Livres sur le sujet « Cell adhesion and migration »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Cell adhesion and migration.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs livres pour votre recherche sur le sujet « Cell adhesion and migration ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

McGrath, John. CELL ADHESION AND MIGRATION IN SKIN DISEASE. Sous la direction de Jonathan Barker. Abingdon, UK : Taylor & Francis, 2001. http://dx.doi.org/10.4324/9780203304594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Ning. Role of cell adhesion molecules in melanoma transendothelial migration. Ottawa : National Library of Canada, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hennigan, Shauna M. The effects of transendothelial migration on neutrophil function and programmed cell death. Dublin : University College Dublin, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Behrens, Jürgen, et W. James Nelson, dir. Cell Adhesion. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-68170-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

C, Beckerle Mary, dir. Cell adhesion. New York : Oxford University Press, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bongrand, Pierre, Per M. Claesson et Adam S. G. Curtis, dir. Studying Cell Adhesion. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-03008-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Berezin, Vladimir, et Peter S. Walmod, dir. Cell Adhesion Molecules. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8090-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hemler, Martin E., et Enrico Mihich, dir. Cell Adhesion Molecules. Boston, MA : Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2830-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pierre, Bongrand, Claesson P. M et Curtis A. S. G, dir. Studying cell adhesion. Berlin : Springer-Verlag, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

G, Curtis A. S., Lackie J. M et Council of Europe, dir. Measuring cell adhesion. Chichester, West Sussex, England : Wiley, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

R, Preedy Victor, dir. Adhesion molecules. Enfield, N.H : Science Publishers, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Preedy, Victor R. Adhesion molecules. Enfield, N.H : Science Publishers, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Pierre, Bongrand, dir. Physical basis of cell-cell adhesion. Boca Raton, Fla : CRC Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

R, Hart I., Hogg Nancy et Imperial Cancer Research Fund (Great Britain), dir. Cell adhesion and cancer. Plainview, NY : Cold Spring Harbor Laboratory Press, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Patrick, Nott, et Temple Matthew, dir. New cell adhesion research. Hauppauge, NY : Nova Science Publishers, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

D, Richardson Peter, et Steiner Manfred, dir. Principles of cell adhesion. Boca Raton : CRC Press, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

D, Shimizu Yoji Ph, dir. Lymphocyte adhesion molecules. Austin : R.G. Landes Co., 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Media, Springer Science+Business, dir. Adhesion protein protocols. New York : Humana Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

International, Conference on Structure Function and Regulation of Molecules Involved in Leukocyte Adhesion (1st 1988 Titisee Germany). Leukocyte adhesion molecules. New York : Springer-Verlag, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Elisabetta, Dejana, et Corada Monica, dir. Adhesion protein protocols. Totowa, N.J : Humana Press, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Guan, Jun-Lin. Cell Migration. New Jersey : Humana Press, 2004. http://dx.doi.org/10.1385/1592598609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Wells, Claire M., et Maddy Parsons, dir. Cell Migration. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-207-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Gautreau, Alexis, dir. Cell Migration. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7701-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Pigott, Rod. The adhesion molecules. London : Academic Press London, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

A, Roberts J., et Gonzalez-Carranza Zinnia, dir. Plant cell separation and adhesion. Oxford : Blackwell, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Buttenschön, Andreas, et Thomas Hillen. Non-Local Cell Adhesion Models. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67111-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Shimaoka, Motomu, dir. Integrin and Cell Adhesion Molecules. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-166-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Roberts, Jeremy A., et Zinnia Gonzalez-Carranza, dir. Plant Cell Separation and Adhesion. Oxford, UK : Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470988824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

E, Jones Gareth, Wigley C. B, Warn Richard et Society for Experimental Biology (Great Britain), dir. Cell behaviour : Adhesion and motility. Cambridge, UK : Published for the Society for Experimental Biology by the Company of Biologists Limited, Department of Zoology, University of Cambridge, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

C, Adams Josephine, et American Society for Cell Biology., dir. Methods in cell-matrix adhesion. San Diego : Academic Press, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Jun-Lin, Guan, dir. Signaling through cell adhesion molecules. Boca Raton, Fla : CRC Press, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Joan, Marsh, Goode Jamie et Ciba Foundation, dir. Cell adhesion and human disease. Chichester : Wiley, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

A, Horton Michael, dir. Molecular biology of cell adhesion molecules. Chichester : Wiley, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

A, Horton Michael, dir. Adhesion receptors as therapeutic targets. Boca Raton, Fla : CRC Press, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Russell, Stevenson Bruce, Gallin Warren J et Paul David Louis, dir. Cell-cell interactions : A practical approach. Oxford : IRL Press at Oxford University Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

David, Garrod, dir. Structure and function in cell adhesion. London : Portland Press, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

G, Gahmberg C., dir. Leukocyte adhesion : Basic and clinical aspects : proceedings of the 6th Novo Nordisk Foundation Symposium 'Leukocyte Adhesion', Copenhagen, Denmark, 29 June-1 July 1992. Amsterdam : Excerpta Medica, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

McGrath, John, et Jonathan Barker. Cell Adhesion and Migration in Skin Disease (Cell Adhesion and Communication). CRC, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

McGrath, John, et Jonathan Barker. Cell Adhesion and Migration in Skin Disease. Taylor & Francis Group, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

McGrath, John, et Jonathan Barker. Cell Adhesion and Migration in Skin Disease. Taylor & Francis Group, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

McGrath, John, et Jonathan Barker. Cell Adhesion and Migration in Skin Disease. Taylor & Francis Group, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Mierke, Claudia Tanja, et Akihiko Ito, dir. Editor’s Pick 2021 : Highlights in Cell Adhesion and Migration. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-782-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Matsui, Takaaki, Mitsugu Fujita et Akihiko Ito, dir. Cell Adhesion and Migration in the Development of Multicellular Organisms. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-694-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Badimon, Lina, et Gemma Vilahur. Atherosclerosis and thrombosis. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0040.

Texte intégral
Résumé :
Atherosclerosis is the main underlying cause of heart disease. The continuous exposure to cardiovascular risk factors induces endothelial activation/dysfunction which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. This results in the accumulation of lipids (low-density lipoprotein particles) in the extracellular matrix and the triggering of an inflammatory response. Accumulated low-density lipoprotein particles suffer modifications and become pro-atherogenic, enhancing leucocyte recruitment and further transmigration across the endothelium into the intima. Infiltrated monocytes differentiate into macrophages which acquire a specialized phenotypic polarization (protective or harmful), depending on the stage of the atherosclerosis progression. Once differentiated, macrophages upregulate pattern recognition receptors capable of engulfing modified low-density lipoprotein, leading to foam cell formation. Foam cells release growth factors and cytokines that promote vascular smooth muscle cell migration into the intima, which then internalize low-density lipoprotein via low-density lipoprotein receptor-related protein-1 receptors. As the plaque evolves, the number of vascular smooth muscle cells decline, whereas the presence of fragile/haemorrhagic neovessels increases, promoting plaque destabilization. Disruption of this atherosclerotic lesion exposes thrombogenic surfaces that initiate platelet adhesion, activation, and aggregation, as well as thrombin generation. Both lipid-laden vascular smooth muscle cells and macrophages release the procoagulant tissue factor, contributing to thrombus propagation. Platelets also participate in progenitor cell recruitment and drive the inflammatory response mediating the atherosclerosis progression. Recent data attribute to microparticles a potential modulatory effect in the overall atherothrombotic process. This chapter reviews our current understanding of the pathophysiological mechanisms involved in atherogenesis, highlights platelet contribution to thrombosis and atherosclerosis progression, and provides new insights into how atherothrombosis may be modulated.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Badimon, Lina, et Gemma Vilahur. Atherosclerosis and thrombosis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199687039.003.0040_update_001.

Texte intégral
Résumé :
Atherosclerosis is the main underlying cause of heart disease. The continuous exposure to cardiovascular risk factors induces endothelial activation/dysfunction which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. This results in the accumulation of lipids (low-density lipoprotein particles) in the intimal layer and the triggering of an inflammatory response. Accumulated low-density lipoprotein particles attached to the extracellular matrix suffer modifications and become pro-atherogenic, enhancing leucocyte recruitment and further transmigration across the endothelium into the intima. Infiltrated pro-atherogenic monocytes (mainly Mon2) differentiate into macrophages which acquire a specialized phenotypic polarization (protective/M1 or harmful/M2), depending on the stage of the atherosclerosis progression. Once differentiated, macrophages upregulate pattern recognition receptors capable of engulfing modified low-density lipoprotein, leading to foam cell formation. Foam cells release growth factors and cytokines that promote vascular smooth muscle cell migration into the intima, which then internalize low-density lipoproteins via low-density lipoprotein receptor-related protein-1 receptors becoming foam cells. As the plaque evolves, the number of vascular smooth muscle cells decline, whereas the presence of fragile/haemorrhagic neovessels and calcium deposits increases, promoting plaque destabilization. Disruption of this atherosclerotic lesion exposes thrombogenic surfaces rich in tissue factor that initiate platelet adhesion, activation, and aggregation, as well as thrombin generation. Platelets also participate in leucocyte and progenitor cell recruitment are likely to mediate atherosclerosis progression. Recent data attribute to microparticles a modulatory effect in the overall atherothrombotic process and evidence their potential use as systemic biomarkers of thrombus growth. This chapter reviews our current understanding of the pathophysiological mechanisms involved in atherogenesis, highlights platelet contribution to thrombosis and atherosclerosis progression, and provides new insights into how atherothrombosis may be prevented and modulated.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Badimon, Lina, et Gemma Vilahur. Atherosclerosis and thrombosis. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199687039.003.0040_update_002.

Texte intégral
Résumé :
Atherosclerosis is the main underlying cause of heart disease. The continuous exposure to cardiovascular risk factors induces endothelial activation/dysfunction which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. This results in the accumulation of lipids (low-density lipoprotein particles) in the intimal layer and the triggering of an inflammatory response. Accumulated low-density lipoprotein particles attached to the extracellular matrix suffer modifications and become pro-atherogenic, enhancing leucocyte recruitment and further transmigration across the endothelium into the intima. Infiltrated pro-atherogenic monocytes (mainly Mon2) differentiate into macrophages which acquire a specialized phenotypic polarization (protective/M1 or harmful/M2), depending on the stage of the atherosclerosis progression. Once differentiated, macrophages upregulate pattern recognition receptors capable of engulfing modified low-density lipoprotein, leading to foam cell formation. Foam cells release growth factors and cytokines that promote vascular smooth muscle cell migration into the intima, which then internalize low-density lipoproteins via low-density lipoprotein receptor-related protein-1 receptors becoming foam cells. As the plaque evolves, the number of vascular smooth muscle cells decline, whereas the presence of fragile/haemorrhagic neovessels and calcium deposits increases, promoting plaque destabilization. Disruption of this atherosclerotic lesion exposes thrombogenic surfaces rich in tissue factor that initiate platelet adhesion, activation, and aggregation, as well as thrombin generation. Platelets also participate in leucocyte and progenitor cell recruitment are likely to mediate atherosclerosis progression. Recent data attribute to microparticles a modulatory effect in the overall atherothrombotic process and evidence their potential use as systemic biomarkers of thrombus growth. This chapter reviews our current understanding of the pathophysiological mechanisms involved in atherogenesis, highlights platelet contribution to thrombosis and atherosclerosis progression, and provides new insights into how atherothrombosis may be prevented and modulated.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Cell Adhesion. Elsevier, 1996. http://dx.doi.org/10.1016/s1569-2558(08)x6005-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Colman, D. R. Cell Adhesion. Elsevier Science & Technology Books, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

W. James Nelson,J. Rgen Behrens. Cell Adhesion. Springer, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Behrens, Jürgen, et Warren James Nelson. Cell Adhesion. Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie