Littérature scientifique sur le sujet « Cathodes hybrides »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cathodes hybrides ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cathodes hybrides"
Dolphijn, Guillaume, Fernand Gauthy, Alexandru Vlad et Jean-François Gohy. « High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites ». Polymers 13, no 6 (23 mars 2021) : 986. http://dx.doi.org/10.3390/polym13060986.
Texte intégralHuang, Kevin. « Performance of Several Excellent Oxide-Based Intercalation Cathodes for Aqueous Zn-Ion Batteries ». ECS Meeting Abstracts MA2023-01, no 5 (28 août 2023) : 921. http://dx.doi.org/10.1149/ma2023-015921mtgabs.
Texte intégralChoudhury, Soumyadip, Marco Zeiger, Pau Massuti-Ballester, Simon Fleischmann, Petr Formanek, Lars Borchardt et Volker Presser. « Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries ». Sustainable Energy & ; Fuels 1, no 1 (2017) : 84–94. http://dx.doi.org/10.1039/c6se00034g.
Texte intégralWong, Min Hao, Zixuan Zhang, Xianfeng Yang, Xiaojun Chen et Jackie Y. Ying. « One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes ». Chemical Communications 51, no 71 (2015) : 13674–77. http://dx.doi.org/10.1039/c5cc04694g.
Texte intégralEdwards, Sean L., Ronen Fogel, Kudzai Mtambanengwe, Chamunorwa Togo, Richard Laubscher et Janice L. Limson. « Metallophthalocyanine/carbon nanotube hybrids : extending applications to microbial fuel cells ». Journal of Porphyrins and Phthalocyanines 16, no 07n08 (juillet 2012) : 917–26. http://dx.doi.org/10.1142/s1088424612501027.
Texte intégralCuentas-Gallegos, A. K., R. Vijayaraghavan, M. Lira-Cantú, N. Casañ-Pastor et P. Gómez-Romero. « Materiales híbridos basados en fosfato de vanadilo y polímeros conductores como cátodos en baterías reversibles de litio ». Boletín de la Sociedad Española de Cerámica y Vidrio 43, no 2 (30 avril 2004) : 429–33. http://dx.doi.org/10.3989/cyv.2004.v43.i2.545.
Texte intégralHu, Ting, Lie Chen, Kai Yuan et Yiwang Chen. « Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells ». Nanoscale 7, no 20 (2015) : 9194–203. http://dx.doi.org/10.1039/c5nr01456e.
Texte intégralAn, Meichun, Mohammad Abdul Aziz et Yong Lak Joo. « Hybridization of Mesoporous Carbon and Iron Oxide for Better Mitigation of Polysulfide Shuttling in Li-S Batteries ». ECS Meeting Abstracts MA2022-01, no 7 (7 juillet 2022) : 660. http://dx.doi.org/10.1149/ma2022-017660mtgabs.
Texte intégralCuentas-Gallegos, A. K., M. R. Palacín, M. T. Colomer, J. R. Jurado et P. Gómez-Romero. « Estudios de materiales de cátodos híbridos y ánodos vítreos. Caracterización en celdas de ion litio ». Boletín de la Sociedad Española de Cerámica y Vidrio 41, no 1 (28 février 2002) : 115–21. http://dx.doi.org/10.3989/cyv.2002.v41.i1.708.
Texte intégralYang, Yiqun, Kayla Strong, Gaind P. Pandey et Lamartine Meda. « Nanostructured V2O5/Nitrogen-doped Graphene Hybrids for High Rate Lithium Storage ». MRS Advances 3, no 60 (2018) : 3495–500. http://dx.doi.org/10.1557/adv.2018.424.
Texte intégralThèses sur le sujet "Cathodes hybrides"
Adjez, Yanis. « Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Texte intégralNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Moraw, Franz Christian. « Hybrid PEM fuel cell : redox cathode approach ». Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7720.
Texte intégralOsiecki, Tomasz, Colin Gerstenberger, Holger Seidlitz, Alexander Hackert et Lothar Kroll. « Behavior of Cathodic dip Paint Coated Fiber Reinforced Polymer/Metal Hybrids ». Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175536.
Texte intégralGustavsson, Lars-Erik. « Hollow Cathode Deposition of Thin Films ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6925.
Texte intégralSöderström, Daniel. « Modelling and Applications of the Hollow Cathode Plasma ». Doctoral thesis, Uppsala universitet, Elektricitetslära, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8747.
Texte intégralEzzedine, Mariam. « Fabrication of hierarchical hybrid nanostructured electrodes based on nanoparticles decorated carbon nanotubes for Li-Ion batteries ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX105/document.
Texte intégralThis thesis is devoted to the bottom-up fabrication of hierarchical hybrid nanostructured materials based on active vertically aligned carbon nanotubes (VACNTs) decorated with nanoparticles (NPs). Owing to their unique structure and electronic properties, VACNTs act as a support matrix and an excellent current collector, and thus enhance the electronic and ionic transport pathways. The nanostructuration and the confinement of sulfur (S) in a conductive host material improve its conductivity, while the nanostructuration of silicon (Si) accommodates better the volume change during the electrochemical reactions. In the first part of the thesis, we have synthesized VACNTs by a hot filament chemical vapor deposition (HF-CVD) method directly over aluminum and copper commercial foils without any pretreatment of the substrates. In the second part, we have decorated the sidewalls and the surface of the VACNT carpets with various LIB's active electrode materials, including S and Si NPs. We have also deposited and characterized nickel (Ni) NPs on CNTs as alternative materials for the cathode electrode. No conductive additives or any polymer binder have been added to the electrode composition. The CNTs decoration has been done systematically through two different methods: wet method by electrodeposition and dry method by physical vapor deposition (PVD). The obtained hybrid structures have been electrochemically tested separately in a coin cell against a lithium counter-electrode. Regarding the S evaporationon VACNTs, and the S@VACNTs structure, these topics are investigated for the first time to the best of our knowledge.Preliminary tests on the obtained nanostructured cathodes (S@VACNTs coated with alumina or polyaniline) have shown that it is possible to attain a specific capacity close to S theoretical storage capacity. The surface capacity of S@VACNTs, with 0.76 mg cm-2 of S, at C/20 rate reaches 1.15 mAh cm-2 at the first cycle. For the nanostructured anodes Si@VACNTs, with 4.11 mg cm-2 of Si showed an excellent surface capacity of 12.6 mAh cm-2, the highest value for nanostructured silicon anodes obtained so far. In the last part of the thesis, the fabricated nanostructured electrodes have been assembled in a full battery (Li2S/Si) and its electrochemical performances experimentally tested. The high and well-balanced surface capacities obtained for S and Si nanostructured electrodes pave the way for realization of high energy density, all-nanostructured LIBs and demonstrate the large potentialities of the proposed hierarchical hybrid nanostructures' concept
Holmes, Steven. « An investigation into the practical and theoretical aspects of hybrid cathodic protection ». Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/12280.
Texte intégralMyalo, Zolani. « Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathode Systems for Lithium-Ion Batteries ». University of the Western Cape, 2017. http://hdl.handle.net/11394/6036.
Texte intégralThis research was based on the development and characterization of graphenised lithium iron phosphate-lithium manganese silicate (LiFePO4-Li2MnSiO4) hybrid cathode materials for use in Li-ion batteries. Although previous studies have mainly focused on the use of a single cathode material, recent works have shown that a combination of two or more cathode materials provides better performances compared to a single cathode material. The LiFePO4- Li2MnSiO4 hybrid cathode material is composed of LiFePO4 and Li2MnSiO4. The Li2MnSiO4 contributes its high working voltage ranging from 4.1 to 4.4 V and a specific capacity of 330 mA h g-1, which is twice that of the LiFePO4 which, in turn, offers its long cycle life, high rate capacity as well as good electrochemical and thermal stability. The two cathode materials complement each other's properties however they suffer from low electronic conductivities which were suppressed by coating the hybrid material with graphene nanosheets. The synthetic route entailed a separate preparation of the individual pristine cathode materials, using a sol-gel protocol. Then, the graphenised LiFePO4-Li2MnSiO4 and LiFePO4-Li2MnSiO4 hybrid cathodes were obtained in two ways: the hand milling (HM) method where the pristine cathodes were separately prepared and then mixed with graphene using a pestle and mortar, and the in situ sol-gel (SG) approach where the Li2MnSiO4 and graphene were added into the LiFePO4 sol, stirred and calcined together.
2021-04-30
El, jouad Zouhair. « Réalisation et caractérisation des cellules photovoltaïques organiques ». Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0022/document.
Texte intégralThis thesis concerns elaboration and characterization of classical and inverse organic photovoltaic cells, specifically improving the anodic and cathodic buffer layers. We started by improving the cathode buffer layers with different electron donors: copper phthalocyanine CuPc, subphtalocyanine SubPc and thiophene derivatives (BSTV and BOTV). In the first case of electron donor (CuPc), we highlighted the effect of the thin layer of cesium compound, used as a cathodic buffer layer in inverse cells, on the collection of electrons after heat treatment.We have also shown that the hybrid cathodic buffer layer, Alq3 (9 nm) / Ca (3nm) improves the cell performance whatever the electron donor without annealing. In the case of thiophene derivatives, we have shown how the morphology of the organic layers surface can influence the performance of organic photovoltaic cells. In the case of SubPc used in inverse cells, we studied the effect of the deposition rate of the layer on the morphology of SubPc surface.Regarding the improvement of the anodic buffer layers, we investigated those based on the SubPc and pentathiophene (5T) in classical cells. After optimization of the electron donors thickness, we have shown that the bilayer MoO3 (3 nm) / CuI (1.5 nm) used as an anodic buffer layer, improves cell performances, whatever the electron donor. In the case of SubPc, we obtained a efficiency approaching 5%
Vickers, Simon. « Particle in cell and hybrid simulations of the Z double-post-hole convolute cathode plasma evolution and dynamics ». Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17874.
Texte intégralChapitres de livres sur le sujet "Cathodes hybrides"
Wen, Zhenhai, Suqin Ci et Junhong Chen. « Nanocarbon-Based Hybrids as Cathode Electrocatalysts for Microbial Fuel Cells ». Dans Nanocarbons for Advanced Energy Conversion, 215–32. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527680016.ch8.
Texte intégralMurugesan, Chinnasamy, Baskar Senthilkumar, Kriti Choudhary et Prabeer Barpanda. « Cobalt–Phosphate-Based Insertion Material as a Multifunctional Cathode for Rechargeable Hybrid Sodium–Air Batteries ». Dans Recent Research Trends in Energy Storage Devices, 35–41. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6394-2_5.
Texte intégralGodefroidt, Emile, Bjorn Van Belleghem et Tim Soetens. « Effectiveness and Throwing Power of Hybrid Anode Cathodic Protection in Chloride Contaminated Reinforced Concrete ». Dans RILEM Bookseries, 175–86. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75507-1_18.
Texte intégralGoyal, Megha, et Tapas Kumar Mandal. « Influence of Different Precipitating Agents on the Synthesis of NiMn-LDHs Based Cathode Materials for High Performance Hybrid Devices ». Dans Springer Proceedings in Physics, 187–92. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1971-0_28.
Texte intégralParbey, Joseph, Fehrs Adu-Gyamfi et Michael Gyan. « Progress in Cathode Materials for Methanol Fuel Cells ». Dans Methanol Fuel - New Developments, Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003869.
Texte intégralRajpurohit, Praveen, et Manaswini Behera. « Light-assisted microbial electrochemical technologies for bioelectricity generation and product recovery ». Dans Resource Recovery from Industrial Wastewater through Microbial Electrochemical Technologies, 61–80. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789063813_0061.
Texte intégralLitovko, Iryna, Alexey Goncharov, Andrew Dobrovolskyi et Iryna Naiko. « The Emerging Field Trends Erosion-Free Electric Hall Thrusters Systems ». Dans Plasma Science and Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99096.
Texte intégralM. Orona-Hinojos, Jesus. « Innovative Double Cathode Configuration for Hybrid ECM + EDM Blue Arc Drilling ». Dans Drilling Technology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97547.
Texte intégralArif, Khizra, Abdul Shakoor, Muhammad Awais, Marvi Dashi, Behram Khan Ajat Khel, Bentham Science Publisher Sami Ur Rehman, Khansa Masood, Farah Hussain, Waheed Alam et Muhammad Atif. « Graphene-based Materials for Electrochemical Energy Storage Devices-EESDs ; Opportunities and Future Perspective ». Dans The 2-Dimensional World of Graphene, 160–76. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815238938124010011.
Texte intégralMohammadi, Arash. « Hybrid nanomaterials of hollow carbon spheres as cathode materials ». Dans Nanostructured Lithium-ion Battery Materials, 87–109. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-13338-1.00024-1.
Texte intégralActes de conférences sur le sujet "Cathodes hybrides"
Major, K., G. Brisard et J. Veilleux. « Lithium Iron Phosphate Coatings Deposited by Means of Inductively-Coupled Thermal Plasma ». Dans ITSC2015, sous la direction de A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen et C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0566.
Texte intégralTucker, David, Larry Lawson, Thomas P. Smith et Comas Haynes. « Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation ». Dans ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97107.
Texte intégralPezzini, Paolo, Sue Celestin et David Tucker. « Control Impacts of Cold-Air Bypass on Pressurized Fuel Cell Turbine Hybrids ». Dans ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6523.
Texte intégralMagistri, Loredana, Mario L. Ferrari, Alberto Traverso, Paola Costamagna et Aristide F. Massardo. « Transient Analysis of Solid Oxide Fuel Cell Hybrids : Part C — Whole-Cycle Model ». Dans ASME Turbo Expo 2004 : Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53845.
Texte intégralLambruschini, Fabio, Mario L. Ferrari, Alberto Traverso et Luca Larosa. « Emergency Shutdown Management in Fuel Cell Gas Turbine Hybrid Systems ». Dans ASME Turbo Expo 2014 : Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25432.
Texte intégralZaccaria, Valentina, Zachary Branum et David Tucker. « Fuel Cell Temperature Control With a Pre-Combustor in SOFC Gas Turbine Hybrids During Load Changes ». Dans ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59278.
Texte intégralKroll, Florian, Annette Nielsen et Stephan Staudacher. « Transient Performance and Control System Design of Solid Oxide Fuel Cell/Gas Turbine Hybrids ». Dans ASME Turbo Expo 2008 : Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50232.
Texte intégralHao, Xia, Shenghao Wang, Takeaki Sakurai et Katsuhiro Akimoto. « The effect of cathode buffer in small molecule organic solar cells ». Dans 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia : Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.047.
Texte intégralChen, Jinwei, Kuanying Gao, Maozong Liang et Huisheng Zhang. « Performance Evaluation of a SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations ». Dans ASME Turbo Expo 2017 : Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63745.
Texte intégralBanta, Larry E., Bernardo Restrepo, Alex J. Tsai et David Tucker. « Cathode Temperature Management During Hybrid System Startup ». Dans ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33121.
Texte intégralRapports d'organisations sur le sujet "Cathodes hybrides"
Lawson et Thompson. L52100 Hot-Spot Protection for Impressed Current Systems. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), septembre 2003. http://dx.doi.org/10.55274/r0010153.
Texte intégral