Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Cardiogenesi.

Articles de revues sur le sujet « Cardiogenesi »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Cardiogenesi ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nascone, Nanette, et Mark Mercola. « Endoderm and Cardiogenesis ». Trends in Cardiovascular Medicine 6, no 7 (octobre 1996) : 211–16. http://dx.doi.org/10.1016/s1050-1738(96)00086-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Samuel, L. J., et B. V. Latinkic. « MHC and cardiogenesis ». Development 137, no 1 (18 décembre 2009) : 3. http://dx.doi.org/10.1242/dev.044917.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Martin, James F., Emerson C. Perin et James T. Willerson. « Direct Stimulation of Cardiogenesis ». Circulation Research 121, no 1 (23 juin 2017) : 13–15. http://dx.doi.org/10.1161/circresaha.117.311062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Metzger, Joseph M., Linda C. Samuelson, Elizabeth M. Rust et Margaret V. Westfall. « Embryonic Stem Cell Cardiogenesis ». Trends in Cardiovascular Medicine 7, no 2 (février 1997) : 63–68. http://dx.doi.org/10.1016/s1050-1738(96)00138-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sahara, Makoto, Elif Eroglu et Kenneth R. Chien. « Lnc’ed in to Cardiogenesis ». Cell Stem Cell 22, no 6 (juin 2018) : 787–89. http://dx.doi.org/10.1016/j.stem.2018.05.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Muñoz-Chápuli, Ramón, et José M. Pérez-Pomares. « Cardiogenesis : An Embryological Perspective ». Journal of Cardiovascular Translational Research 3, no 1 (4 novembre 2009) : 37–48. http://dx.doi.org/10.1007/s12265-009-9146-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pucéat, Michel, et Marisa Jaconi. « Ca2+ signalling in cardiogenesis ». Cell Calcium 38, no 3-4 (septembre 2005) : 383–89. http://dx.doi.org/10.1016/j.ceca.2005.06.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Xing, Almudena Martinez-Fernandez, Katherine A. Hartjes, Jean-Pierre A. Kocher, Timothy M. Olson, Andre Terzic et Timothy J. Nelson. « Transcriptional atlas of cardiogenesis maps congenital heart disease interactome ». Physiological Genomics 46, no 13 (1 juillet 2014) : 482–95. http://dx.doi.org/10.1152/physiolgenomics.00015.2014.

Texte intégral
Résumé :
Mammalian heart development is built on highly conserved molecular mechanisms with polygenetic perturbations resulting in a spectrum of congenital heart diseases (CHD). However, knowledge of cardiogenic ontogeny that regulates proper cardiogenesis remains largely based on candidate-gene approaches. Mapping the dynamic transcriptional landscape of cardiogenesis from a genomic perspective is essential to integrate the knowledge of heart development into translational applications that accelerate disease discovery efforts toward mechanistic-based treatment strategies. Herein, we designed a time-course transcriptome analysis to investigate the genome-wide dynamic expression landscape of innate murine cardiogenesis ranging from embryonic stem cells to adult cardiac structures. This comprehensive analysis generated temporal and spatial expression profiles, revealed stage-specific gene functions, and mapped the dynamic transcriptome of cardiogenesis to curated pathways. Reconciling known genetic underpinnings of CHD, we deconstructed a disease-centric dynamic interactome encoded within this cardiogenic atlas to identify stage-specific developmental disturbances clustered on regulation of epithelial-to-mesenchymal transition (EMT), BMP signaling, NF-AT signaling, TGFb-dependent EMT, and Notch signaling. Collectively, this cardiogenic transcriptional landscape defines the time-dependent expression of cardiac ontogeny and prioritizes regulatory networks at the interface between health and disease.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mukhopadhyay, Madhura. « Recapitulating early cardiogenesis in vitro ». Nature Methods 18, no 4 (avril 2021) : 331. http://dx.doi.org/10.1038/s41592-021-01118-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brade, T., L. S. Pane, A. Moretti, K. R. Chien et K. L. Laugwitz. « Embryonic Heart Progenitors and Cardiogenesis ». Cold Spring Harbor Perspectives in Medicine 3, no 10 (1 octobre 2013) : a013847. http://dx.doi.org/10.1101/cshperspect.a013847.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fougerousse, Françoise, Louise V. B. Anderson, Anne-Lise Delezoide, Laurence Suel, Muriel Durand et Jacques S. Beckmann. « Calpain3 expression during human cardiogenesis ». Neuromuscular Disorders 10, no 4-5 (juin 2000) : 251–56. http://dx.doi.org/10.1016/s0960-8966(99)00107-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mohun, Tim, et Duncan Sparrow. « Early steps in vertebrate cardiogenesis ». Current Opinion in Genetics & ; Development 7, no 5 (octobre 1997) : 628–33. http://dx.doi.org/10.1016/s0959-437x(97)80010-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Niu, Zhivy, Ankang Li, Shu X. Zhang et Robert J. Schwartz. « Serum response factor micromanaging cardiogenesis ». Current Opinion in Cell Biology 19, no 6 (décembre 2007) : 618–27. http://dx.doi.org/10.1016/j.ceb.2007.09.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sweeney, L. J. « A molecular view of cardiogenesis ». Experientia 44, no 11-12 (décembre 1988) : 930–36. http://dx.doi.org/10.1007/bf01939886.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

ROBBINS, J. « The murine model of cardiogenesis ». Journal of Molecular and Cellular Cardiology 23 (avril 1991) : S9. http://dx.doi.org/10.1016/0022-2828(91)91350-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lim, Tingsen Benson, Sik Yin Roger Foo et Ching Kit Chen. « The Role of Epigenetics in Congenital Heart Disease ». Genes 12, no 3 (9 mars 2021) : 390. http://dx.doi.org/10.3390/genes12030390.

Texte intégral
Résumé :
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Mignone, John L., Kareen L. Kreutziger, Sharon L. Paige et Charles E. Murry. « Cardiogenesis From Human Embryonic Stem Cells ». Circulation Journal 74, no 12 (2010) : 2517–26. http://dx.doi.org/10.1253/circj.cj-10-0958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Pentecost, Jeffrey O., Jose Icardo et Kent L. Thornburg. « 3D Computer modeling of human cardiogenesis ». Computerized Medical Imaging and Graphics 23, no 1 (janvier 1999) : 45–49. http://dx.doi.org/10.1016/s0895-6111(98)00063-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Dupays, Laurent, et Timothy Mohun. « Spatiotemporal regulation of enhancers during cardiogenesis ». Cellular and Molecular Life Sciences 74, no 2 (6 août 2016) : 257–65. http://dx.doi.org/10.1007/s00018-016-2322-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Brand, Marcus, Hervé ; Kempf, Martin Paul, Pierre Corvol et Jean-Marie Gasc. « Expression of endothelins in human cardiogenesis ». Journal of Molecular Medicine 80, no 11 (1 novembre 2002) : 715–23. http://dx.doi.org/10.1007/s00109-002-0379-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Cai, Jingzeng, Jie Yang, Qi Liu, Yafan Gong, Yuan Zhang et Ziwei Zhang. « Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken ». Metallomics 11, no 2 (2019) : 415–28. http://dx.doi.org/10.1039/c8mt00319j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Piven, Oksana O., et Cecilia L. Winata. « The canonical way to make a heart : β-catenin and plakoglobin in heart development and remodeling ». Experimental Biology and Medicine 242, no 18 (18 septembre 2017) : 1735–45. http://dx.doi.org/10.1177/1535370217732737.

Texte intégral
Résumé :
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Alsan, Burak H., et Thomas M. Schultheiss. « Regulation of avian cardiogenesis by Fgf8 signaling ». Development 129, no 8 (15 avril 2002) : 1935–43. http://dx.doi.org/10.1242/dev.129.8.1935.

Texte intégral
Résumé :
The avian heart develops from paired primordia located in the anterior lateral mesoderm of the early embryo. Previous studies have found that the endoderm adjacent to the cardiac primordia plays an important role in heart specification. The current study provides evidence that fibroblast growth factor (Fgf) signaling contributes to the heart-inducing properties of the endoderm. Fgf8 is expressed in the endoderm adjacent to the precardiac mesoderm. Removal of endoderm results in a rapid downregulation of a subset of cardiac markers, including Nkx2.5 and Mef2c. Expression of these markers can be rescued by supplying exogenous Fgf8. In addition, application of ectopic Fgf8 results in ectopic expression of cardiac markers. Expression of cardiac markers is expanded only in regions where bone morphogenetic protein (Bmp) signaling is also present, suggesting that cardiogenesis occurs in regions exposed to both Fgf and Bmp signaling. Finally, evidence is presented that Fgf8 expression is regulated by particular levels of Bmp signaling. Application of low concentrations of Bmp2 results in ectopic expression of Fgf8, while application of higher concentrations of Bmp2 result in repression of Fgf8 expression. Together, these data indicate that Fgf signaling cooperates with Bmp signaling to regulate early cardiogenesis.
Styles APA, Harvard, Vancouver, ISO, etc.
24

KIRBY, MARGARET L. « Alteration of Cardiogenesis after Neural Crest Ablation ». Annals of the New York Academy of Sciences 588, no 1 Embryonic Ori (avril 1990) : 289–95. http://dx.doi.org/10.1111/j.1749-6632.1990.tb13218.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Franco, D., et R. G. Kelly. « Contemporary cardiogenesis : new insights into heart development ». Cardiovascular Research 91, no 2 (1 juin 2011) : 183–84. http://dx.doi.org/10.1093/cvr/cvr160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Williams, Ruth. « Margaret Buckingham : Studying the Choreography of Cardiogenesis ». Circulation Research 110, no 6 (16 mars 2012) : 805–7. http://dx.doi.org/10.1161/res.0b013e3182507c49.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Schneider, V. A. « Wnt antagonism initiates cardiogenesis in Xenopus laevis ». Genes & ; Development 15, no 3 (1 février 2001) : 304–15. http://dx.doi.org/10.1101/gad.855601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Stefanovic, Sonia, et Stéphane Zaffran. « Mechanisms of retinoic acid signaling during cardiogenesis ». Mechanisms of Development 143 (février 2017) : 9–19. http://dx.doi.org/10.1016/j.mod.2016.12.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Pedrazzini, Thierry. « Control of Cardiogenesis by the Notch Pathway ». Trends in Cardiovascular Medicine 17, no 3 (avril 2007) : 83–90. http://dx.doi.org/10.1016/j.tcm.2007.01.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

McNally, Elizabeth, et Lisa Dellefave. « Sarcomere Mutations in Cardiogenesis and Ventricular Noncompaction ». Trends in Cardiovascular Medicine 19, no 1 (janvier 2009) : 17–21. http://dx.doi.org/10.1016/j.tcm.2009.03.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Yan, Xiaoyu Wang, Zhenglai Ma, Manli Chuai, Andrea Münsterberg, Kenneth KaHo Lee et Xuesong Yang. « Endoderm contributes to endocardial composition during cardiogenesis ». Chinese Science Bulletin 59, no 22 (20 mai 2014) : 2749–55. http://dx.doi.org/10.1007/s11434-014-0366-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lombó, Marta, et María Paz Herráez. « Paternal Inheritance of Bisphenol A Cardiotoxic Effects : The Implications of Sperm Epigenome ». International Journal of Molecular Sciences 22, no 4 (20 février 2021) : 2125. http://dx.doi.org/10.3390/ijms22042125.

Texte intégral
Résumé :
Parental exposure to bisphenol A (BPA) has been linked to a greater incidence of congenital diseases. We have demonstrated that BPA induces in zebrafish males an increase in the acetylation of sperm histones that is transmitted to the blastomeres of the unexposed progeny. This work is aimed to determine whether histone hyperacetylation promoted by paternal exposure to BPA is the molecular mechanism underlying the cardiogenesis impairment in the descendants. Zebrafish males were exposed to 100 and 2000 µg/L BPA during early spermatogenesis and mated with non-exposed females. We analyzed in the progeny the expression of genes involved in cardiogenesis and the epigenetic profile. Once the histone hyperacetylation was confirmed, treatment with epigallocatechin gallate (EGCG), an inhibitor of histone acetyltransferases, was assayed on F1 embryos. Embryos from males exposed to 2000 µg/L BPA overexpressed the transcription factor hand2 and the receptor esr2b, showing their own promoters—as well as that of kat6a—an enrichment in H3K9ac. In embryos treated with EGCG, both gene expression and histone acetylation (global and specific) returned to basal levels, and the phenotype was recovered. As shown by the results, the histone hyperacetylated landscape promoted by BPA in the sperm alters the chromatin structure of the progeny, leading to the overexpression of the histone acetyltransferase and genes involved in cardiogenesis.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Hoelscher, Sarah C., Theresia Stich, Anne Diehm, Harald Lahm, Martina Dreßen, Zhong Zhang, Irina Neb et al. « miR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations ». International Journal of Molecular Sciences 21, no 3 (10 février 2020) : 1158. http://dx.doi.org/10.3390/ijms21031158.

Texte intégral
Résumé :
MicroRNAs (miRs) appear to be major, yet poorly understood players in regulatory networks guiding cardiogenesis. We sought to identify miRs with unknown functions during cardiogenesis analyzing the miR-profile of multipotent Nkx2.5 enhancer cardiac progenitor cells (NkxCE-CPCs). Besides well-known candidates such as miR-1, we found about 40 miRs that were highly enriched in NkxCE-CPCs, four of which were chosen for further analysis. Knockdown in zebrafish revealed that only miR-128a affected cardiac development and function robustly. For a detailed analysis, loss-of-function and gain-of-function experiments were performed during in vitro differentiations of transgenic murine pluripotent stem cells. MiR-128a knockdown (1) increased Isl1, Sfrp5, and Hcn4 (cardiac transcription factors) but reduced Irx4 at the onset of cardiogenesis, (2) upregulated Isl1-positive CPCs, whereas NkxCE-positive CPCs were downregulated, and (3) increased the expression of the ventricular cardiomyocyte marker Myl2 accompanied by a reduced beating frequency of early cardiomyocytes. Overexpression of miR-128a (4) diminished the expression of Isl1, Sfrp5, Nkx2.5, and Mef2c, but increased Irx4, (5) enhanced NkxCE-positive CPCs, and (6) favored nodal-like cardiomyocytes (Tnnt2+, Myh6+, Shox2+) accompanied by increased beating frequencies. In summary, we demonstrated that miR-128a plays a so-far unknown role in early heart development by affecting the timing of CPC differentiation into various cardiomyocyte subtypes.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Klug, M. G., M. H. Soonpaa et L. J. Field. « DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes ». American Journal of Physiology-Heart and Circulatory Physiology 269, no 6 (1 décembre 1995) : H1913—H1921. http://dx.doi.org/10.1152/ajpheart.1995.269.6.h1913.

Texte intégral
Résumé :
The proliferative capacity of embryonic stem (ES) cell-derived cardiomyocytes was assessed. Enriched preparations of cardiomyocytes were isolated by microdissection of the cardiogenic regions of cultured embryoid bodies. The identity of the isolated cells was established by immunocytology, and mitotic activity was monitored by [3H]thymidine incorporation and pulse-chase experiments. ES-derived cardiomyocytes were mitotically active and predominantly mononucleated at 11 days after cardiogenic induction. By 21 days postinduction, cardiomyocyte DNA synthesis was markedly decreased, with a concomitant increase in the percentage of multinucleated cells. Interestingly, the duration of active cardiomyocyte reduplication in the ES system appeared to be roughly similar to that observed during normal murine cardiogenesis. Given these observations, as well as the genetic tractability of ES cells, ES-derived cardiogenesis might provide a useful in vitro system with which to assess the molecular regulation of the cardiomyocyte cell cycle.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Hofbauer, Pablo, Stefan M. Jahnel, Nora Papai, Magdalena Giesshammer, Alison Deyett, Clara Schmidt, Mirjam Penc et al. « Cardioids reveal self-organizing principles of human cardiogenesis ». Cell 184, no 12 (juin 2021) : 3299–317. http://dx.doi.org/10.1016/j.cell.2021.04.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lozano-Velasco, Estefania, Carlos Garcia-Padilla, Maria del Mar Muñoz-Gallardo, Francisco Jose Martinez-Amaro, Sheila Caño-Carrillo, Juan Manuel Castillo-Casas, Cristina Sanchez-Fernandez, Amelia E. Aranega et Diego Franco. « Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis ». International Journal of Molecular Sciences 23, no 5 (4 mars 2022) : 2839. http://dx.doi.org/10.3390/ijms23052839.

Texte intégral
Résumé :
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Heallen, Todd R., Zachary A. Kadow, Jong H. Kim, Jun Wang et James F. Martin. « Stimulating Cardiogenesis as a Treatment for Heart Failure ». Circulation Research 124, no 11 (24 mai 2019) : 1647–57. http://dx.doi.org/10.1161/circresaha.118.313573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Srivastava, Deepak. « GENETIC REGULATION OF CARDIOGENESIS AND CONGENITAL HEART DISEASE ». Annual Review of Pathology : Mechanisms of Disease 1, no 1 (février 2006) : 199–213. http://dx.doi.org/10.1146/annurev.pathol.1.110304.100039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Mironov, Vladimir, Richard P. Visconti et Roger R. Markwald. « On the Role of Shear Stress in Cardiogenesis ». Endothelium 12, no 5-6 (janvier 2005) : 259–61. http://dx.doi.org/10.1080/10623320500476708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Raddatz, E., M. Servin et P. Kucera. « Oxygen uptake during early cardiogenesis of the chick ». American Journal of Physiology-Heart and Circulatory Physiology 262, no 4 (1 avril 1992) : H1224—H1230. http://dx.doi.org/10.1152/ajpheart.1992.262.4.h1224.

Texte intégral
Résumé :
Oxidative metabolism of the isolated embryonic heart of the chick has been determined using a spectrophotometric technique allowing global as well as localized micromeasurements of the O2 uptake. Entire hearts, excised from embryos of 10 somites (primordia fused, stage 10 HH) and 40 somites (S shaped, stage 20 HH) were placed in a special chamber under controlled metabolic conditions where they continued to beat spontaneously and regularly. During the 32 h of development, the O2 consumption of the whole heart increased from 0.9 +/- 0.1 to 5.3 +/- 0.8 nmol O2/h. These values corrected for protein content were, however, comparable (0.45 nmol O2.h-1.micrograms-1). At stage 10-12, the O2 uptake varied along the cardiac tube (from 0.74 to 1.0 nmol O2.h-1.mm-2). From stage 10 to 20, the O2 uptake per unit area of ventricle wall increased from 0.7 +/- 0.2 to 1.8 +/- 0.2 nmol O2.h-1.mm-2, and the O2 uptake per myocardial volume during one cardiac cycle varied from 7 to 2.5 nmol O2/cm3. These results indicate that, despite an intense morphogenesis, the cardiac tissue has a rather low and stable oxidative metabolism, although the O2 requirement of the whole heart increases significantly. Moreover, the normalized suprabasal aerobic energy expenditure decreases throughout early cardiogenesis. The functional integrity of the isolated embryonic heart combined with the experimental possibilities of the microtechnique make the preparation appropriate for studying the changes in cardiac metabolism during development.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Yamak, A., B. V. Latinkic, R. Dali, R. Temsah et M. Nemer. « Cyclin D2 is a GATA4 cofactor in cardiogenesis ». Proceedings of the National Academy of Sciences 111, no 4 (13 janvier 2014) : 1415–20. http://dx.doi.org/10.1073/pnas.1312993111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

WOZNIEWICZ, B. « 340 Heart failure and de novo human cardiogenesis ». European Journal of Heart Failure Supplements 3, no 1 (juin 2004) : 85–86. http://dx.doi.org/10.1016/s1567-4215(04)90250-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wu, Mingfu. « Mechanisms of Trabecular Formation and Specification During Cardiogenesis ». Pediatric Cardiology 39, no 6 (28 mars 2018) : 1082–89. http://dx.doi.org/10.1007/s00246-018-1868-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Artap, Stanley, Lauren J. Manderfield, Cheryl L. Smith, Andrey Poleshko, Haig Aghajanian, Kelvin See, Li Li, Rajan Jain et Jonathan A. Epstein. « Endocardial Hippo signaling regulates myocardial growth and cardiogenesis ». Developmental Biology 440, no 1 (août 2018) : 22–30. http://dx.doi.org/10.1016/j.ydbio.2018.04.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Zhang, Chi, Tamara Basta et Michael W. Klymkowsky. « SOX7 and SOX18 are essential for cardiogenesis inXenopus ». Developmental Dynamics 234, no 4 (décembre 2005) : 878–91. http://dx.doi.org/10.1002/dvdy.20565.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Robbins, Jeffrey, Thomas Doetschman, W. Keith Jones et Alejandro Sánchez. « Embryonic stem cells as a model for cardiogenesis ». Trends in Cardiovascular Medicine 2, no 2 (mars 1992) : 44–50. http://dx.doi.org/10.1016/1050-1738(92)90003-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

BEHFAR, A., C. PEREZTERZIC, D. HODGSON, A. ALEKSEEV, G. KANE, M. PUCEAT et A. TERZIC. « Guided cardiogenesis for safe stem cell-based therapy ». Clinical Pharmacology & ; Therapeutics 77, no 2 (février 2005) : P3. http://dx.doi.org/10.1016/j.clpt.2004.11.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hatcher, Cathy J., Min-Su Kim, Caroline S. Mah, Marsha M. Goldstein, Benjamin Wong, Takashi Mikawa et Craig T. Basson. « TBX5 Transcription Factor Regulates Cell Proliferation during Cardiogenesis ». Developmental Biology 230, no 2 (février 2001) : 177–88. http://dx.doi.org/10.1006/dbio.2000.0134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Martin, Kendall E., et Joshua S. Waxman. « Atrial and Sinoatrial Node Development in the Zebrafish Heart ». Journal of Cardiovascular Development and Disease 8, no 2 (9 février 2021) : 15. http://dx.doi.org/10.3390/jcdd8020015.

Texte intégral
Résumé :
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Méry, Annabelle, Franck Aimond, Claudine Ménard, Katsuhiko Mikoshiba, Marek Michalak et Michel Pucéat. « Initiation of Embryonic Cardiac Pacemaker Activity by Inositol 1,4,5-Trisphosphate–dependent Calcium Signaling ». Molecular Biology of the Cell 16, no 5 (mai 2005) : 2414–23. http://dx.doi.org/10.1091/mbc.e04-10-0883.

Texte intégral
Résumé :
In the adult, the heart rate is driven by spontaneous and repetitive depolarizations of pacemaker cells to generate a firing of action potentials propagating along the conduction system and spreading into the ventricles. In the early embryo before E9.5, the pacemaker ionic channel responsible for the spontaneous depolarization of cells is not yet functional. Thus the mechanisms that initiate early heart rhythm during cardiogenesis are puzzling. In the absence of a functional pacemaker ionic channel, the oscillatory nature of inositol 1,4,5-trisphosphate (InsP3)-induced intracellular Ca2+ signaling could provide an alternative pacemaking mechanism. To test this hypothesis, we have engineered pacemaker cells from embryonic stem (ES) cells, a model that faithfully recapitulates early stages of heart development. We show that InsP3-dependent shuttle of free Ca2+ in and out of the endoplasmic reticulum is essential for a proper generation of pacemaker activity during early cardiogenesis and fetal life.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie