Articles de revues sur le sujet « Ceb6 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Ceb6.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Ceb6 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Cui, Xuehong, Jinming Zhu, Ketong Luo et Jianlie Liang. « Phase relationships in the Ce–Nd–B system at 773 K ». International Journal of Materials Research 111, no 6 (1 juillet 2020) : 526–32. http://dx.doi.org/10.1515/ijmr-2020-1110610.

Texte intégral
Résumé :
Abstract Phase relationships in the Ce-Nd-B ternary system at 773 K were investigated by means of X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy techniques. Six borides, i. e. CeB4, CeB6, NdB4, NdB6, NdB66 and Nd2B5 are confirmed in this work. No ternary compound was observed. CeB4 and NdB4 were discovered to form the continuous solid solution phase (Ce,Nd)B4, CeB6 and NdB6 also form the solid solution phase (Ce,Nd)B6. The maximum solid solubility of Ce in (Ce,Nd)2B5 phase is 46.5 at.%. The isothermal section of the Ce-Nd-B ternary system at 773 K consists of 3 three-phase regions, 7 two-phase regions and 7 single- phase regions.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schlösser, Andreas, Jens Jantos, Karl Hackmann et Hildgund Schrempf. « Characterization of the Binding Protein-Dependent Cellobiose and Cellotriose Transport System of the Cellulose Degrader Streptomyces reticuli ». Applied and Environmental Microbiology 65, no 6 (1 juin 1999) : 2636–43. http://dx.doi.org/10.1128/aem.65.6.2636-2643.1999.

Texte intégral
Résumé :
ABSTRACT Streptomyces reticuli has an inducible ATP-dependent uptake system specific for cellobiose and cellotriose. By reversed genetics a gene cluster encoding components of a binding protein-dependent cellobiose and cellotriose ABC transporter was cloned and sequenced. The deduced gene products comprise a regulatory protein (CebR), a cellobiose binding lipoprotein (CebE), two integral membrane proteins (CebF and CebG), and the NH2-terminal part of an intracellular β-glucosidase (BglC). The gene for the ATP binding protein MsiK is not linked to the ceb operon. We have shown earlier that MsiK is part of two different ABC transport systems, one for maltose and one for cellobiose and cellotriose, in S. reticuli and Streptomyces lividans. Transcription of polycistronic cebEFG and bglC mRNAs is induced by cellobiose, whereas the cebR gene is transcribed independently. Immunological experiments showed that CebE is synthesized during growth with cellobiose and that MsiK is produced in the presence of several sugars at high or moderate levels. The described ABC transporter is the first one of its kind and is the only specific cellobiose/cellotriose uptake system of S. reticuli, since insertional inactivation of the cebEgene prevents high-affinity uptake of cellobiose.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Peng, Ke Wu, He Li Ma, Chang Wei Gong, Yan Wang et Zhao Tan. « Preparation of B4C-CeB6 Porous Composites by Hot Pressed Sintering ». Advanced Materials Research 1061-1062 (décembre 2014) : 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.120.

Texte intégral
Résumé :
B4C-CeB6 porous composites are prepared by hot pressed sintering between 1900°C and 2000°C, and mechanical properties and phase composition of B4C-CeB6 porous composites were tested. The results show that the porous rate of B4C-CeB6 porous composites ranges between 30%-48% at sintering temperate 1900°C-2000°C. Porous rate of B4C-CeB6 porous composites is decreased with temperature be increased. Flexibility strength of B4C-CeB6 porous composites is greatly improved compared with that of monolithic porous boron carbide. B4C react with CeO2 to completely form CeB6 in porous composites.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Peng, Ke Wu, Peng Zhang, He Li Ma et Ren Chen. « Study on Reaction Products of B4C-CeB6/Al Composites ». Advanced Materials Research 391-392 (décembre 2011) : 683–87. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.683.

Texte intégral
Résumé :
B4C-CeB6/Al composite was fabricated by pressureless infiltration technology. It is composed of the phases of Al, B4C, AlB2, Al3BC and CeB6, and Al4C3 is not found because of the existence of CeB6. It could identify that AlB2, CeB6, and Al3BC were formed as interfacial reaction products. Al3BC is formed on the interface of B4C and Al; therefore it connects the aluminum with the ceramic toughly. AlB2 as strip crystal is formed between B4C and Al, which has higher fracture toughness.CeB6 particles in B4C grain boundary are discovered by TEM, which caused intercrystalline rupture. Grain toughening and reinforcing, crack deflection, crack bridging is the main toughening and reinforcing mechanisms of B4C-CeB6/Al composites.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Peng, Ke Wu, He Li Ma, Chang Wei Gong, Ren Chen et Zhao Tan. « Microstructure and Reinforcing Mechanisms of Boron Carbide–Cerium Boride Porous Composites ». Advanced Materials Research 1061-1062 (décembre 2014) : 104–8. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.104.

Texte intégral
Résumé :
boron carbide–cerium boride porous composites are prepared by hot pressed sintering, and mechanical properties and microstructure of boron carbide–cerium boride porous composites were tested. The results show that Flexibility strength of B4C-CeB6 porous composites is greatly improved compared with that of monolithic porous boron carbide. B4C react with CeO2 to completely form CeB6 in porous composites. CeB6 particles in B4C grain boundary are produced by in-situ reaction. The presence of CeB6 reinforcing particles could also suppress growth of B4C grains which normally leads to improved strength.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Junsuo, Zhongqi Dong et Kewu Pen. « Chemical reactions in the preparation of B4C-CeO2 composites ». E3S Web of Conferences 185 (2020) : 04056. http://dx.doi.org/10.1051/e3sconf/202018504056.

Texte intégral
Résumé :
The B4C-CeO2 composites were prepared by pressure-free infiltration method. The chemical reactions and products of CeO2 and B4C in the temperature range of 20~1500 were studied by TG-DTA and X-ray diffraction analysis. The results show that the B4C and CeO2 reaction products are CeB4, B, CeBO3 in 550~1240 and the product of CeO2 reaction with B4C is CeB6 in the temperature range of 1240~1300℃.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dou, Zhi He, Ting An Zhang et Ji Cheng He. « Preparation and Characterization of Cerium Hexaboride Nanometer Powders by Combustion Synthesis ». Advanced Materials Research 236-238 (mai 2011) : 1670–74. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.1670.

Texte intégral
Résumé :
High-purity and homogeneous powders of CeB6 with nanometer size were prepared by combustion synthesis and subsequent acid- leaching. The effects of reactant ratio on the phase and morphology of the combustion product were discussed. The combustion product and leached product were analyzed by XRD, SEM and EDS. The results indicate that the combustion product consists of CeB6, MgO and Mg3B2O6. The combustion products are denser and less layered when the Mg content and KClO3 content increase. The content of CeB6 in the combustion product could be enhanced with increasing the excessive content of Mg. The purity of CeB6 is higher than 99.0% and its particles are smaller than 150nm.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sera, Masafumi. « Elastic Constants of CeB6 ». Journal of the Physical Society of Japan 69, no 7 (15 juillet 2000) : 2299–304. http://dx.doi.org/10.1143/jpsj.69.2299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hanzawa, Katsurou. « Hyperfine Interactions in CeB6 ». Journal of the Physical Society of Japan 69, no 2 (15 février 2000) : 510–25. http://dx.doi.org/10.1143/jpsj.69.510.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

J. Ohkawa, Fusayoshi. « Orbital Antiferromagnetism in CeB6 ». Journal of the Physical Society of Japan 54, no 10 (15 octobre 1985) : 3909–14. http://dx.doi.org/10.1143/jpsj.54.3909.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Loewenhaupt, M., J. M. Carpenter et C. K. Loong. « Magnetic excitations in CeB6 ». Journal of Magnetism and Magnetic Materials 52, no 1-4 (octobre 1985) : 245–49. http://dx.doi.org/10.1016/0304-8853(85)90270-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ağaoğulları, Duygu, Özge Balcı, Nazlı Akçamlı, Challapalli Suryanarayana, İsmail Duman et Mustafa Öveçoğlu. « Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride ». Processing and Application of Ceramics 13, no 1 (2019) : 32–43. http://dx.doi.org/10.2298/pac1901032a.

Texte intégral
Résumé :
This study reports on the mechanochemical synthesis (MCS) and consolidation of nanostructured CeB6 powders of high purity. CeB6 powders were prepared via MCS by milling CeO2, B2O3 and Mg powders in a high-energy ball mill for different milling times. The effects of milling time on the formation, microstructure and thermal behaviour of the synthesized powders were investigated and the optimum MCS duration was determined. Purified powders were obtained after HCl leaching by removing MgO by-product. The prepared powders were characterized by a number of techniques including X-ray diffraction, stereomicroscopy, scanning and transmission electron microscopy coupled with energy dispersive spectrometry, differential scanning calorimetry, atomic absorption spectrometry, particle size analysis, surface area analysis and vibrating sample magnetometry. The high-purity CeB6 powders having an average particle size of 86 nm were consolidated by cold-pressing followed by pressureless sintering at 1700 ?C for 5 h. The bulk CeB6 specimen was investigated for its microstructure, density, electrical resistivity, surface roughness and some mechanical properties (microhardness and wear behaviour). The relative density, electrical resistivity, microhardness and wear rate of the bulk CeB6 were determined as 95.2%TD, 57.50 ?W?cm, 11.65GPa and 1.46 ? 10?4 mm3/N?m, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ohkochi, Takuo, Takayuki Muro, Eiji Ikenaga, Kazuaki Togawa, Akira Yasui, Masato Kotsugi, Masaki Oura et Hitoshi Tanaka. « Multilateral surface analysis of the CeB6 electron-gun cathode used at SACLA XFEL ». Journal of Synchrotron Radiation 28, no 6 (18 octobre 2021) : 1729–36. http://dx.doi.org/10.1107/s1600577521009656.

Texte intégral
Résumé :
The CeB6(001) single crystal used as a cathode in a low-emittance electron gun and operated at the free-electron laser facility SACLA was investigated using cathode lens electron microscopy combined with X-ray spectroscopy at SPring-8 synchrotron radiation facility. Multilateral analysis using thermionic emission electron microscopy, low-energy electron microscopy, ultraviolet and X-ray photoemission electron microscopy and hard X-ray photoemission spectroscopy revealed that the thermionic electrons are emitted strongly and evenly from the CeB6 surface after pre-activation treatment (annealing at 1500°C for >1 h) and that the thermionic emission intensity as well as elemental composition vary between the central area and the edge of the old CeB6 surface.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wang, Jian, Chuanxi Zhu, Fanshun Meng, Gaobin Liu, Yue Gu, Hongde Wang, Shoushan Gao et Kaiming Wang. « Work functions of metal hexaborides : Density functional study ». Modern Physics Letters B 32, no 02 (20 janvier 2018) : 1850007. http://dx.doi.org/10.1142/s0217984918500070.

Texte intégral
Résumé :
We present a systematic theoretical investigation on the work functions of five closed surfaces of metal hexaborides including LaB6, BaB6, CaB6, CeB6, SrB6 and SmB6. The results are in a close agreement with available experimental measurements and previous theoretical findings. The variations of the work function display a good trend. For BaB6, CaB6 and SrB6, the increasing order is [Formula: see text](100) [Formula: see text](110) [Formula: see text](211) [Formula: see text](112) [Formula: see text](111). For CeB6, LaB6, and SmB6, the sequence is somewhat different: [Formula: see text](100) [Formula: see text](211) [Formula: see text](112) [Formula: see text](110) [Formula: see text](111). The work function changes with the metal hexaborides series have also been discussed. The increasing order of the (100) surface is LaB6(100) [Formula: see text] CeB6(100) [Formula: see text] SmB6(100) [Formula: see text] SrB6(100) [Formula: see text] BaB6(100) [Formula: see text] CaB6(100). The orders for the (110) and (111) surface are similar: BaB6(110, 111) [Formula: see text] SrB6(110, 111) [Formula: see text] LaB6(110, 111) [Formula: see text] CeB6(110, 111) [Formula: see text] CaB6(110, 111) [Formula: see text] SmB6(110, 111). For the (112) and (211) surface, the sequence is BaB6(112, 211) [Formula: see text] LaB6(112, 211) [Formula: see text] CeB6(112, 211) [Formula: see text] SrB6(112, 211) [Formula: see text] SmB6(112, 211) [Formula: see text] CaB6(112, 211).
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kushkhov, H. B., M. K. Vindizheva, R. A. Mukozheva, A. H. Abazova et M. R. Tlenkopachev. « Electrochemical Synthesis of CeB6 Nanotubes ». Journal of Materials Science and Chemical Engineering 02, no 01 (2014) : 57–62. http://dx.doi.org/10.4236/msce.2014.21010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ignatov, M. I., A. V. Bogach, S. V. Demishev, V. V. Glushkov, A. V. Levchenko, Yu B. Paderno, N. Yu Shitsevalova et N. E. Sluchanko. « Anomalous charge transport in CeB6 ». Journal of Solid State Chemistry 179, no 9 (septembre 2006) : 2805–8. http://dx.doi.org/10.1016/j.jssc.2006.01.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Demishev, S. V., A. V. Semeno, A. V. Bogach, Yu B. Paderno, N. Yu Shitsevalova et N. E. Sluchanko. « Antiferro-quadrupole resonance in CeB6 ». Physica B : Condensed Matter 378-380 (mai 2006) : 602–3. http://dx.doi.org/10.1016/j.physb.2006.01.160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hart, I., P. Meeson, P. A. Probst et M. Springford. « Magnetostriction of CeCu6 and CeB6 ». Physica B : Condensed Matter 199-200 (avril 1994) : 20–22. http://dx.doi.org/10.1016/0921-4526(94)91723-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Uimin, Gennadi. « Inelastic neutron scattering in CeB6 ». Physics Letters A 215, no 1-2 (mai 1996) : 97–102. http://dx.doi.org/10.1016/0375-9601(96)00217-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ha, Taejun, Young-Su Lee, Joonho Lee et Jae-Hyeok Shim. « Mechanochemical synthesis of CeB6 nanopowder ». Ceramics International 45, no 15 (octobre 2019) : 19442–46. http://dx.doi.org/10.1016/j.ceramint.2019.06.199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lovesey, Stephen W. « X-ray diffraction by CeB6 ». Journal of Physics : Condensed Matter 14, no 17 (18 avril 2002) : 4415–23. http://dx.doi.org/10.1088/0953-8984/14/17/314.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Schlottmann, P. « Electron spin resonance in CeB6 ». Journal of Applied Physics 113, no 17 (7 mai 2013) : 17E109. http://dx.doi.org/10.1063/1.4793776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Effantin, J. M., J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii et T. Kasuya. « Magnetic phase diagram of CeB6 ». Journal of Magnetism and Magnetic Materials 47-48 (février 1985) : 145–48. http://dx.doi.org/10.1016/0304-8853(85)90382-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Peng, Ke Wu, Nian Wen Pu, He Li Ma, Ren Chen et Yan Wang. « Mechanical Properties and Microstructure of Boron Carbide-Cerium Boride Composite ». Advanced Materials Research 482-484 (février 2012) : 1551–55. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.1551.

Texte intégral
Résumé :
The mechanical properties of B4C-CeB6 composite prepared by hot pressed sintering method were tested. The study shows: the hardness of B4C-CeB6 composite increases with the content of cerium boride. When the content of the cerium boride is 4wt%, the hardness reaches its supreme value of 31.98Gpa,its hardness is improved nearly 21.09% compared to monolithic boron carbide. The content of the cerium boride does not affect greatly on flexibility strength. However,it gives much effect on fracture toughness. When the content of the cerium boride is 4wt%, the fracture toughness reaches its supreme value of 5.06MPa.m1/2, which is improved nearly 37.5% compared to monolithic boron carbide materials. The main fracture way of B4C-CeB6 composite is intercrystalline rupture, while the transcrystalline rupture is minor. It appears that this change of fracture mode gives rise to the improvement of the fracture toughness.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kim, Kyung Mo, Eun Hee Lee et Uh Chul Kim. « SCC Inhibitors for SG Tube Materials in Nuclear Power Plants ». Materials Science Forum 534-536 (janvier 2007) : 717–20. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.717.

Texte intégral
Résumé :
Several chemicals were studied to suppress the damage due to stress corrosion cracking (SCC) of steam generator (SG) tubes in nuclear power plants. The polarization curves showed that the electrochemical properties on the surface of Alloy 600 MA changed with the addition of inhibitors. The SCC tests were conducted by using a m-RUB specimen in a 10% NaOH solution at a temperature of 315°C. The effects on the SCC of the compounds, TiO2, TyzorLA and CeB6, were tested for several types of SG tubing materials. The test with the addition of TiO2 (P25) and CeB6 showed an effect in decreasing the SCC for the SG tubing material. However, CeB6 caused some more SCC for Alloy 800. The penetration property into a crevice of the inhibitors was investigated by using Alloy 600 specimens with different gap sizes and an AES analysis was performed on the oxide layer of the specimen.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kasuya, Tadao. « Mechanisms of Anomalous NMR in CeB6 ». Journal of the Physical Society of Japan 66, no 9 (15 septembre 1997) : 2950–51. http://dx.doi.org/10.1143/jpsj.66.2950.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Thalmeier, Peter, Ryousuke Shiina, Hiroyuki Shiba et Osamu Sakai. « Theory of Multipolar Excitations in CeB6 ». Journal of the Physical Society of Japan 67, no 7 (15 juillet 1998) : 2363–71. http://dx.doi.org/10.1143/jpsj.67.2363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Martin, M. J., J. Bonde, W. Gekelman et P. Pribyl. « A resistively heated CeB6 emissive probe ». Review of Scientific Instruments 86, no 5 (mai 2015) : 053507. http://dx.doi.org/10.1063/1.4921838.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ali, Naushad, et S. B. Woods. « Transport properties of Kondo lattice CeB6 ». Journal of Applied Physics 57, no 8 (15 avril 1985) : 3182–84. http://dx.doi.org/10.1063/1.335143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bogach, A. V., V. V. Glushkov, S. V. Demishev, N. A. Samarin, Yu B. Paderno, A. V. Dukhnenko, N. Yu Shitsevalova et N. E. Sluchanko. « Magnetoresistance and magnetization anomalies in CeB6 ». Journal of Solid State Chemistry 179, no 9 (septembre 2006) : 2819–22. http://dx.doi.org/10.1016/j.jssc.2006.01.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kwon, Y. S., S. Kimura, T. Nanba, S. Kunii, M. Ikezawa, T. Suzuki et T. Kasuya. « LOW ENERGY OPTICAL EXCITATION IN CeB6 ». Le Journal de Physique Colloques 49, no C8 (décembre 1988) : C8–737—C8–738. http://dx.doi.org/10.1051/jphyscol:19888335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Terzioglu, C., O. Ozturk, A. Kilic, R. G. Goodrich et Z. Fisk. « Magnetic and electronic measurements in CeB6 ». Journal of Magnetism and Magnetic Materials 298, no 1 (mars 2006) : 33–37. http://dx.doi.org/10.1016/j.jmmm.2005.03.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zou, Chun Yun, Yan Ming Zhao et Jun Qi Xu. « Synthesis of single-crystalline CeB6 nanowires ». Journal of Crystal Growth 291, no 1 (mai 2006) : 112–16. http://dx.doi.org/10.1016/j.jcrysgro.2006.02.042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Igarashi, Jun-ichi, et Tatsuya Nagao. « Resonant X-Ray Scattering from CeB6 ». Journal of the Physical Society of Japan 71, no 7 (15 juillet 2002) : 1771–79. http://dx.doi.org/10.1143/jpsj.71.1771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Saitoh, Masahiro, Noriko Okada, Eiji Nishibori, Hiroyuki Takagiwa, Tetsuya Yokoo, Masakazu Nishi, Kazuhisa Kakurai et al. « Anomalous Spin Density Distribution in CeB6 ». Journal of the Physical Society of Japan 71, no 10 (15 octobre 2002) : 2369–72. http://dx.doi.org/10.1143/jpsj.71.2369.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Akgün, Barış, Naci Sevinç, H. Erdem Çamurlu et Yavuz Topkaya. « Mechanochemical and combustion synthesis of CeB6 ». International Journal of Materials Research 104, no 4 (11 avril 2013) : 403–7. http://dx.doi.org/10.3139/146.110868.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Peysson, Y., C. Ayache, B. Salce, J. Rossat-Mignod, S. Kunii et T. Kasuya. « Thermal properties of CeB6 and LaB6 ». Journal of Magnetism and Magnetic Materials 47-48 (février 1985) : 63–65. http://dx.doi.org/10.1016/0304-8853(85)90358-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lüthi, B., S. Blumenröder, B. Hillebrands, E. Zirngiebl, G. Güntherodt et K. Winzer. « Elastic and magnetoelastic effects in CeB6 ». Journal of Magnetism and Magnetic Materials 47-48 (février 1985) : 321–22. http://dx.doi.org/10.1016/0304-8853(85)90429-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Peysson, Y., C. Ayache, B. Salce, S. Kunii et T. Kasuya. « Thermal conductivity of CeB6 and LaB6 ». Journal of Magnetism and Magnetic Materials 59, no 1-2 (mai 1986) : 33–40. http://dx.doi.org/10.1016/0304-8853(86)90007-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Hanzawa, Katsurou, et Takemi Yamada. « Origin of Anisotropic RKKY Interactions in CeB6 ». Journal of the Physical Society of Japan 88, no 12 (15 décembre 2019) : 124710. http://dx.doi.org/10.7566/jpsj.88.124710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kasuya, Tadao. « Mechanism of Anomalous NMR in CeB6 ; II ». Journal of the Physical Society of Japan 67, no 4 (15 avril 1998) : 1494–95. http://dx.doi.org/10.1143/jpsj.67.1494.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Shiina, Ryousuke, Osamu Sakai, Hiroyuki Shiba et Peter Thalmeier. « Interplay of Field-Induced Multipoles in CeB6 ». Journal of the Physical Society of Japan 67, no 3 (15 mars 1998) : 941–49. http://dx.doi.org/10.1143/jpsj.67.941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Hanzawa, Katsurou. « Preference of the Quadrupolar Ordering in CeB6 ». Journal of the Physical Society of Japan 69, no 7 (15 juillet 2000) : 2121–30. http://dx.doi.org/10.1143/jpsj.69.2121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ignatov, M. I., A. V. Bogach, V. V. Glushkov, S. V. Demishev, Yu B. Paderno, N. Yu Shitsevalova et N. E. Sluchanko. « The regimes of charge transport in CeB6 ». Physica B : Condensed Matter 378-380 (mai 2006) : 780–81. http://dx.doi.org/10.1016/j.physb.2006.01.284.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

ZHAO, Yanming, Liusheng OUYANG, Chunyun ZOU, Junqi XU, Youzhong DONG et Qinghua FAN. « Field emission from single-crystalline CeB6 nanowires ». Journal of Rare Earths 28, no 3 (juin 2010) : 424–27. http://dx.doi.org/10.1016/s1002-0721(09)60126-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Haworth, C. J., H. Aoki, M. Takashita, T. Terashima, T. Matsumoto, N. Sato et S. Kunii. « The Fermi surface of CeB6 under pressure ». Journal of Magnetism and Magnetic Materials 177-181 (janvier 1998) : 369–70. http://dx.doi.org/10.1016/s0304-8853(97)00978-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ōnuki, Y., T. Komatsubara, P. H. P. Reinders et M. Springford. « De Haas-Van Alphen effect in CeB6 ». Physica B : Condensed Matter 163, no 1-3 (avril 1990) : 100–102. http://dx.doi.org/10.1016/0921-4526(90)90137-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Feyerherm, R., A. Amato, F. N. Gygax, A. Schenck, Y. Ōnuki et N. Sato. « Problems of the magnetic structure of CeB6 ». Journal of Magnetism and Magnetic Materials 140-144 (février 1995) : 1175–76. http://dx.doi.org/10.1016/0304-8853(94)01281-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Givord, F., J.-X. Boucherle, P. Burlet, B. Gillon et S. Kunii. « Non-anomalous magnetization density distribution in CeB6 ». Journal of Physics : Condensed Matter 15, no 19 (7 mai 2003) : 3095–106. http://dx.doi.org/10.1088/0953-8984/15/19/311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Magishi, Ko-ichi, Masayuki Kawakami, Takahito Saito, Kuniyuki Koyama, Kiyoshi Mizuno et Satoru Kunii. « NMR in the antiferromagnetic phases of CeB6 ». Physica B : Condensed Matter 281-282 (juin 2000) : 548–49. http://dx.doi.org/10.1016/s0921-4526(99)01070-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie