Littérature scientifique sur le sujet « CDC25Mm »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « CDC25Mm ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "CDC25Mm"
Ferguson, Angela M., Lynn S. White, Peter J. Donovan et Helen Piwnica-Worms. « Normal Cell Cycle and Checkpoint Responses in Mice and Cells Lacking Cdc25B and Cdc25C Protein Phosphatases ». Molecular and Cellular Biology 25, no 7 (1 avril 2005) : 2853–60. http://dx.doi.org/10.1128/mcb.25.7.2853-2860.2005.
Texte intégralLammer, C., S. Wagerer, R. Saffrich, D. Mertens, W. Ansorge et I. Hoffmann. « The cdc25B phosphatase is essential for the G2/M phase transition in human cells ». Journal of Cell Science 111, no 16 (15 août 1998) : 2445–53. http://dx.doi.org/10.1242/jcs.111.16.2445.
Texte intégralCen, H., A. G. Papageorge, W. C. Vass, K. E. Zhang et D. R. Lowy. « Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor ». Molecular and Cellular Biology 13, no 12 (décembre 1993) : 7718–24. http://dx.doi.org/10.1128/mcb.13.12.7718-7724.1993.
Texte intégralCen, H., A. G. Papageorge, W. C. Vass, K. E. Zhang et D. R. Lowy. « Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor. » Molecular and Cellular Biology 13, no 12 (décembre 1993) : 7718–24. http://dx.doi.org/10.1128/mcb.13.12.7718.
Texte intégralLindqvist, Arne, Helena Källström, Andreas Lundgren, Emad Barsoum et Christina Karlsson Rosenthal. « Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1–Cdk1 at the centrosome ». Journal of Cell Biology 171, no 1 (10 octobre 2005) : 35–45. http://dx.doi.org/10.1083/jcb.200503066.
Texte intégralWickramasinghe, D., S. Becker, M. K. Ernst, J. L. Resnick, J. M. Centanni, L. Tessarollo, L. B. Grabel et P. J. Donovan. « Two CDC25 homologues are differentially expressed during mouse development ». Development 121, no 7 (1 juillet 1995) : 2047–56. http://dx.doi.org/10.1242/dev.121.7.2047.
Texte intégralChen, Mei-Shya, Jonathan Hurov, Lynn S. White, Terry Woodford-Thomas et Helen Piwnica-Worms. « Absence of Apparent Phenotype in Mice Lacking Cdc25C Protein Phosphatase ». Molecular and Cellular Biology 21, no 12 (15 juin 2001) : 3853–61. http://dx.doi.org/10.1128/mcb.21.12.3853-3861.2001.
Texte intégralJacquet, Eric, Soria Baouz et Andrea Parmeggiani. « Characterization of mammalian C-CDC25Mm exchange factor and kinetic properties of the exchange reaction intermediate p21.cntdot.C-CDC25Mm ». Biochemistry 34, no 38 (septembre 1995) : 12347–54. http://dx.doi.org/10.1021/bi00038a031.
Texte intégralZhou, Xiaokun, Danping Lu, Wenxiang Yi et Dan Xu. « Downregulation of CDC25C in NPCs Disturbed Cortical Neurogenesis ». International Journal of Molecular Sciences 24, no 2 (12 janvier 2023) : 1505. http://dx.doi.org/10.3390/ijms24021505.
Texte intégralKang, Min, Aera Bang, Ok Choi et Seung Han. « Comparative analysis of two murine CDC25B isoforms ». Archives of Biological Sciences 69, no 1 (2017) : 35–44. http://dx.doi.org/10.2298/abs160315062k.
Texte intégralThèses sur le sujet "CDC25Mm"
BAOUZ, SORIA. « Caracterisation et regulation de cdc25mm, facteur d'echange gdp/gtp de souris des proteines ras ». Paris 6, 1998. http://www.theses.fr/1998PA066404.
Texte intégralMETALLI, DAVID. « Development of Cdc25Mn derivatives as anticancer agents ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7476.
Texte intégralThomas, Yann. « Etude de la régulation de la protéolyse de CDC25B1 ». Montpellier 2, 2009. http://www.theses.fr/2009MON20127.
Texte intégralCDC25 proteins are highly conserved dual specificity phosphatases that play an essential role by activating the CDK/Cyclin complexes all along the cell cycle. To restrain CDK/Cyclin activities, these phosphatases must be tightly regulated in terms of activity, localization and stability. One of the three mammalian members, CDC25B, is considered as the starter of the mitosis through the activation of CDK1/Cyclin B complexes at the centrosomes, at the G2-M transition. This protein is known to be degraded by the proteasome but the exact mechanisms involved in this process are still unclear. To obtain a deeper insight into the regulation of CDC25B stability, we have investigated the molecular determinants and the exact mechanisms involved in CDC25B degradation in vitro as well as in cellulo. Analysis of various mutants of CDC25B led us to identify the DDGFVD motif as a motif required for the interaction of CDC25B with the F-box protein TrCP. The lack of interaction causes a stabilisation of the phosphatase in metaphase-anaphase transition. This stabilisation entails a delay in mitotic exit and several cellular defects related to genetic instability, and the fragmentation of pericentriolar matrix during mitosis. Videomicroscopy's observations indicate that cells expressing the stabilized mutant of the CDC25B exhibit an increased mobility compared to cells expressing wild type protein. Since CDC25B is frequently overexpressed in many cancers cells and that a stabilisation of the protein entails genetic instability, we propose that in some cancers this overexpression could be a consequence of a lack of CDC25B degradation. A better understanding of mechanisms regulating CDC25B degradation could lead to new therapeutical approaches focused on the control of CDC25B stability
Scrivens, Paul James. « Regulation and chemotherapeutic targeting of human Cdc25A phosphatase ». Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103293.
Texte intégralSayegh, Raphael Santa Rosa. « Flexibilidade conformacional do domínio catalítico da fosfatase Cdc25B ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-22082016-080806/.
Texte intégralCdc25B phosphatase acts on the progression of cell cycle through the activation of Cdk/Cyclin complexes. Currently, the proposed structural models of Cdc25B catalytic domain lack the last 16 residues from the C-terminal region. This segment is important for protein substrate recognition and might be involved in small molecule binding to Cdc25B. Thus, the main goal of this thesis was to evaluate the conformational flexibility of the complete catalytic domain from Cdc25B through computer simulations and experimental nuclear magnetic resonance (NMR) measurements. Similarity between crystal and in solution structures was confirmed by the prediction of backbone φ/ψ dihedral angles from chemical shifts (CS) and by the agreement between observed and back-calculated residual dipolar couplings (RDC). 15N relaxation and RDC measurements pointed to the conformational disorder of the C-terminal region, in agreement with the X-ray diffraction experiment where this segment showed no electronic density. Comparison between experimental and predicted CS from long molecular dynamics (MD) simulations (6µs total running time) pointed to the presence of crystallographic artifacts, possible deficiencies in simulation force fields, inaccurate composition of the simulated system and conformational states visited by Cdc25B in solution that were not observed in the crystallographic geometry. Generally, CS predicted from simulations for the structural fluctuation of the disordered C-terminal region were in agreement with experimental values, suggesting that the simulations sampled the conformational states populated by this segment reasonably well. In particular, a cation-π contact not observed in the crystal structure between side chains of residue 550W from the disordered C-terminal tail and residue 482R from the protein core might be important in solution. This contact is also in agreement with experimental chemical shift perturbations (CSP) measured between complete and truncated constructs of Cdc25B catalytic domain. Therefore, the joint use of computer simulations and experimental measurements allowed the achievement of a more complete and realistic representation of the conformational flexibility of the Cdc25B catalytic domain in solution, including intramolecular contacts between the disordered C-terminal region and the protein core. This information might be used to obtain a conformational ensemble of Cdc25B.
Theis-Febvre, Nathalie. « REGULATION DE L'ACTIVITE ET DE LA LOCALISATION DES PHOSPHATASES CDC25B ». Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00010054.
Texte intégralAkhtar, Nazia. « Structural & ; biochemical characterisation of Cdc25C : a dual specificity phosphatase ». Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5602/.
Texte intégralMorris, May Catherine. « Régulation de la phosphatase double spécificité cdc25C humaine par phosphorylation ». Montpellier 1, 1997. http://www.theses.fr/1997MON1T021.
Texte intégralVidal-Fernandez, Anne. « Rôle et régulations de la phosphatase CDC25A dans les hémopathies malignes ». Toulouse 3, 2008. http://thesesups.ups-tlse.fr/412/.
Texte intégralThe CDC25A phosphatase activates cyclin-dependent kinase complexes, allowing timely ordered progression throughout the eukaryotic cell cycle. This phosphatase acts during the G1 phase and at the G1/S transition by activating the CDK2/cyclin E and CDK2/cyclin A complexes, and was also described as a mitotic regulator through dephosphorylation of the Cyclin B/CDK1 complex. Importantly, CDC25A is up-regulated in various cancers, and the molecular mechanisms leading to this up-regulation are far from being understood. First, we investigated the implication of CDC25A in adhesion-dependent proliferation of acute myeloid leukemia cells (AML). We observed an increased rate of proliferation of AML cells when adhered to fibronectin, concomitant with accelerated S phase entry and accumulation of CDC25A, in contrast to normal CD34+ cells, in which both CDC25A level and cell proliferation were decreased upon adhesion to fibronectine. Importantly, both CDC25A siRNA and a CDC25s pharmacological inhibitor impaired this adhesion-dependent proliferation. The PI3-Kinase/AKT pathway appears to be a major regulator of CDC25A stability in this system. These data suggest that the adhesion-dependent proliferation properties of hematopoïetic cells may be modified during leukemogenesis. We then investigated the status of CDC25A in other hematological malignancies such as Anaplastic Large Cell Lymphomas (ALCL) expressing the NPM-ALK oncogene, Chronic Myeloid Leukemia induced by the fusion protein BCR-ABL and AML expressing a mutated form of FLT3-receptor : FLT3-ITD. In these three models, CDC25A protein levels are abnormally increased by the presence of theses oncogenes and the PI3-Kinase pathway is also essential for this process. .
Manzanedo, Lopez Ana. « Élaboration et caractérisation de peptides inhibiteurs de l'interaction cycline B-cdc25C ». Montpellier 2, 2005. http://www.theses.fr/2005MON20196.
Texte intégralLivres sur le sujet "CDC25Mm"
Chen, Luping. Murine CDC25-related proteins : Activators of Ras. Ottawa : National Library of Canada, 1993.
Trouver le texte intégralIdentification of murine Cdc25 homologues expressed in the mitotic and meiotic cell cyles during gametogenesis and examination of their potential functions. 1996.
Trouver le texte intégralChapitres de livres sur le sujet "CDC25Mm"
van Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis et al. « CDC25Mm ». Dans Encyclopedia of Signaling Molecules, 364. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100221.
Texte intégralvan Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis et al. « CDC25L ». Dans Encyclopedia of Signaling Molecules, 364. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100220.
Texte intégralvan Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis et al. « CDC25 ». Dans Encyclopedia of Signaling Molecules, 364. New York, NY : Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100219.
Texte intégralGabrielli, Brian, et Andrew Burgess. « Cdc25 Family Phosphatases in Cancer ». Dans Protein Tyrosine Phosphatases in Cancer, 283–306. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3649-6_11.
Texte intégralRudolph, Johannes. « Targeting Cdc25 Phosphatases in Cancer Therapy ». Dans Checkpoint Controls and Targets in Cancer Therapy, 261–69. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-178-3_17.
Texte intégralNilsson, Ida, et Ingrid Hoffmann. « Cell cycle regulation by the Cdc25 phosphatase family ». Dans Progress in Cell Cycle Research, 107–14. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4253-7_10.
Texte intégralAlphey, Luke, Helen White-Cooper et David Glover. « The Meiotic Role of twine, A Drosophila Homologue of cdc25 ». Dans The Cell Cycle, 51–57. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2421-2_6.
Texte intégralSturani, E., R. Zippel, E. Martegani, M. Vanoni, C. Ferrari, P. Coccetti et L. Alberghina. « Further Characterization of CDC25 Mm , a Mammalian Activator of p21ras ». Dans Molecular Oncology and Clinical Applications, 147–51. Basel : Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-5663-8_17.
Texte intégralJessus, Catherine, et René Ozon. « Function and regulation of cdc25 protein phosphatase through mitosis and meiosis ». Dans Progress in Cell Cycle Research, 215–28. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1809-9_17.
Texte intégralGirard, Franck, Anne Fernandez et Ned Lamb. « cdc25 protein phosphatase in mammalian fibroblasts : cell cycle expression and intracellular localization ». Dans Tyrosine Phosphorylation/Dephosphorylation and Downstream Signalling, 347–50. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78247-3_44.
Texte intégralActes de conférences sur le sujet "CDC25Mm"
Shen, Tao, Hongyu Zhou et Shile Huang. « Abstract 3810 : Ciclopirox olamine downregulates Cdc25A expression in tumor cells ». Dans Proceedings : AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012 ; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3810.
Texte intégralRamadan, Stephanie, et Khaled Machaca. « Optimizing The Expression And Purification Of Eukaryotic Cdc25c In E. Coli ». Dans Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.hbpp0065.
Texte intégralYoshimi, Akihide, Takashi Toya, Masahito Kawazu, Toshihide Ueno, Ayato Tsukamoto, Hiromitsu Iizuka, Masahiro Nakagawa et al. « Abstract 3439 : Recurrent CDC25C mutations drive malignant transformation in FPD/AML ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3439.
Texte intégralLee, Caleb C., et James Manfredi. « Abstract 5094 : Investigating the role of CDC25B in inhibition of cellular proliferation ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5094.
Texte intégralLee, Caleb C., et James Manfredi. « Abstract 3774 : Investigating the role of CDC25B in inhibition of cellular proliferation ». Dans Proceedings : AACR 106th Annual Meeting 2015 ; April 18-22, 2015 ; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3774.
Texte intégralBrunetto, Emanuela, Anna Talarico, Francesca Rampoldi, Elena Dal Cin, Greta Grassini, Isabella Sassi, Mattia Barbareschi, Lorenza Pecciarini, Claudio Doglioni et Maria Giulia Cangi. « Abstract 3147 : HER2 gene amplification and CDC25A overexpression in human breast cancer ». Dans Proceedings : AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011 ; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3147.
Texte intégralLee, Caleb C., et James Manfredi. « Abstract 574 : Investigating the role of CDC25B in inhibition of cellular proliferation. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-574.
Texte intégralWei, Dongping, Leslie A. Parsels, Mary A. Davis, Lili Zhao, Jonathan Maybaum, Theodore S. Lawrence, Yi Sun et Meredith A. Morgan. « Abstract 1582 : Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancer cells by modulation of CDC25C. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1582.
Texte intégralTakehito Azuma, Hisao Moriya, Hayato Matsumuro et Hiroaki Kitano. « A robustness analysis of eukaryotic cell cycle concerning Cdc25 and wee1 proteins ». Dans 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776903.
Texte intégralAzuma, Takehito, Hisao Moriya, Hayato Matsumuro et Hiroaki Kitano. « A Robustness Analysis of Eukaryotic Cell Cycle concerning Cdc25 and Wee1 Proteins ». Dans 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286135.
Texte intégralRapports d'organisations sur le sujet "CDC25Mm"
Kiyokawa, Hiroaki. Role of CDC25A in Breast Cancer Development. Fort Belvoir, VA : Defense Technical Information Center, avril 2003. http://dx.doi.org/10.21236/ada415692.
Texte intégralManfredi, James J. Role of Cdc25C Phosphatases in Human Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, mars 2006. http://dx.doi.org/10.21236/ada472361.
Texte intégralManfredi, James J. Role of Cdc25C Phosphatases in Human Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, mai 2006. http://dx.doi.org/10.21236/ada474891.
Texte intégralGalaktionov, Konstantin I. Role of cdc25 Phosphatases in Cellular Immortalization. Fort Belvoir, VA : Defense Technical Information Center, avril 1999. http://dx.doi.org/10.21236/ada369304.
Texte intégralGalaktionov, Konstantin. Role of cdc25 Phosphatases in Cellular Immortalization. Fort Belvoir, VA : Defense Technical Information Center, avril 2000. http://dx.doi.org/10.21236/ada391626.
Texte intégralManfredi, James J. Role of cdc25 Phosphatases in Human Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, mai 2007. http://dx.doi.org/10.21236/ada484236.
Texte intégralManfredi, James J. Role of cdc25 Phosphatases in Human Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, mai 2008. http://dx.doi.org/10.21236/ada487929.
Texte intégral