Littérature scientifique sur le sujet « Causal graphs »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Causal graphs ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Causal graphs"
Jonsson, Anders, Peter Jonsson et Tomas Lööw. « When Acyclicity Is Not Enough : Limitations of the Causal Graph ». Proceedings of the International Conference on Automated Planning and Scheduling 23 (2 juin 2013) : 117–25. http://dx.doi.org/10.1609/icaps.v23i1.13550.
Texte intégralNordon, Galia, Gideon Koren, Varda Shalev, Benny Kimelfeld, Uri Shalit et Kira Radinsky. « Building Causal Graphs from Medical Literature and Electronic Medical Records ». Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 juillet 2019) : 1102–9. http://dx.doi.org/10.1609/aaai.v33i01.33011102.
Texte intégralAtherton, Juli, Derek Ruths et Adrian Vetta. « Computation in Causal Graphs ». Journal of Graph Algorithms and Applications 23, no 2 (2019) : 317–44. http://dx.doi.org/10.7155/jgaa.00493.
Texte intégralLipsky, Ari M., et Sander Greenland. « Causal Directed Acyclic Graphs ». JAMA 327, no 11 (15 mars 2022) : 1083. http://dx.doi.org/10.1001/jama.2022.1816.
Texte intégralKischka, Peter, et Dietrich Eherler. « Causal graphs and unconfoundedness ». Allgemeines Statistisches Archiv 85, no 3 (août 2001) : 247–66. http://dx.doi.org/10.1007/s101820100064.
Texte intégralPeters, Jonas, et Peter Bühlmann. « Structural Intervention Distance for Evaluating Causal Graphs ». Neural Computation 27, no 3 (mars 2015) : 771–99. http://dx.doi.org/10.1162/neco_a_00708.
Texte intégralKinney, David. « Curie’s principle and causal graphs ». Studies in History and Philosophy of Science Part A 87 (juin 2021) : 22–27. http://dx.doi.org/10.1016/j.shpsa.2021.02.007.
Texte intégralMian, Osman A., Alexander Marx et Jilles Vreeken. « Discovering Fully Oriented Causal Networks ». Proceedings of the AAAI Conference on Artificial Intelligence 35, no 10 (18 mai 2021) : 8975–82. http://dx.doi.org/10.1609/aaai.v35i10.17085.
Texte intégralBäckström, C., et P. Jonsson. « A Refined View of Causal Graphs and Component Sizes : SP-Closed Graph Classes and Beyond ». Journal of Artificial Intelligence Research 47 (30 juillet 2013) : 575–611. http://dx.doi.org/10.1613/jair.3968.
Texte intégralHabel, Christopher, et Cengiz Acarturk'. « Causal inference in graph-text constellations : Designing verbally annotated graphs ». Tsinghua Science and Technology 16, no 1 (février 2011) : 7–12. http://dx.doi.org/10.1016/s1007-0214(11)70002-5.
Texte intégralThèses sur le sujet "Causal graphs"
Choudhry, Arjun. « Narrative Generation to Support Causal Exploration of Directed Graphs ». Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98670.
Texte intégralMaster of Science
Narrative generation is the art of creating coherent snippets of text that cumulatively describe a succession of events, played across a period of time. These goals of narrative generation are also shared by causal graphs – models that encapsulate inferences between the nodes through the strength and polarity of the connecting edges. Causal graphs are an useful mechanism to visualize changes propagating amongst nodes in the system. However, as the graph starts addressing real-world actors and their interactions, it becomes increasingly difficult to understand causal inferences between distant nodes, especially if the graph is cyclic. Moreover, if the value of more than a single node is altered and the cumulative effect of the change is to be perceived on a set of target nodes, it becomes extremely difficult to the human eye. This thesis attempts to alleviate this problem by generating dynamic narratives detailing the effect of one or more interventions on one or more target nodes, incorporating time-series analysis, Wikification, and spike detection. Moreover, the narrative enhances the user's understanding of the change propagation occurring in the system. The efficacy of the narrative was further corroborated by the results of user studies, which concluded that the presence of the narrative aids the user's confidence level, correctness, and speed while exploring the causal network.
Bernigau, Holger. « Causal Models over Infinite Graphs and their Application to the Sensorimotor Loop ». Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-164734.
Texte intégralYang, Karren Dai. « Learning causal graphs under interventions and applications to single-cell biological data analysis ». Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130806.
Texte intégralThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021
Cataloged from the official PDF version of thesis.
Includes bibliographical references (pages 49-51).
This thesis studies the problem of learning causal directed acyclic graphs (DAGs) in the setting where both observational and interventional data is available. This setting is common in biology, where gene regulatory networks can be intervened on using chemical reagents or gene deletions. The identifiability of causal DAGs under perfect interventions, which eliminate dependencies between targeted variables and their direct causes, has previously been studied. This thesis first extends these identifiability results to general interventions, which may modify the dependencies between targeted variables and their causes without eliminating them, by defining and characterizing the interventional Markov equivalence class that can be identified from general interventions. Subsequently, this thesis proposes the first provably consistent algorithm for learning DAGs in this setting. Finally, this algorithm as well as related work is applied to analyze biological datasets.
by Karren Dai Yang.
S.M.
S.M.
S.M. Massachusetts Institute of Technology, Department of Biological Engineering
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Giasemidis, Georgios. « Spectral dimension in graph models of causal quantum gravity ». Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d0aaa6f2-dd0b-4ea9-81c1-7c9e81a7229e.
Texte intégralCALIGARIS, SILVIA. « A Causal Graphs - based approach for assessing gender disparities : an application to child health & ; nutrition in China ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/83241.
Texte intégralBernigau, Holger [Verfasser], Nihat [Akademischer Betreuer] Ay, Nihat [Gutachter] Ay et Shun-ichi [Gutachter] Amari. « Causal Models over Infinite Graphs and their Application to the Sensorimotor Loop : Causal Models over Infinite Graphs and their Application to theSensorimotor Loop / Holger Bernigau ; Gutachter : Nihat Ay, Shun-ichi Amari ; Betreuer : Nihat Ay ». Leipzig : Universitätsbibliothek Leipzig, 2015. http://d-nb.info/1239565127/34.
Texte intégralChong, Hogun. « A causal model of linkages among strategy, structure, and performance using directed acyclic graphs : A manufacturing subset of Fortune 500 industrials 1990-1998 ». Texas A&M University, 2003. http://hdl.handle.net/1969.1/58.
Texte intégralAka, Niels Mariano [Verfasser]. « Three Essays on Model Selection in Time Series Econometrics : Model Averaging, Causal Graphs, and Structural Identification / Niels Mariano Aka ». Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1229436685/34.
Texte intégralMartiel, Simon. « Approches informatique et mathématique des dynamiques causales de graphes ». Thesis, Nice, 2015. http://www.theses.fr/2015NICE4043/document.
Texte intégralCellular Automata constitute one of the most established model of discrete physical transformations that accounts for euclidean space. They implement three fundamental symmetries of physics: causality, homogeneity and finite density of information. Even though their origins lies in physics, they are widely used to model spatially distributed computation (self-replicating machines, synchronization problems,...), as well as a great variety of multi-agents phenomena (traffic jams, demographics,...). While being one of the most studied model of distributed computation, their rigidity forbids any trivial extension toward time-varying topology, which is a fundamental requirement when it comes to modelling phenomena in biology, sociology or physics: for instance when looking for a discrete formulation of general relativity. Causal graph dynamics generalize cellular automata to arbitrary, bounded degree, time-varying graphs. In this work, we generalize the fundamental structure results of cellular automata for this type of transformations. We endow our graphs with a compact metric space structure, and follow two approaches. An axiomatic approach based on the notions of continuity and shift-invariance, and a constructive approach, where a local rule is applied synchronously on every vertex of the graph. Compactness allows us to show the equivalence of these two definitions, extending the famous result of Curtis-Hedlund-Lyndon’s theorem. Another physics-inspired symmetry is then added to the model, namely reversibility
Encardes, Nicole A. « Causal factors of Macrophoma rot observed on Petit Manseng grapes ». Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99083.
Texte intégralMaster of Science in Life Sciences
Macrophoma rot is a general term for fruit rots of grapes caused by the pathogenic fungi in the family Botryosphaeriaceae. The rot is mainly observed on Muscadine grapes, but recently more cases were found on a wine grape cultivar Petit Manseng in Virginia. Macrophoma rot symptoms begin as dark brown, circular lesions on the surface of the berry and look similar to sunburn and other fruit rots. As the disease progresses, the lesion envelopes the entire berry and black fruiting bodies develop. Severe cases may lead to crop loss. The same group of pathogens is also associated with rots on other crops including apple, pear, olive, and kiwis. Very little is known about the disease cycle and the control of Macrophoma rot, therefore, an investigation into this fungal pathogen was needed. Multiple studies with the wine grape variety Petit Manseng were conducted during the 2018-2019 growing seasons, including a survey, leaf removal trial, and an inoculation study. Results showed that a species called Neofusicoccum ribis was found in vineyards across northern and central Virginia based on the genetic identification of fungal isolates collected at seven vineyards in those areas. Macrophoma symptoms were observed to be more prevalent and severe in more exposed clusters based on a leaf removal experiment. An artificial inoculation experiment revealed that grape clusters are susceptible to Neofusicoccum ribis at any time during the season. Based on the screening of nine fungicides, three chemicals (captan, thiophanate-methyl, and tetraconazole) showed promising results as possible management tools for Macrophoma rot. The knowledge collected will lead to an increase in understanding of this fungal pathogen and to further studies to manage Macrophoma rot.
Livres sur le sujet "Causal graphs"
Yao, Qing. Directed acyclic graphs, linear recursive regression, and inference about causal ordering. Toronto : University of Toronto, Dept. of Statistics, 1993.
Trouver le texte intégralIsakov, Vladimir. Speak the language of schemes. ru : INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1860649.
Texte intégralRuiz, Dana Catharine De. La Causa : The Migrant Farmworkers' Story. Austin : Raintree Steck-Vaughn, 1993.
Trouver le texte intégralMurray, Myles N. William Murray, Esq. : Land agent in the Illinois Territory before the Revolutionary War. Brooklyn, N.Y : T. Gaus, 1987.
Trouver le texte intégralGhere, David L. Causes of the American Revolution : Focus on Boston : a unit of study for grades 7-12 / David L. Ghere, Jan F. Spreeman. Los Angeles, Calif : Organization of American Historians : National Center for History in the Schools, 1998.
Trouver le texte intégralMoneysmith, Marie. Grasas que engordan, grasas que curan : Conozca la diferencia entre las grasas que le hacen bien y las que le pueden causar enfermedades. México, D.F : Panorama Editorial, 2008.
Trouver le texte intégralVarlamov, Oleg. Mivar databases and rules. ru : INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Texte intégralThe abolition of feudalism : Peasants, lords, and legislators in the French Revolution. University Park, Pa : Pennsylvania State University Press, 1996.
Trouver le texte intégralBoller, David. Die letzten Tage der Menschheit : Eine Graphic Novel nach Karl Kraus. Sous la direction de Pietsch Reinhard adapter editor et Kraus Karl 1874-1936. München : Herbert Utz Verlag GmbH, 2014.
Trouver le texte intégralBurgan, Michael. The Boston Massacre. Mankato, Minn : Capstone Press, 2006.
Trouver le texte intégralChapitres de livres sur le sujet "Causal graphs"
Brumback, Babette A. « Causal Directed Acyclic Graphs ». Dans Fundamentals of Causal Inference with R, 81–98. Boca Raton : Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003146674-5.
Texte intégralÁgueda, Cristina Puente. « Causal Relations, Text Mining and Causal Graphs ». Dans Accuracy and Fuzziness. A Life in Science and Politics, 61–67. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18606-1_2.
Texte intégralJensen, Finn V. « Causal and Bayesian Networks ». Dans Bayesian Networks and Decision Graphs, 3–34. New York, NY : Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3502-4_1.
Texte intégralGebharter, Alexander, et Marie I. Kaiser. « Causal Graphs and Biological Mechanisms ». Dans Explanation in the Special Sciences, 55–85. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7563-3_3.
Texte intégralPearl, J. « Statistics, Causality, and Graphs ». Dans Causal Models and Intelligent Data Management, 3–16. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58648-4_1.
Texte intégralMohan, Karthika. « Causal Graphs for Missing Data : A Gentle Introduction ». Dans Probabilistic and Causal Inference, 655–66. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3501714.3501750.
Texte intégralEherler, Dietrich, et Peter Kischka. « Decision Making Based on Causal Graphs ». Dans Models, Methods and Decision Support for Management, 323–48. Heidelberg : Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-642-57603-4_18.
Texte intégralNeufeld, Eric, et Sonje Kristtorn. « Picturing Causality – The Serendipitous Semiotics of Causal Graphs ». Dans Smart Graphics, 252–62. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11536482_24.
Texte intégralPearl, Judea, et Nanny Wermuth. « When can association graphs admit a causal interpretation ? » Dans Selecting Models from Data, 205–14. New York, NY : Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2660-4_21.
Texte intégralKourani, Humam, Chiara Di Francescomarino, Chiara Ghidini, Wil van der Aalst et Sebastiaan van Zelst. « Mining for Long-Term Dependencies in Causal Graphs ». Dans Business Process Management Workshops, 117–31. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25383-6_10.
Texte intégralActes de conférences sur le sujet "Causal graphs"
Huang, Hao. « Causal Relationship over Knowledge Graphs ». Dans CIKM '22 : The 31st ACM International Conference on Information and Knowledge Management. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3511808.3557818.
Texte intégralLi, Jiangnan, Fandong Meng, Zheng Lin, Rui Liu, Peng Fu, Yanan Cao, Weiping Wang et Jie Zhou. « Neutral Utterances are Also Causes : Enhancing Conversational Causal Emotion Entailment with Social Commonsense Knowledge ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/584.
Texte intégralBalashankar, Ananth, et Lakshminarayanan Subramanian. « Learning Faithful Representations of Causal Graphs ». Dans Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1 : Long Papers). Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-long.69.
Texte intégralSimonne, Lucas, Nathalie Pernelle, Fatiha Saïs et Rallou Thomopoulos. « Differential Causal Rules Mining in Knowledge Graphs ». Dans K-CAP '21 : Knowledge Capture Conference. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3460210.3493584.
Texte intégralGonzalez-Soto, Mauricio, Ivan Feliciano-Avelino, Luis Sucar et Hugo Escalante. « Learning a causal structure : a Bayesian Random Graph approach ». Dans LatinX in AI at Neural Information Processing Systems Conference 2020. Journal of LatinX in AI Research, 2020. http://dx.doi.org/10.52591/lxai202012121.
Texte intégralBäckström, Christer, Peter Jonsson et Sebastian Ordyniak. « A Refined Understanding of Cost-optimal Planning with Polytree Causal Graphs ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/848.
Texte intégralHyttinen, Antti, Paul Saikko et Matti Järvisalo. « A Core-Guided Approach to Learning Optimal Causal Graphs ». Dans Twenty-Sixth International Joint Conference on Artificial Intelligence. California : International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/90.
Texte intégralHans, Atharva, Ashish M. Chaudhari, Ilias Bilionis et Jitesh H. Panchal. « Quantifying Individuals’ Theory-Based Knowledge Using Probabilistic Causal Graphs : A Bayesian Hierarchical Approach ». Dans ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22613.
Texte intégralAmblard, Pierre-Olivier, et Olivier J. J. Michel. « Causal conditioning and instantaneous coupling in causality graphs ». Dans 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012. http://dx.doi.org/10.1109/ssp.2012.6319633.
Texte intégralHintz, Kenneth J., et Andrew S. Hintz. « From Social Network Graphs to Causal Bayes Nets ». Dans 2019 22th International Conference on Information Fusion (FUSION). IEEE, 2019. http://dx.doi.org/10.23919/fusion43075.2019.9011199.
Texte intégralRapports d'organisations sur le sujet "Causal graphs"
Naugle, Asmeret, Laura Swiler, Kiran Lakkaraju, Stephen Verzi, Christina Warrender et Vicente Romero. Graph-Based Similarity Metrics for Comparing Simulation Model Causal Structures. Office of Scientific and Technical Information (OSTI), août 2022. http://dx.doi.org/10.2172/1884926.
Texte intégralCastleman, Benjamin, et Bridget Terry Long. Looking Beyond Enrollment : The Causal Effect of Need-Based Grants on College Access, Persistence, and Graduation. Cambridge, MA : National Bureau of Economic Research, août 2013. http://dx.doi.org/10.3386/w19306.
Texte intégralLichter, Amnon, Joseph L. Smilanick, Dennis A. Margosan et Susan Lurie. Ethanol for postharvest decay control of table grapes : application and mode of action. United States Department of Agriculture, juillet 2005. http://dx.doi.org/10.32747/2005.7587217.bard.
Texte intégralReisch, Bruce, Avichai Perl, Julie Kikkert, Ruth Ben-Arie et Rachel Gollop. Use of Anti-Fungal Gene Synergisms for Improved Foliar and Fruit Disease Tolerance in Transgenic Grapes. United States Department of Agriculture, août 2002. http://dx.doi.org/10.32747/2002.7575292.bard.
Texte intégralHoman, H. Jeffrey, Ron J. Johnson, James R. Thiele et George M. Linz. European Starlings. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, septembre 2017. http://dx.doi.org/10.32747/2017.7207737.ws.
Texte intégralDesai, Jairaj, Jijo K. Mathew, Howell Li, Rahul Suryakant Sakhare, Deborah Horton et Darcy M. Bullock. National Mobility Report for All Interstates–December 2022. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317591.
Texte intégralLiu, Miao, Hongan Wang, Jing Lu, Zhiyue Zhu, Chaoqun Song, Ye Tian, Xinzhi Chen et al. Vitamin D supplementation in the treatment of Myasthenia Gravis A protocol for a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, septembre 2022. http://dx.doi.org/10.37766/inplasy2022.9.0129.
Texte intégralFiron, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell et Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, octobre 2007. http://dx.doi.org/10.32747/2007.7591741.bard.
Texte intégralMikhaleva, E., E. Babikova, G. Bezhashvili, M. Ilina et I. Samkova. VALUE STREAM PROGRAM. Sverdlovsk Regional Medical College, décembre 2022. http://dx.doi.org/10.12731/er0618.03122022.
Texte intégralMcCall, Jamie, Brittany Weston, James Onorevole, John Roberson et Jamie Andrews. Extraordinary Times Call for Extraordinary Measures : Use of Loans and Grants for Small Business Assistance During the COVID-20 Pandemic. Carolina Small Business Development Fund and ResilNC, octobre 2022. http://dx.doi.org/10.46712/extraordinary.times.
Texte intégral