWurzenberger, Cornelia. « Dendritic cell vaccines in tumor immunotherapy ». Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-95530.
Texte intégralHarley, Eric. « Modeling Cancer Cell Response to Immunotherapy ». Scholarship @ Claremont, 2004. https://scholarship.claremont.edu/hmc_theses/164.
Texte intégralLute, Kenneth D. « Costimulation and tolerance in T cell immunotherapy ». Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141850521.
Texte intégralWhite, Matthew. « T-cell cancer immunotherapy : characterisation and manipulation of tumour antigen-specific T cell subsets for adoptive immunotherapy in mouse models ». Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9148.
Texte intégralCabezón, Cabello Raquel. « Tolerogenic dendritic cell-based immunotherapy in Crohn’s disease ». Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/310604.
Texte intégralEsta tesis doctoral estudia el proceso de generación de células dendríticas tolerogénicas en grado clínico, con el objetivo de establecer un protocolo destinado al tratamiento de la enfermedad de Crohn. El estudio realizado ha permitido la caracterización de dichas células y sus propiedades tolerogénicas, incluyendo la descripción novedosa de un marcador de células tolerogénicas y el estudio de sus propiedades funcionales relacionadas con la inducción de tolerancia.
Vertuani, Simona. « Strategies to optimize T cell-based cancer immunotherapy / ». Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-891-6/.
Texte intégralAdikari, Sanjaya Bandara. « Cytokine-modulated dendritic cell immunotherapy in autoimmune diseases / ». Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-149-0/.
Texte intégralJackson, Andrew Mark. « Cytokines, cell adhesion molecules and bladder cancer immunotherapy ». Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/19867.
Texte intégralLivres sur le sujet "Cell Immunotherapy"
Katz, Samuel G., et Peter M. Rabinovich, dir. Cell Reprogramming for Immunotherapy. New York, NY : Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0203-4.
Texte intégralDebruyne, Frans M. J., Ronald M. Bukowski, J. Edson Pontes et Pieter H. M. de Mulder, dir. Immunotherapy of Renal Cell Carcinoma. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75853-9.
Texte intégral1955-, Klein Eric A., Bukowski Ronald M et Finke James H. 1944-, dir. Renal cell carcinoma : Immunotherapy and cellular biology. New York : Marcel Dekker, Inc., 1993.
Trouver le texte intégral1950-, Morstyn George, et Sheridan William 1954-, dir. Cell therapy : Stem cell transplantation, gene therapy, and cellular immunotherapy. Cambridge : Cambridge University Press, 1996.
Trouver le texte intégralDebruyne, F. M. J., 1941- et Ackermann R. 1941-, dir. Immunotherapy of renal cell carcinoma : Clinical and experimental developments. Berlin : Springer-Verlag, 1991.
Trouver le texte intégralBurkhard, Ludewig, et Hoffmann Matthias W, dir. Adoptive immunotherapy : Methods and protocols. Totowa, N.J : Humana Press, 2005.
Trouver le texte intégralN, Winter Jane, dir. Blood stem cell transplantation. Boston : Kluwer Academic Publishers, 1997.
Trouver le texte intégralM, Bukowski Ronald, Finke James H. 1944- et Klein Eric A. 1955-, dir. Biology of renal cell carcinoma. New York : Springer-Verlag, 1995.
Trouver le texte intégralDonnadieu, Emmanuel, dir. Defects in T Cell Trafficking and Resistance to Cancer Immunotherapy. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42223-7.
Texte intégral1956-, Zhang Jingwu, et Cohen Irun R, dir. T-cell vaccination. New York : Nova Biomedical Books, 2008.
Trouver le texte intégralChapitres de livres sur le sujet "Cell Immunotherapy"
Shaffer, Donald R., Conrad Russell Y. Cruz et Cliona M. Rooney. « Adoptive T Cell Transfer ». Dans Cancer Immunotherapy, 47–70. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4732-0_3.
Texte intégralWilke, Cailin Moira, Shuang Wei, Lin Wang, Ilona Kryczek, Jingyuan Fang, Guobin Wang et Weiping Zou. « T Cell and Antigen-Presenting Cell Subsets in the Tumor Microenvironment ». Dans Cancer Immunotherapy, 17–44. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4732-0_2.
Texte intégralGottschalk, S., C. M. Bollard, K. C. Straathof, C. U. Louis, B. Savoldo, G. Dotti, M. K. Brenner, H. E. Heslop et C. M. Rooney. « T Cell Therapies ». Dans Immunotherapy in 2020, 69–82. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/2789_2007_039.
Texte intégralDeschoolmeester, Vanessa, David Kerr, Patrick Pauwels et Jan B. Vermorken. « Cell Based Therapy : Modified Cancer Cells ». Dans Immunotherapy for Gastrointestinal Cancer, 23–46. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43063-8_2.
Texte intégralDeSantes, Kenneth, et Kimberly McDowell. « NK Cell and NKT Cell Immunotherapy ». Dans Immunotherapy for Pediatric Malignancies, 175–215. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43486-5_9.
Texte intégralMotohashi, Shinichiro. « NKT Cell-Based Immunotherapy ». Dans Immunotherapy of Cancer, 75–86. Tokyo : Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55031-0_6.
Texte intégralPlautz, Gregory E., Peter A. Cohen, David E. Weng et Suyu Shu. « T-Cell Adoptive Immunotherapy ». Dans Handbook of Cancer Vaccines, 359–76. Totowa, NJ : Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-680-5_24.
Texte intégralGottschalk, Stephen, et Cliona M. Rooney. « Adoptive T-Cell Immunotherapy ». Dans Epstein Barr Virus Volume 2, 427–54. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22834-1_15.
Texte intégralBerger, T. G., et E. S. Schultz. « Dendritic Cell-Based Immunotherapy ». Dans Current Topics in Microbiology and Immunology, 163–97. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-06508-2_8.
Texte intégralFrançois, Moïra, et Jacques Galipeau. « Mesenchymal Stromal Cells : An Emerging Cell-Based Pharmaceutical ». Dans Experimental and Applied Immunotherapy, 127–48. Totowa, NJ : Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-980-2_6.
Texte intégralActes de conférences sur le sujet "Cell Immunotherapy"
Dimitriu, Gabriel, Vasile lucian Boiculese, Mihaela Moscalu et Cristina gena Dascalu. « GLOBAL SENSITIVITY ANALYSIS APPLIED TO A CANCER IMMUNOTHERAPY MODEL ». Dans eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-177.
Texte intégralPerica, Karlo, Joan G. Bieler, Andrés De León Medero, Yen-Ling Chiu, Malarvizhi Durai, Michaela Niemöller, Mario Assenmacher, Anne Richter, Mathias Oelke et Jonathan Schneck. « Abstract 4531 : Nanoscale Artificial Antigen Presenting Cells for T Cell Immunotherapy. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4531.
Texte intégralChen, Hsiu-hung, et Dayong Gao. « Quantitative Measurements of Cryobiological Characteristics of Mouse Dendritic Cells and Its Evaluation Using Commercialized Coulter Counter ». Dans ASME 2009 4th Frontiers in Biomedical Devices Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/biomed2009-83067.
Texte intégralThielemans, Kris. « Abstract B36 : mRNA and dendritic cell based immunotherapy ». Dans Abstracts : AACR Special Conference : Tumor Immunology and Immunotherapy : A New Chapter ; December 1-4, 2014 ; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b36.
Texte intégralLuo, Danhua. « Chimeric Antigen Receptor T-Cell Immunotherapy for Cancer ». Dans BIBE2020 : The Fourth International Conference on Biological Information and Biomedical Engineering. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3403782.3403802.
Texte intégralSchmidl, C., D. Riegel, E. Romero-Fernández, M. Simon, A. Adenugba, K. Singer, R. Mayr et al. « P02.09 Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating T cells ». Dans iTOC9 – 9th Immunotherapy of Cancer Conference, September 22–24, 2022 – Munich, Germany. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-itoc9.28.
Texte intégralMiao, Yuxuan Phoenix, Cynthia Truong et Elaine Fuchs. « Abstract NG13 : Decoding the stem cells-immune cell dialogues for cancer immunotherapy ». Dans Proceedings : AACR Annual Meeting 2021 ; April 10-15, 2021 and May 17-21, 2021 ; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-ng13.
Texte intégralXu, Yuexin, Alicia J. Morales, Andrea M. H. Towlerton, Edus H. Warren et Scott S. Tykodi. « Abstract A36 : Single-cell characterization of tumor-infiltrating T cells from renal cell carcinoma ». Dans Abstracts : AACR Special Conference on Tumor Immunology and Immunotherapy ; November 17-20, 2019 ; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a36.
Texte intégralBahavar, Cody F., Feifan Zhou, Aamr M. Hasanjee, Elivia Layton, Anh Lam, Wei R. Chen et Melville B. Vaughan. « The effects of laser immunotherapy on cancer cell migration ». Dans SPIE BiOS, sous la direction de Wei R. Chen. SPIE, 2016. http://dx.doi.org/10.1117/12.2216592.
Texte intégralJensen, Michael. « Abstract IA22 : Advanced T cell engineering for cancer immunotherapy. » Dans Abstracts : AACR Special Conference on Tumor Immunology : Multidisciplinary Science Driving Basic and Clinical Advances ; December 2-5, 2012 ; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-ia22.
Texte intégralRapports d'organisations sur le sujet "Cell Immunotherapy"
Mathis, James M. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer. Fort Belvoir, VA : Defense Technical Information Center, décembre 2007. http://dx.doi.org/10.21236/ada491946.
Texte intégralMathis, James M. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer. Fort Belvoir, VA : Defense Technical Information Center, décembre 2008. http://dx.doi.org/10.21236/ada518244.
Texte intégralMathis, James M. Dendritic Cell-Based Genetic Immunotherapy for Ovarian Cancer. Fort Belvoir, VA : Defense Technical Information Center, décembre 2005. http://dx.doi.org/10.21236/ada462730.
Texte intégralGilboa, Eli. Immunotherapy of Breast with Tumor RNA Transfected Dendritic Cell Vaccines. Fort Belvoir, VA : Defense Technical Information Center, septembre 2001. http://dx.doi.org/10.21236/ada398155.
Texte intégralBaar, Joseph. Dendritic Cell-Based Immunotherapy of Breast Cancer : Modulation by CpG. Fort Belvoir, VA : Defense Technical Information Center, septembre 2004. http://dx.doi.org/10.21236/ada431640.
Texte intégralEmily Morton, Emily Morton. T Cell Vaccines as an Immunotherapy for Type 1 Diabetes. Experiment, janvier 2015. http://dx.doi.org/10.18258/4443.
Texte intégralBaar, Joseph. Dendritic Cell-Based Immunotherapy of Breast Cancer : Modulation by CpG DNA. Fort Belvoir, VA : Defense Technical Information Center, septembre 2002. http://dx.doi.org/10.21236/ada412155.
Texte intégralBeuneu, Helene, Sandra Demaria et Michael Dustin. Visualizing Breast Cancer Cell Interaction with Tumor-Infiltrating Lymphocytes During Immunotherapy. Fort Belvoir, VA : Defense Technical Information Center, avril 2013. http://dx.doi.org/10.21236/ada577265.
Texte intégralBrink, Marcel van den. Immunotherapy of Prostate Cancer With Genetically Enhanced Tumor-Specific T-Cell Precursors. Fort Belvoir, VA : Defense Technical Information Center, juin 2011. http://dx.doi.org/10.21236/ada549122.
Texte intégralCooper, Laurence, et Rita Young. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical, Hematompoietic Progenitor-Cell Transplant. Fort Belvoir, VA : Defense Technical Information Center, mai 2008. http://dx.doi.org/10.21236/ada487262.
Texte intégral