Thèses sur le sujet « Cardiogenesi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 45 meilleures thèses pour votre recherche sur le sujet « Cardiogenesi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
DI, MAURO VITTORIA. « Novel insights into the protective role of miR-133a in the heart and its therapeutic application for the treatment of cardiac pathologies ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/170792.
Texte intégralSo far, a plethora of studies demonstrated the importance of miRNAs, in embryo development and in the onset of basically all kinds of pathologies. In the cardiac system, the role of miR-133a was extensively characterized from embryogenesis to the development of cardiac defects. Nevertheless, much remains to be learned about the functions of miR-133. The main scope of my PhD thesis was to investigate these additional functions of miR-133 firstly in cardiac development, focusing on its potential ability to control signal pathways at the transcriptional level, and secondly in the already well characterized cardiac pathologies. Moreover, the ultimate goal of my research was to translate the additional roles of miR-133 into its therapeutic use by developing a new strategy that, based on the use of nanomaterials, allows for the specific and controlled delivery of miR-133 into the cardiac system.
Potier, Delphine. « Approches in silico et in vivo pour l'étude de la régulation transcriptionnelle : application à la cardiogenèse chez D. melanogaster ». Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22055.
Texte intégralDuring my thesis, I focused on the development of the cardiovascular system in Drosophila in order to investigate the regulatory logic of this process. During embryogenesis, cardiogenesis is mediated by a gene regulatory network which includes conserved signaling pathways and transcription factors, and leads to the formation of a linear cardiac tube. Then, during metamorphosis, the larval cardiac tube is remodeled to form the adult organ.I first participated in the evaluation and the improvement of a new method, cisTargetX, that uses a comprehensive library of motifs, combined with phylogenetic conservation, to identify potential cis-regulatory modules (CRM) presenting common features in a cluster of co-expressed genes.Using this method among other tools, I analysed cardiac remodeling during metamorphosis to predict motifs for transcription factors (TF) involved in the temporal control of gene expression, and also their associated CRM. I performed in-vivo validations of predicted CRM, and demonstrated that they reproduce the expected temporal expression pattern. In addition, I demonstrated that motifs mutation within selected CRM abrogate this expression pattern. This motif is predicted to be recognized by a TF that belong to the nuclear receptor (NR) family. Dhr3, a NR highly expressed at the onset of the induction of the analysed gene set, is demonstrated to be essential for CRM temporal pattern. Our results suggest a modular architecture of the regulatory machinery, in which the temporal and spatial regulations are distinct.Next, I participated in the characterization of the Gene Regulatory Network (GRN) involved in cardiac differentiation during embryogenesis. Combining transcriptome profiling of differentiating cardiac cells with Mef2 Chip-on-Chip experiments allowed me to predict that TF belonging to bZIP and REL family are likely to participate in the GRN driving cardiac differentiation. In-vivo validation of these predictions is in progress
Bobbs, Alexander Sebastian. « FGF Signaling During Gastrulation and Cardiogenesis ». Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265335.
Texte intégralMartin, Jennifer. « Wnt regulated transcription factor networks mediate vertebrate cardiogenesis ». Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources. Online version available for University members only until Feb. 15, 2012, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=25801.
Texte intégralPapoutsi, Tania. « Regulation of cardiogenesis by putative WNT signalling pathways ». Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1325.
Texte intégralWan, Chen-rei. « Characterization of the cardiogenesis of embryonic stem cells ». Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/65283.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 114-127).
Cardiovascular diseases persist as the leading cause of mortality worldwide. Stem cell therapy, aimed to restore contractility and proper vasculature, has gained considerable attention as an attractive therapeutic option. However, proper cell differentiation, survival and integration in an infarcted zone remain elusive. This thesis aims to utilize in vitro techniques to obtain a systematic characterization of how individual stimulations can affect the cardiogenesis process of embryonic stem cells. First, a compliant microfluidic system was developed to study the individual and combined effects of culture dimensions and uniaxial cyclic stretch on the differentiation process. A smaller culture dimension, with a characteristic length scale of hundreds of micrometers, dramatically enhanced differentiation partly due to an accumulation of cell-secreted and cardiogenic BMP2. Uniaxial cyclic stretch, on the other hand, inhibited differentiation. With this microfluidic platform and a GFP-reporting differentiation cell line, effects of various external stimuli on differentiation were systematically studied. Next, the effects of collagen I and cell alignment, two biophysical signatures of the adult myocardium, on promoting phenotypic changes of isolated embryonic stem cell derived cardiomyocytes (ESCDMs) were investigated. Effects of collagen I depended on how it was presented to the cells and overlaying collagen gel impeded cell elongation. Binucleation. characteristic of maturing cardiomyocytes, was reduced with soluble collagen supplement and nanoscale topography and was associated with an increase in cytokinesis. Both nanoscale topography and microcontact printing resulted in aligned cardiomyocyte monolayers but produced different morphologies. Lastly, the lessons learned from studying the aforementioned processes were applied to test the utility of ESCDMs as biological actuators. Three proof-of-concept experiments were conducted: ESCDM monolayers were able to contract synchronously as a cell-assemble, force generated by the cell monolayer was estimated to be comparable to that by neonatal myocytes and lastly, the direction of contraction could be controlled with surface patterning. This work advances our understanding on the cardiogenic potential of murine embryonic stem cells and elucidated complex biological questions with well-characterized and controlled tissue engineering techniques.
by Chen-rei Wan.
Ph.D.
Pang, Kar Lai. « The role of abnormal haemodynamics and cardiac troponin T in cardiogenesis ». Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39193/.
Texte intégralKriegeskotte, Dominik Matthias [Verfasser], et Friedhelm [Akademischer Betreuer] Beyersdorf. « Hämodynamische Veränderungen unter therapeutischer Hypothermie nach cardiogenem Schock ». Freiburg : Universität, 2011. http://d-nb.info/1123458804/34.
Texte intégralPaiva, Solenne. « Facteurs environnementaux et épigénétiques impliqués dans la différenciation cardiaque de cellules souches humaines pluripotentes induites MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction Acellular therapeutic approach for heart failure : in vitro production of extracellular vesicles from human cardiovascular progenitors ». Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS457.
Texte intégralThe objective of this thesis was to evaluate some physical and epigenetic parameters involved during cardiac differentiation of human induced pluripotent stem cells. Environmentally, an often undervalued physical parameter remains, the stiffness defined by the Young’s modulus. Commonly stem cells are cultured and adapted to in vitro rigidities ranging between 1-10 GPa very far from physiological values, for instance 10-15 kPa for the heart. The impact of soft culture substrates with 3 kPa, 12 kPa and 25 kPa was studied on the initial stem cells. Globally, results indicated that rigidities lower than 25 kPa were not suited for total pluripotency maintenance after 6 passages. Also, cellular colonies started to grow in 3D suggesting that softness drove them to build their own microenvironment. Epigenetically, the exact role of one of the first discovered microRNAs, the let-7 family has not yet been fully elucidated. Throughout differentiation its expression was characterized by an early transient peak at the time of mesoderm formation, after which their expression extinguished to only gradually re-increase later in the course of cardiomyocytes maturation. Modulation experiments involving mimics or inhibitors of the let-7 family on different cellular contexts suggested that initially let-7 acted on future cardiac specification but later, this family had to be repressed in order for cardiac progenitors to emerge. Oppositely, the cardiac specific miR-1 always contributed to their progression into cardiomyocytes. Together these researches contribute to fundamental research on human heart development and to applied research on human engineered cardiac tissues
Ridge, Liam. « Investigating the role of Myh10 in the epicardium : insights from the EHC mouse ». Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/investigating-the-role-of-myh10-in-the-epicardium-insights-from-the-ehc-mouse(7d7cec65-e2e6-448c-a6d1-65d3fdc50f3e).html.
Texte intégralAkerberg, Alexander. « Contemporary Genetic Tools for in Vivo Investigations of H3K27 Demethylases in Zebrafish Cardiogenesis ». Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20676.
Texte intégralKaarbo, Mari, et n/a. « The Role of RhoA in Early Heart Development ». Griffith University. School of Biomolecular and Biomedical Science, 2005. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20060105.091005.
Texte intégralKaarbo, Mari. « The Role of RhoA in Early Heart Development ». Thesis, Griffith University, 2005. http://hdl.handle.net/10072/366791.
Texte intégralThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Biomedical Sciences
Full Text
Grey, Corinne. « Les cellules souches embryonnaires de souris : un modèle de cardiogenèse physiopathologique ». Montpellier 1, 2006. http://www.theses.fr/2006MON13509.
Texte intégralRailo, A. (Antti). « Wnt-11 signalling, its role in cardiogenesis and identification of Wnt/β-catenin pathway target genes ». Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261534.
Texte intégralJeziorowska, Dorota. « Analyse des voies de régulation de la cardiogenèse et de la différenciation cardiomyocytaire ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066631/document.
Texte intégralThe general objective of this work was centered on the use of human induced pluripotent cells in modeling and therapeutic evaluation of cardiac pathologies. Since their discovery in 2006, the iPSC provide an opportunity for the development of human cellular models and specific patients for the study of pathophysiological mechanisms, evaluation of pharmacological responses and the generation redifférenciées cells (cardiomyocytes here) for applications cellular therapeutic. In this work we demonstrated that the quantity but also the final quality of cardiomyocytes derived from iPSC depends on the spatial and pharmacological conditions used during the various stages of differentiation. The use of a monolayer differentiation protocol with simultaneous and transient blocking of all Wnt pathways (canonical and noncanonical) allows to obtain a higher maturation of the sarcomere, an essential step for modeling sarcomeropathies IPSC differentiation into cardiomyocytes can also be obtained by targeted molecular approach to specifically activate cardiogenic program. This is achieved through the use of a mutated Cas9 protein and coupled with transactivator system. This allows simultaneous targeting of 3 key cardiogenesis transcription factors (Gata4, MEF2C and Tbx5). This molecular approach is enhanced by the combination with a pharmacological stimulation targeting the Wnt pathway. Beyond modeling of monogenic cardiac disease, cardiomyocytes derived from iPSC can reproduce more complex and multigenic diseases
Baier, Eva [Verfasser]. « Characterization of the cardiogenesis in embryos of a Gse-1tm-1a(EUCOMM)Wtsi mouse line / Eva Baier ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1238897177/34.
Texte intégralRyckebüsch, Lucile. « Etude du rôle de la signalisation rétinoïde lors de la cardiogenèse chez la souris ». Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX20675/document.
Texte intégralRetinoic acid (RA), the active derivative of vitamin A (retinol), acts as a morphogen inseveral developmental processes. Previous studies in the chick embryo (Hochgreb et al.,2003) have indicated that RA signaling is required to antero-posterior patterning of the cardiac tube. The aim of my thesis was to define the role of RA signaling in heart development and in particular in the establishment of antero-posterior identity of the cardiac field. Thus, we used Raldh2 (Retinaldehyde dehydrogenase 2) mutants that are deficient for RA synthesis. To understand the role of RA, we examined the contribution of the second heart field to pharyngeal mesoderm, atria and outflow tract in Raldh2-/- embryos. Our findingsshown that embryo lacking RA synthesis enzyme RALDH2 have expansion of the secondheart field (splanchnic mesoderm).To better understand the mechanism by which RA signaling regulates the cardiac progenitors,we have identified its targets in the splanchnic mesoderm. We have shown for the first timethat Hox genes contribute to cardiogenesis. Moreover, genetically labeled cells analysis reveals a common origin of the arterial and venous poles in the cardiac field.Then, we have analyzed the role of RA in aortic arch remodeling, in particular its influence onfourth aortic arch arteries. This work demonstrates a genetic interaction between Raldh2 and the T-box factor, Tbx1, during fourth aortic arch formation. Our results shows that decreasedon RA level accelerates recovery of fourth aortic arch artery defects seen in Tbx1-/-, which is amodel of DiGeorge syndrome. Moreover, this study suggests that RA is a modifier of 22q11microdeletion (DiGeorge syndrome) in patient.In a collaborative work, we have analyzed the role of RA in differentiation of ventricular myocardium progenitors. Our results showed that the differentiation of the myocardial progenitor cells required RA. The impact of these results is crucial and would lead to therapyand cardiac muscle repair.The last part of my thesis focuses on the role of RA on coronary vascular development. This morphogen seems to influence the position of coronary ostia to the aorta
Monier, Bruno Louis-René. « Contribution à l'étude du contrôle de la cardiogenèse par les gènes homéotiques chez la Drosophile ». Aix-Marseille 2, 2006. http://theses.univ-amu.fr.lama.univ-amu.fr/2006AIX22050.pdf.
Texte intégralDuring my PhD, I have addressed the genetic basis of functional cardiogenesis, using the Drosophila heart as a model system. I have first shown that cardiac cell diversity is autonomously insured by the activity of the Hox genes Ubx and abdA, which notably direct the choice between specific cardiac cell lineages. Hox genes are then required to orchestrate terminal differentiation in the fly heart. I have identified five abdA targets, including the ion channel Ork1. Notably, I have shown that Ork1 is a pure regulator of heart rhythm. In a third work, I have shown that the larval heart is remodeled to form the adult one. This process is driven by an ecdysone-dependent modification of Hox activity. Together, my results identify Hox genes as master regulators controlling main steps of cardiogenesis in Drosophila, and establish a new model system to analyse their function
Sur, Sumon [Verfasser], Wolfram-Hubertus [Akademischer Betreuer] Zimmermann, Dörthe [Gutachter] Katschinski et Peter [Gutachter] Rehling. « Control of cardiogenesis and homeostasis by cardiac fibroblasts / Sumon Sur. Betreuer : Wolfram-Hubertus Zimmermann. Gutachter : Dörthe Katschinski ; Peter Rehling ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://d-nb.info/1106450388/34.
Texte intégralZeitouni, Bruno. « Contribution à l'étude de la cardiogenèse chez Drosophila melanogaster : génomique fonctionnelle et analyse des éléments régulateurs ». Aix-Marseille 2, 2008. http://theses.univ-amu.fr.lama.univ-amu.fr/2008AIX22101.pdf.
Texte intégralA number of inherited cardiomyopathies affect cardiac muscle organogenesis emphasizing the need to improve our knowledge of heart formation. My thesis project concerned, by whole genome analysis and in silico identification of putative cis-regulatory sequences, the characterization of molecular mechanisms controlling heart organogenesis in drosophila. I have first drawn a molecular portrait of adult heart morphogenesis by whole-genome expression profiling at 8 successive time-points. This transcriptional map pointed out specific signalling pathways as potential players in the process. Phenotypic analysis confirmed they are involved in discrete steps of the remodelling. In particular, the Wnt signalling pathway is involved in cardiac myocyte trans-differentiation, while activation of the VEGF-PDGF pathway is required for adult cardiac valve formation. In a second work, I analyzed the differential expression between the aorta and the heart regions in larvae, and identified a dozen of genes that share the same expression pattern of the homeotic gene abd-A in the heart. As these genes are likely to be regulated by abd-A and other common transcription factors, I used a bioinformatic approach based both on the phylogenetic footprinting method and the research of motif clusters to identify the putative cis-regulatory modules responsible of their co-expression. Three enhancers have been found as positive to drive a specific expression in the heart part, and a more detailed analysis of these sequences should help us determine if the corresponding genes are direct targets of abd-A
Sund, M. (Malin). « Type XIII collagen : regulation of cardiovascular development and malignant transformation in transgenic mice ». Doctoral thesis, University of Oulu, 2001. http://urn.fi/urn:isbn:9514265572.
Texte intégralYlönen, R. (Riikka). « Characterization of the function of type XIII collagen in mice ; specific roles during cardiovascular development and posnatally in bone modeling ». Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:9514279441.
Texte intégralCarreira, Vinicius S. « The Aryl Hydrocarbon Receptor Contributions to Cardiovascular Development and Health ». University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1446547352.
Texte intégralWölfer, Monique [Verfasser], Laura C. [Akademischer Betreuer] Zelarayán, Katrin [Gutachter] Streckfuß-Bömeke et Holger [Gutachter] Bastians. « The Role of the Insulin-like Growth Factor Binding Protein 5 (IGFBP5) in Cardiogenesis and Cardiac Remodelling / Monique Wölfer ; Gutachter : Katrin Streckfuß-Bömeke, Holger Bastians ; Betreuer : Laura C. Zelarayán ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1178115682/34.
Texte intégralKlaus, Alexandra. « Die Rolle der Wnt/beta-Catenin- und Bmp-Signalgebung während der frühen Herzentwicklung in der Maus ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15825.
Texte intégralThe vertebrate heart is the first organ that forms during embryonic development. Heart formation requires the coordinated recruitment of multiple cardiac progenitor cell populations derived from both the first and second heart fields, which arise from a common progenitor at gastrulation. In this study we have ablated the Bmp receptor 1a (BmpRIa) and the Wnt effector beta-Catenin in the developing heart of mice using MesP1-cre, which acts in early mesoderm progenitors that contribute to both first and second heart fields. Remarkably, the entire cardiac crescent and later the primitive ventricle were absent in MesP1-cre; BmpR1a loss-of-function mutants. While myocardial progenitor and differentiation markers were detected in the small, remaining cardiac field in these mutants, first heart field markers, which are required for the maintenance and specification of first heart field derivatives, were not expressed. We conclude from these results that Bmp receptor signaling is crucial for the specification of the first heart field. In MesP1-cre; beta-Catenin loss-of-function mutants, cardiac crescent formation as well as first heart field markers were not affected, although cardiac looping and right ventricle formation were blocked. Expression of Isl1 and Bmp4 in second heart field progenitors was strongly reduced. In contrast, in gain-of-function mutation of beta-Catenin using MesP1-cre we revealed an expansion of Isl1 and Bmp4 expressing cells, although the heart tube was not formed. We conclude from these results that Wnt/beta-Catenin signaling regulates second heart field development, and that a precise amount and/or timing of Wnt/beta-Catenin signaling is required for proper heart tube formation and cardiac looping. In conclusion, we have shown that Bmp and canonical Wnt signaling have distinct roles during early cardiogenesis in mice.
Seipelt, Eva. « Impacts d'une carence maternelle en vitamine D sur le développement cardiaque et le métabolisme de la descendance ». Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0669.
Texte intégralIn utero environment, including vitamin D status, is crucial to ensure normal development of the foetus and to prevent any metabolic and cardiac diseases throughout the whole life. The aim of this thesis is to highlight the interactions existing between maternal vitamin D deficiency (VDD) and the potential programming of cardio-metabolic fate of the offspring. First, for the juvenile offspring, the energetic homeostasis and the weight of the offspring from deficient mother were sex-dependently altered. In adulthood, an obesogenic diet combined with maternal VDD, disrupted glucose homeostasis and adiposity in male offspring but not in females. Such phenotypes were associated to different transcriptomic profiles in adipose tissue, that could be related to differential modulation of circulating levels of estradiol in females. The maternal VDD modulates metabolic fate of the offspring, in exacerbated proportions, when the offspring was exposed to obesogenic diet during adulthood. Then, we studied the impact of maternal VDD on the cardiac fate of offspring. In embryos maternal VDD induced left ventricular hypertrophy, modulated their cardiac transcriptome and such modifications seemed to be related to the modulation of chromatin structure. Also, the morphology and cardiac function were altered in the adult offspring. Maternal VDD impairs the cardiac development of the foetus and programs cardiac outcomes in adulthood
Wittler, Lars. « Anteriore Musterbildung im Wirbeltierembryo die Induktion von Vorderhirn und Herz / ». Doctoral thesis, [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967365570.
Texte intégralPuig, Sanvicens Verònica. « Cardiomyogenic potentiality of somatic and stem cells when cultured in the three-dimensional peptide scaffold RAD16-I ». Doctoral thesis, Universitat Ramon Llull, 2014. http://hdl.handle.net/10803/128947.
Texte intégralLas enfermedades cardiovasculares son una de las mayores causas de mortalidad a escala mundial. El infarto de miocardio es el principal responsable de las cardiopatías isquémicas. La irrigación sanguínea al corazón se ve bloqueada debido a una oclusión en un capilar sanguíneo provocando muerte celular masiva que genera una zona miocárdica necrótica. En la última década, la medicina cardíaca regenerativa se ha focalizado en estrategias fundamentadas en la ingeniería de tejidos y la terapia celular basada en células madre. Es este trabajo, hemos caracterizado el potencial cardíaco de distintos tipos celulares cultivados en andamios tridimensionales (3D) generados a partir del hidrogel peptídico RAD16-I. En primer lugar, hemos estudiado la adquisición de potencial mesenquimático de fibroblastos humanos de dermis (hNDFs) en cultivos 3D y su diferenciación subsecuente a linajes adipogénico y cardiogénico. Únicamente los hNDFs cultivados en hidrogeles de RAD16-I adquieren una potenciación mesenquimática. Las células adoptan espontáneamente propiedades parecidas a las células madre mesenquimáticas mientras que la diferenciación a adipogénesis y cardiogénesis requiere medio de inducción. En segundo lugar, hemos comparado el grado de diferenciación cardíaca de células madre humanas pluripotentes inducidas (hiPSCs) cultivadas en ambientes 2D versus 3D y hemos evaluado el efecto del ácido ascórbico (AA) en el proceso. En nuestro trabajo y como ya se había demostrado en publicaciones previas, el AA resultó acelerar y mejorar la diferenciación cardíaca de hiPSCs en cultivos 2D. A demás, los resultados presentados sugieren que las hiPSCs cultivadas en 3D aumentan su grado de diferenciación y adquieren un potencial cardiogénico 105 veces más elevado que en los cultivos 2D. En tercer lugar, hemos diseñado un parche cardíaco basado en cultivos 3D de células adultas porcinas progenitoras del tejido adiposo del mediastino (pMATPCs) inyectados en matrices naturales (pericardio humano descelularizado). Hemos implantado la bio-prótesis miocárdica in vivo y hemos determinado que el bio-andamio favorece la migración celular y la regeneración de la zona infartada en el modelo porcino. En conclusión, hemos analizado el potencial cardiogénico de células adultas somáticas (hNDFs), células madre adultas (pMATPCs) y células madre pluripotentes (hiPSCs) en cultivos 3D basados en hidrogeles de RAD16-I para futuras aplicaciones en el tratamiento de enfermedades cardíacas.
Cardiac failure is the primary cause of mortality throughout the world. One of the leading causes of heart failure is myocardial infarction, which results from a reduced flow of blood to a part of the heart. This leads to cardiomyocyte death and myocardial necrosis. In the past decade, various strategies for cardiac reparative medicine have been investigated, from tissue engineering to stem cell-based therapy. Herein, we characterized the cardiac potential of different cell types cultured in three-dimensional (3D) scaffolds based on the peptide hydrogel RAD16-I. Firstly, we studied the mesenchymal potential acquisition of human Normal Dermal Fibroblasts (hNDFs) in 3D cultures and further commitment into adipogenic and cardiogenic lineages. We suggest that only hNDFs cultured in RAD16-I hydrogels undergo a mesenchymal potentiation. Cells spontaneously acquired mesenchymal stem cell-like properties whereas they required induction media to differentiate into adipogenic- and cardiogenic-like lineages. Secondly, we compared the degree of cardiac commitment of human induced Pluripotent Stem Cells (hiPSCs) when cultured in 2D versus 3D and the effect of ascorbic acid (AA), which has been proven to promote cardiac differentiation, on the process. In fact, AA seemed to accelerate and improve the cardiac commitment of hiPSCs in 2D cultures. Results suggested that hiPSCs in 3D cultures displayed an increased level of differentiation and acquired 105-fold more cardiogenic potential than cells cultured in 2D. Thirdly, we designed a cardiac patch based on 3D cultures of adult porcine Mediastinal Adipose Tissue Progenitor Cells (pMATPCs) injected into natural matrices (decellularized human pericardium). We implanted the myocardial bioprosthesis in vivo and determined that the bioscaffold supported cell migration and regeneration into the infarcted area in swine. In summary, we studied the cardiogenic potential of adult somatic cells (hNDFs), adult stem cells (pMATPCs) and pluripotent stem cells (hiPSCs) in 3D cultures based on RAD16-I hydrogels for potential future applications in the treatment of heart disease.
Silva, Francisca Castro Gomes Soares da. « Dissecting the role of Hes5 in cardiogenesis ». Master's thesis, 2015. http://hdl.handle.net/10316/29716.
Texte intégralHeart formation involves the participation of various signaling pathways that crosstalk in a temporal and context–dependent manner. The molecular events taking place from pre-gastrulation up to formation of cardiomyocytes are recapitulated in vitro by differentiating mouse embryonic stem (mES) cells. Importantly, by closely following the kinetics of cell fate decisions occurring in the embryo, ES cells facilitate mechanistic studies aimed at the dissection of early lineage specification. Following previous findings demonstrating the role of the Notch pathway in specifying a cardiac fate from mesodermal progenitors and hemangioblasts1, our laboratory identified a novel function for Hes5, as a downstream effector of Notch1, at the onset of cardiogenesis (Freire, AG et al, unpublished). Loss and gain of function studies unveiled that Hes5 instructs ES cell-derived mesodermal progenitors to commit preferentially towards cardiac over a hematopoietic fate, in part by regulating the early cardiac transcription factor, Isl1. Interestingly, a short-pulsed Hes5 induction enhances cardiac specification, whereas a sustained activation impairs the emergence of contracting colonies. The herein Thesis aimed to further dissect the role of Hes5 in cardiogenesis. To this end, we proposed to understand the role of this bHLH regulator at different stages of the cardiomyocytic program. Given the robustness of the mES cell in vitro model system for cardiac differentiation, a mES cell line expressing exogenous Hes5 under the control of a Doxycycline (Dox)-inducible promoter was used. The data indicated that Hes5 expression maintains an undifferentiated cardiac progenitor state, in part by sustaining high Isl1 levels. These results demonstrated that after induction of cardiac fate, Hes5 withdrawal is required to allow cardiac differentiation, suggesting a confined transient temporal window for Hes5 participation in cardiogenesis. A second aim of this Thesis was the characterization of endogenous Hes5 expression during mES cell differentiation towards mesodermal derivatives, in a more close to physiological system. Interestingly, Hes5 levels upregulated from day 4 to day 6 of in vitro differentiation, correlating to the temporal window identified for enhanced cardiac differentiation induced by transient exogenous Hes5 overexpression. x Finally, aiming at the validation of Hes5 role in specifying cardiac fate in the developing mouse embryo, Hes5 expression was assessed in E6.5 and E7.5 mouse embryos. These results report for the first time Hes5 expression in the nascent mesoderm of gastrulating E6.5 embryos. Interestingly, Hes5 expression was not found or dramatically reduced in E7.5 embryos, further corroborating a transient role for Hes5 at the onset of cardiogenesis. Overall, the work performed in the frame of the herein Thesis contributed (i) a better understanding of Hes5 role at different stages of the cardiomyocytic differentiation program (i.e. at the specification of cardiac progenitors and during differentiation into cardiomyocytes), (ii) the indication that endogenous Hes5 is upregulated at the time cardiac progenitors are specified during in vitro mES cell differentiation, and (iii) the first report of Hes5 expression in the nascent mesoderm of E6.5 gastrulating embryos.
A formação do coração envolve a participação de várias vias de sinalização que interagem entre si de um modo tempo- e contexto-dependente. Os eventos moleculares que ocorrem desde a pré-gastrulação até à formação de cardiomiócitos são recapitulados in vitro através da diferenciação de células estaminais embrionárias (CEEs). Importante ainda é que, ao acompanharem de perto a cinética das decisões de destino celular que ocorrem no embrião, as EECs facilitam a execução de estudos mecanísticos com o objectivo de dissecar a especificação das linhagens celulares. Dado o papel, previamente demonstrado, da via de sinalização Notch na especificação de um destino cardíaco a partir de progenitores da mesoderme e hemangioblastos, o nosso laboratório identificou uma nova função para o Hes5, como efector do Notch1, na indução da cardiogénese (Freire, AG et al, não publicado). Estudos de perda e ganho de função revelaram que o Hes5, em parte por regular os níveis do factor de transcrição Isl1, determina uma decisão preferencial pela diferenciação em linhagens cardíacas em detrimento de hematopoiéticas nos progenitores da mesoderme derivados de CEEs. Interessantemente, a indução de um pulso curto de Hes5 aumenta a especificação cardíaca, enquanto que uma activação contínua diminui o aparecimento de colónias a contrair. Esta dissertação de Mestrado teve como objectivo dissecar o papel do Hes5 na cardiogénese. Com este propósito, propusemos compreender o papel deste factor de transcrição em diferentes etapas do programa de diferenciação cardiomiocítico. Dada a robustez do modelo in vitro de diferenciação de CEEs em células cardíacas, foi utilizada uma linha celular estaminal embrionária que expressa Hes5 exógeno sob o controlo de um promotor indutível de Doxiciclina (Dox). Os dados obtidos indicam que a expressão de Hes5 mantém as células num estado de progenitores cardíacos indiferenciados, em parte por manter os níveis de Isl1 também elevados. Estes resultados demonstraram que após a indução de um destino cardíaco é necessária uma diminuição de expressão de Hes5 para permitir diferenciação cardíaca, sugerindo que a participação do Hes5 na cardiogénese ocorre numa janela temporal transiente. xii Um segundo objectivo desta dissertação incluiu a caracterização da expressão de Hes5 endógeno durante a diferenciação in vitro de derivados da mesoderme, num sistema mais próximo do fisiológico. Interessantemente, os níveis de Hes5 aumentam desde o dia 4 até ao dia 6 de diferenciação in vitro, o que correlaciona com a janela temporal previamente identificada por indução de expressão de Hes5 exógeno na qual o Hes5 aumenta a diferenciaçao cardíaca. Finalmente, a expressão de Hes5 foi avaliada em embriões de murganho com 6,5 e 7,5 dias com o objectivo de validar o papel do Hes5 na especificação de um destino cardíaco no desenvolvimento embrionário de murganho. Estes resultados descrevem pela primeira vez expressão de Hes5 na mesoderme nascente de embriões com 6,5 dias. Importante ainda, é o facto de a expressão de Hes5 não ter sido detectada, ou estar dramaticamente reduzida em embriões com 7,5 dias, corroborando o papel transiente do Hes5 na indução da cardiogénese. Em resumo, o trabalho realizado no âmbito da presente dissertação contribuiu (i) um melhor conhecimento do papel do Hes5 em diferentes etapas do programa de diferenciação cardiomiocítio (i.e. na especificação de progenitores cardíacos e durante a diferenciação em cardiomiócitos), (ii) a indicação que a expressão de Hes5 endógeno está aumentada durante o tempo de especificação dos progenitores cardíacos durante a diferenciação in vitro de CEEs, e (iii) uma primeira descrição de expressão de Hes5 na mesoderme nascente em embriões com 6,5 dias.
PTDC/SAL-ORG/118297/2010
Pest-C/SAL/LA0002/2011
Pest-C/SAL/LA0002/2013
Liao, Pei-Yin. « Glycogen synthase kinase 3 modulates cardiogenesis in zebrafish ». 2005. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-2707200519042400.
Texte intégralSur, Sumon. « Control of cardiogenesis and homeostasis by cardiac fibroblasts ». Doctoral thesis, 2016. http://hdl.handle.net/11858/00-1735-0000-0028-87B6-9.
Texte intégral« Uncovering the molecular mechanisms underlying Shox2 regulated cardiogenesis ». Tulane University, 2020.
Trouver le texte intégralLin, Hung-Yu, et 林宏諭. « FGF1B Promoter Activation and FGF1 Signaling in Cardiogenesis ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/00031422445940611371.
Texte intégral國立清華大學
生物科技研究所
104
Abstract Heart disease is the leading cause of human death in the 21st century. Heart transplantation is a promising way to treat this. Because donor resources are limited, cell-based therapy has been developed as an alternative. Therefore, genes that trigger cardiogenesis could have potential in the treatment of heart disease. FGF1 is reported to stimulate cardiomyocyte proliferation under conditions of myocardial infarction; but little is known about its function during cardiac differentiation. In this study, we established an in vitro cardiogenesis model through a reliable chemical induction protocol to determine whether FGF1 and its gene expression are involved in cardiogenesis. Oxytocin, a well-known hormone but also a cardiac differentiation inducer, was used in a mouse embryonic stem cell line E14Tg2a to achieve cardiac differentiation. After differentiation, beating cell clusters appeared and the expression of FGF1B mRNA was upregulated in the late differentiation stage (differentiation days 8–14). Interestingly, FGF1B expression patterns during cardiac differentiation were similar to those of a mature cardiomyocyte marker, troponin T2, cardiac. The blockage of FGF1-FGFR signaling reduced not only the appearance of beating cluster formation but also the expression levels of cardiomyocyte-associated genes. Moreover, by investigating FGF1 downstream signaling cascades, we observed that the efficiency of beating cluster formation was mainly regulated via the FGF1-FGFR-PKC signaling axis. Taken together, we provide evidence to support that FGF1 could regulate cardiogenesis primarily through the PKC signaling, but not through the MAPK signaling pathway.
Liao, Pei-Yin, et 廖珮茵. « Glycogen synthase kinase 3 ß modulates cardiogenesis in zebrafish ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/72900434315698689849.
Texte intégral國立臺灣大學
分子與細胞生物學研究所
93
Glycogen synthase kinase 3β (GSK3β) encodes a multifunctional serine/threonine protein kinase, which is ubiquitously expressed in organisms. Although GSK3β is known to play roles in many biological processes, including cell survival, tumorigenesis and developmental patterning, it remains unclear that the function of GSK3β in cardiogenesis in vivo. We used a GFP-tagged heart transgenic zebrafish to address this question. In order to specifically inhibit GSK3β, gsk3β antisense morpholino oligonucleotide (gsk3β-MO) was injected into one-celled embryos to block the translation of the gsk3β mRNA. In gsk3β-MO -injected embryos, we found that heart precursor cells lined up at the midline at 24 hpf, failed to complete the heart positioning, and then stretched slowly to a thin, ‘string-like’ shape about 96 hpf. In addition, in this morphants, the heart rate was slower, the contraction was weaker, and pericardial edema was commonly observed. Knowdown of GSK3β resulted in a severe disruption of early (jogging) and late (looping) aspects of cardiac left-right asymmetry. The degree of cardiac defects due to GSK3β attenuation was dose-dependent. But these defectives could be rescued by injecting synthetic gsk3β mRNA. Consistent with the morphological change of heart, the expression of bmp4, a heart-asymmetry marker and a target of Wnt/β-catenin signaling pathway, was upregulated in GSK3β morphants: the asymmetry of heart was completely disrupted. Interestingly, we found that cardiac defects happened in the gsk3β-MO-injected embryos were similar to those observed in axin1 morphants. Therefore, our findings strongly suggest that GSK3β plays a role in L/R-biased heart positioning through Wnt/β-catenin pathway during zebrafish cardiogenesis.
Araújo, Ana Carolina. « The activity of Mouse cerberus like 2 during cardiogenesis : genetic and morphogenetic studies ». Master's thesis, 2009. http://hdl.handle.net/10400.1/791.
Texte intégralThe heart is the first organ that becomes functional in the vertebrate embryo. Heart morphogenesis is a complex process, with precise control developmental mechanisms, that can nevertheless fail. There are morphological aspects as polarity of the heart intrinsically related with the three body axes, anterior?posterior (A-P), dorsal?ventral (D-V), and left?right (L-R). The L-R axis has became subject of many studies in recent years and was found that the heart undergoes multiple morphogenetic processes, which are governed by this axis. Development of internal organs proceeds across the L-R axis and gain shape during organogenesis as a result of the early asymmetric activation of the conserved Nodal signalling cascade, in the left lateral plate mesoderm (Hamada et al., 2002). A Cerberus/Dan family member, mouse cerberus-like2 (cerl-2) is asymmetrically expressed on the right side of the mouse node and encodes for a secreted protein that binds directly to nodal restricting the Nodal signalling pathway towards the left side by preventing its activity in the right side (Marques et al, 2004). Preliminary studies showed that cerl-2 knockout (KO) mice display multiple laterality defects including heart?s rotation failure and randomization of organs? position due to L/R axis disruption. In addition, was observed several cardiac defects as severe hyperplasia of the myocardium and incomplete atria formation and ventricular septation that may not be explained by laterality abnormalities. In this study, were conducted morphological analyses of cerl-2 KO newborns, histological sections of newborn hearts and WISH with Gata-4, mefc2, hand and fgf8 probes on embryos throughout heart development (7,5dpc to 10.5dpc). Furthermore, a new compound mouse line cerl- 2KO::mlc1vlacZ was generated which will help to identify the contribution of the Secondary Heart Field (SHF) to the cerl-2KO heart defects. This body of work leads to the suggestion that, in addition to the previously described laterality-related defects, another distinct mechanism may contribute to the spectrum of complex cardiac defects in cerl-2 KO mice that cannot be explained only by the disruption of the nodal cascade in LPM. Problems in heart morphogenesis lead to congenital heart disease, which is the most common form of birth defect in humans (Harvey, 2002; Olson and Schenider, 2003). Abstract
Araújo, Ana Carolina. « The activity of mouse Cerberus like 2 during cardiogenesis - genetic and morphogenetic studies ». Doctoral thesis, 2013. http://hdl.handle.net/10400.1/6703.
Texte intégralSendo o coração o primeiro órgão a ser formado, é também o primeiro a funcionar com o objectivo de suprir as necessidades do embrião vertebrado. No entanto, a morfogénese cardíaca é bastante complexa, e perturbações podem originar doenças cardíacas congénitas, sendo os defeitos com maior incidência à nascença. Com o objectivo de melhor compreender a intrincada base molecular que controla a formação e o desenvolvimento deste órgão e assim promover a união entre prevenção e tratamento, é de importância fundamental aprofundar os conhecimentos nesta área de investigação. Apesar das óbvias diferenças entre o humano e o ratinho, o coração nos dois modelos animais é constituído por quatro câmaras (dois átrios e dois ventrículos) e os respectivos funcionamentos são semelhante tendo contudo algumas ressalvas ao serem equiparados. Além disto, 99% dos genes no ratinho têm equivalentes em humanos, logo o ratinho é considerado um ótimo modelo para o estudo de doenças humanas. Durante o desenvolvimento, o coração recebe informação para se posicionar ao longo dos três eixos do corpo. É o terceiro eixo, o esquerdo-direito (E/D), que determina a direção de rotação do coração e que portanto influencia a sua morfologia final, como exemplo, ventrículo e átrio esquerdo posicionados no lado esquerdo do embrião. Embora já se saiba através de recentes estudos em peixe-zebra como o sinal assimétrico do eixo E/D direciona a rotação cardíaca, ainda é desconhecido a influência deste eixo no posicionamento dos outros órgãos viscerais. Nodal, membro da família de factores de crescimento TGF-ß, tem sido reconhecido como um elemento chave durante o estabelecimento do eixo E/D e do desenvolvimento do embrião sendo especialmente requerido para a formação da mesoderme. O membro da família Cerberus/Dan, mouse cerberus-like2 (Cerl2), é expresso assimetricamente no lado direito do nó em ratinhos e codifica a proteína que uma vez secretada é capaz de se ligar diretamente a Nodal. Dessa maneira, o antagonismo entre Cerl2 e Nodal é essencial para restringir assimetricamente a atividade do Nodal para o lado esquerdo do nó levando a indução da sua cascata de sinalização na placa lateral da mesoderme esquerda. Esta restrição assimétrica para o lado esquerdo do embrião vai determinar a orientação assimétrica dos órgãos. Em ratinhos knock-out para o gene Cerl2 (Cerl2-/-) foi demonstrado que o gene Nodal também pode ser expresso no lado direito do nó levando a indução da cascata de sinalização Nodal na placa lateral da mesoderme direita. Como consequência os ratinhos Cerl2-/- manifestam uma variedade de defeitos de lateralidade (DL) conhecidos como situs inversus, isomerismo e heterotaxia. Adicionalmente estão associadas aos DL malformações cardiovasculares, sendo as mais comuns rotação alterada do eixo cardíaco, defeitos no septo ventricular e atrial, bem como alterações na rotação e diferenciação das artérias, estas últimas conhecidas como transposição das grandes artérias, tronco arterioso comum, dupla saída do ventrículo direito e dupla via de saída do ventrículo esquerdo. Assim, estes fenótipos podem ser a causa de morte nos primeiros dias de vida dos animais Cerl2 mutantes. Adicionalmente, resultados preliminares revelaram um novo fenótipo nos Cerl2-/- recém-nascidos caracterizado pelo aumento da espessura das paredes do ventrículo esquerdo ao qual nestes animais não foram associados defeitos de lateralidade. De forma a caracterizar detalhadamente este fenótipo e identificar o papel do Cerl2 durante a formação do coração, procedeu-se à análise do fenótipo cardíaco em embriões e em ratinhos no começo da vida pós-natal 0 (P0). Com os dados apresentados neste estudo, demonstrou-se que o aumento da espessura do miocárdio no ventrículo esquerdo (VE) e no septo interventricular (SIV) em Cerl2 mutantes sem DL é causado pela hiperplasia dos cardiomiócitos no ventrículo esquerdo. Além disso, nos mutantes de Cerl2 o aumento da expressão relativa de ciclina D1 no VE foi detectada no estádio embrionário 13 (E13). Este resultado pode estar relacionado com a expressão específica de Cerl2 no VE, tal como detectada em animais controlo, indicando assim um possível papel regulatório do Cerl2 durante a formação do coração e mais especificamente, do ventrículo esquerdo. Além disso, os ratinhos Cerl2-/- apresentaram expressão alterada de genes cardíacos durante o estádio embrionário e nas primeiras horas após o nascimento, o que é incompatível com a função cardíaca normal também confirmada pela redução da função sistólica em ratinhos neonatais de Cerl2-/-. Para além de investigarmos o mecanismo celular responsável pelo aumento da massa ventricular esquerda, também sugerimos dois mecanismos moleculares pelos quais o Cerl2 pode estar envolvido. Sendo Cerl2 antagonista da via de sinalização TGFßs/Nodal/Activin/Smad2, em corações embrionários (E13) e neonatais de Cerl2-/- observou-se um aumento da fosforilação de Smad2 (pSMAD2). Estes resultados sugerem que a via de sinalização TGFßs/Nodal/Activin/Smad2 pode estar ativamente aumentada na ausência de Cerl2. Interessantemente, tem sido relatado que esta via é essencial para a regulação da cardiogénese uma vez que também desempenha um papel relevante como mediador na patogénese cardíaca em corações de ratinho adulto após lesão. A segunda hipótese tem como base dados recentes os quais reportam que a via de sinalização Wnt e Cerl2 estão interligadas no nó através de um feedback negativo, onde o mRNA do Cerl2 é regulado após a transcrição por Wnt3 levando à degradação de Cerl2 no lado esquerdo do nó e portanto estabelecendo a sua expressão de forma assimétrica. Em contrapartida, Cerl2 é capaz de inibir a auto-regulação da proteína Wnt3. Adicionalmente, também foi revelado que a via de sinalização Wnt/ß-catenin é essencial para estimular a proliferação de cardiomiócitos na camada compacta de ambos os ventrículos. Apesar de em nenhum estudo até agora ter sido demonstrada a relação entre Wnt/ß-catenin e Cerl2 no coração e de serem necessárias confirmações adicionais, sugerimos que a hiperplasia do VE encontrado em Cerl2-/- pode também ser devida ao aumento da via de sinalização Wnt/ßcatenin. Uma vez que as células estaminais embrionárias derivadas da estirpe 129 de ratinho colonizam eficientemente as linhas germinativas, esta linhagem celular tem sido utilizada com frequência para a produção de linhas de animais geneticamente modificados. Como diferentes fundos genéticos podem originar diferentes fenótipos, o estabelecimento de valores de referência para cada estirpe de ratinhos é uma ferramenta útil nos dias atuais. A ecocardiografia não-invasiva permite avaliar a função cardíaca e a morfometria ventricular esquerda e o seu uso tem crescido na última década. Dessa maneira, foram criados valores de referência para a estirpe 129/Sv de ratinhos juvenis (3 semanas) e adultos (8 semanas). Com o objectivo de analisar se os ratinhos Cerl2-/- continuam a manifestar um aumento da massa ventricular esquerda com a redução da função cardíaca, procedeu-se à monitorização, através de ecocardiografia, de ratinhos recém-nascidos até à fase de jovens adultos (P60). Uma parte significante dos mutantes Cerl2 morrem no primeiro dia de vida, na presença e na ausência de DL. Tem sido relatado que a presença de DL é incompatível com um longo tempo de vida e portanto é esperado que a grande maioria destes mutantes com DL não sobrevivam. Já nos mutantes de Cerl2 que morrem nas primeiras horas de vida e não apresentaram defeitos de lateralidade, foi detectada uma tendência para o aumento da massa ventricular esquerda a qual é indicativa de hipertrofia. Além disto este grupo revelou uma dramática redução da função cardíaca como foi demonstrado pela diminuição dos batimentos cardíacos por minuto e pela diminuição do pico da velocidade da artéria pulmonar. Curiosamente, os mutantes de Cerl2 que sobrevivem conseguem recuperar a sua função cardíaca como também demonstrado pela fração de ejeção, a fração de encurtamento e a fração de alteração das áreas (sistólica e diastólica) quando comparados com os animais controlo. Este resultado foi confirmado pela manutenção dos níveis de expressão dos indicadores de hipertrofia e stress (como por exemplo o Anp, Bnp e Ankrd1). Dessa maneira, concluiu-se que o primeiro dia de vida pós-natal é determinante para os mutantes que não apresentam DL. Contudo é desconhecido o(s) factor(es) que determina(m) a morte ou sobrevivência destes animais. Apesar da melhora na função cardíaca nos adultos de Cerl2-/-, o débito cardíaco obtido no ventrículo esquerdo quando normalizado pelo peso do corpo, revelou uma redução quando comparado com animais wild-type, indicando portanto que a recuperação da função sistólica não é completa. Curiosamente os ratinhos adultos Cerl2-/- quando comparados com os ratinhos controlo apresentaram diferentes padrões de dimensão nas paredes do VE, como exemplo afinamento da parede anterior e posterior. De acordo com a literatura tem sido sugerido que a alteração aeróbica regional do metabolismo cardíaco pode levar á uma diferença assimétrica na espessura das paredes dos ventrículos, sendo no entanto necessária uma investigação detalhada. Embora ainda seja desconhecido o mecanismo pelo qual os ratinhos Cerl2-/- conseguem adaptar-se a vida pós-natal, sugerimos que o estes ratinhos mutantes podem ser um modelo interessante para estudar os mecanismos moleculares, celulares e fisiológicos que estão por trás da restauração da função cardíaca. Portanto análises detalhadas neste modelo poderia ajudar a desenvolver abordagens terapêuticas para o tratamento de insuficiência cardíaca. Em conclusão, os resultados apresentados nesta tese proporcionam um conjunto importantes de novos dados relacionados com a cardigénese, durante e após a vida intrauterina, os quais revelam a importância de Cerl2 na regulação da formação do coração independentemente da sua bem conhecida função no estabelecimento do eixo E/D.
Universidade do Algarve, Departamento de Ciências Biomédicas e Medicina
Lin, Huan-wen, et 林煥雯. « Function and Regulation of Angiotensin - converting enzyme related gene, Acer, during cardiogenesis of Drosophila ». Thesis, 2005. http://ndltd.ncl.edu.tw/handle/48640595559043008592.
Texte intégral國立臺灣師範大學
生命科學研究所
93
One of the major functions of the Renin-angiotensin system (RAS) is to maintain the homeostasis of blood pressure in vertebrates. Members of the Angiotensin-converting enzyme (ACE) gene family are also involved in heart development and morphogenesis. Previous studies have demonstrated that mammalian ACE2 and its Drosophila counterpart, Acer, are expressed in heart and associated tissues. Since cardiogenesis and regulatory genes that involved in heart development of fly and mammals are evolutionary conserved, and Drosophila as an excellent model system to dissect the genetic factor participated in heart development, we would like to unravel the function of Acer in heart development and dissect up-stream factors that regulate the expression of Acer. The dynamic expression pattern of Acer has been revealed by in situ hybridization. It has been shown that Acer is a maternal gene as it has been detected in fertilized egg. Its maternal expression late is disappeared, and it is expressed in dorsal mesoderm, which late contributes to cardial mesoderm, at germ extension stages. The mesodermally expressed Acer is persisted in heart precursors and persisted till the cardial cells fused to form a cardiac tube underneath the dorsal mid line. As Acer is mainly expressed in heart-specific manner, it suggests that it may function in heart development. Pervious studies have demonstrated that cardial as pericardial cells are missing in Acer mutant embryos. To further understanding the upstream factors that regulate the cardial expression of Acer, we have identified the cardial enhancer of Acer is located between -188 and 1211. The expression pattern of the reporter gene is similar to that of Acer. Further studies had demonstrated that Acer is under the direct control of tinman and pannier. Since ACE is also control the homeostasis of blood pressure, which affects the cardiovascular function of mammals, we would like to learn whether Acer is also function in adult fly. Previously studies suggested that heart beat as well as life span are not affect when Acer is overexpressed. Less than 5% of embryos are dead at late embryogenesis with ectopically cardial cells as Acer activity is elevated. Nevertheless, cardiac performance is great affected when Acer is mis-regulated, suggesting Acer is also function at adult stages.
« Shox2 Regulates Dorsal Mesenchymal Protrusion Development And Its Temporary Function As A Pacemaker During Cardiogenesis ». Tulane University, 2015.
Trouver le texte intégralCameron, Michel. « Characterization of two sorting nexins : sorting nexin-11 and sorting nexin-30 ». Thèse, 2014. http://hdl.handle.net/1866/11826.
Texte intégralWölfer, Monique. « The Role of the Insulin-like Growth Factor Binding Protein 5 (IGFBP5) in Cardiogenesis and Cardiac Remodelling ». Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E4CB-C.
Texte intégralWills, Airon Alease. « Requirements for Regenerative Mechanisms in Tissue Growth and Homeostasis in Adult Zebrafish ». Diss., 2009. http://hdl.handle.net/10161/1182.
Texte intégralThe teleost zebrafish (danio rerio) has a highly elevated regenerative capacity compared to mammals, with the ability to quickly and correctly regenerate complex organs such as the fin and the heart following amputation. Studies in other highly regenerative systems suggest that regenerative capacity is directly related to the homeostatic demands of a given tissue, such as high basal levels of cell turnover or the ability to modify tissue size in response to homeostatic changes. However, it is not known if this relationship is present in vertebrate tissues with blastema-based regeneration. To test this idea, we investigated whether markers associated with regeneration are expressed in uninjured zebrafish tissues, and if treatments that block regeneration also lead to homeostatic defects over long periods.
We found that regenerative capacity is generally required for homeostasis in the fin, as multiple genetic treatments that block regeneration also led to a degenerative loss of distal fin tissue in uninjured animals. In addition, we found that there is extensive cell turnover in the distal fin tissues, accompanied by expression of critical effectors of blastemal regeneration. Both cell proliferation and gene expression were sensitive to changes in Fgf signaling, a factor that is critical for fin regeneration.
In the heart, we found that although there is little cell turnover in uninjured adult animals, the zebrafish heart can undergo rapid, dramatic cardiogenesis in response to animal growth. These growth conditions induce cardiomyocyte hyperplasia similar to regeneration, and induce gene expression changes in the epicardium, a tissue that is critical for cardiac regeneration. We find that the epicardium continually contributes cells to the uninjured heart, even in the absence of cardiac growth. If this contribution is prevented via a long-term block of Fgf signals, scarring can result, indicating that continual activity of epicardium derived cells (EPDCs) is critical for cardiac homeostasis. We have generated reagents that allow us to visualize EPDCs, and find that they contribute cardiac fibroblasts and perivascular cells during rapid cardiac growth. Uncovering the fate of EPDCs during cardiac homeostasis and regeneration will allow us to better understand their function, and may lead to the development of regenerative therapies for human cardiovascular diseases.
Dissertation
Breese, Marcus R. « Identification of putative targets of Nkx2-5 in Xenopus laevis using cross-species annotation and microarray gene expression analysis ». Thesis, 2012. http://hdl.handle.net/1805/2725.
Texte intégralThe heart is the first organ to form during development in vertebrates and Nkx2-5 is the first marker of cardiac specification. In Xenopus laevis, Nkx2-5 is essential for heart formation, but early targets of this homeodomain transcription factor have not been fully characterized. In order to discover potential early targets of Nkx2-5, synthetic Nkx2-5 mRNA was injected into eight-cell Xenopus laevis embryos and changes in gene expression measured using microarray analysis. While Xenopus laevis is a commonly used model organism for developmental studies, its genome remains poorly annotated. To compensate for this, a cross-species annotation database called CrossGene was constructed. CrossGene was created by exhaustively comparing UniGene transcripts from Homo sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans using the BLAST family of algorithms. Networks were then assembled by recursively combining reciprocal best matches into groups of orthologous genes. Gene ontology annotation from all organisms could then be applied to all members of the reciprocal group. In this way, the CrossGene database was used to augment the existing genomic annotation of Xenopus laevis. Combining cross-species annotation with differential gene expression analysis of Nkx2-5 overexpression led to the discovery of 99 potential targets of Nkx2-5.
Justo, Tiago Manuel Santos. « Role of Ccbe1 during cardiac differentiation of mouse ESCs ». Doctoral thesis, 2016. http://hdl.handle.net/10400.1/8687.
Texte intégralDas suas quatro cavidades à sua síncrona rede elétrica, o coração foi perfeitamente projetado para servir de interface entre cada órgão presente no corpo humano. Devido à sua complexidade, as doenças cardiovasculares englobam também um grande conjunto de manifestações clínicas incluindo miocardites, hipertensão arterial, defeitos congénitos cardíacos e doenças isquémicas. Muitas destas patologias traduzem-se geralmente na perda de tecido cardíaco funcional e por outro lado pela formação de tecido fibrótico não funcional. Similarmente ao que ocorre nos países desenvolvidos, em Portugal também as doenças cardiovasculares continuam a ser uma das maiores causas de morbidade e mortalidade. Devido à limitada capacidade regenerativa do coração e ao facto das terapias existentes para tratar doenças cardiovasculares serem ineficientes ou implicarem enormes riscos para o paciente, é urgente desenvolver novas terapias mais eficazes. Nesse sentido, o uso de células multi e pluripotentes tem contribuído na última década para um franco avanço nesta área. Muitos ensaios clínicos têm sido feitos, ou decorrem ainda, onde se avalia a capacidade regenerativa de células estaminais de diferentes origens na reposição dos tecidos cardíacos danificados. Além disto pensa-se que certos nichos de células progenitoras de cardiomiócitos residentes no coração adulto possam representar um mecanismo endógeno de regeneração. De modo a explorar este mecanismo tem-se recorrido a técnicas de isolamento destas células para transplante em doentes cardíacos. No entanto, até agora as melhorias evidenciadas por essas terapias celulares parecem estar associadas a efeitos parácrinos que as células transplantadas exercem sobre os tecidos envolventes, em detrimento da sua implantação no tecido danificado e consequente diferenciação em novo tecido cardíaco. Em paralelo às terapias celulares tem-se feito um esforço para desenvolver patches e scaffolds que possam complementar estas terapias por facilitar o homing de células transplantadas ao constituírem uma matriz onde estas células possam ser envolvidas e desempenhar a sua função. Outra alternativa ao uso de células estaminais para uso em terapias de regeneração cardíaca é o uso de células já diferenciadas com identidade semelhante à do tecido a ser substituído. No caso do miocárdio, será potencialmente interessante o uso de cardiomiócitos como fonte em transplantes para a regeneração do tecido danificado. Tal abordagem é especialmente interessante visto terem sido identificadas no coração populações de novos cardiomiócitos derivados de cardiomiócitos já existentes, que contribuem para o turnover normal do miocárdio. No entanto, para explorar este mecanismo é necessário criar e otimizar protocolos eticamente aceitáveis para experimentação humana de derivação em grande escala de cardiomiócitos a partir de células pluripotentes. Tal objetivo pode ser alcançado através do uso de fatores segregados que possam ser utilizados para estimular o potencial cardiogénico das células pluripotentes. A procura de genes envolvidos na cardiogénese têm-se tornado cada vez mais importante com o objetivo de identificar potenciais fatores que possam modular este processo biológico quer in vitro como in vivo. De facto, é possível modelar in vitro com grande rigor os estadios iniciais da cardiogénese através da diferenciação de células estaminais. Tal como ocorre in vivo, a especificação das linhagens cardiovasculares in vitro implica uma transição para populações de células progenitoras cardíacas com potencial de diferenciação cada vez mais restrito e específico. Começando num estado de pluripotência, durante a sua diferenciação estas especificam-se em mesoderme cardíaca e posteriormente em células de todas as outras linhagens cardíacas. Para monitorizar o seguimento deste processo biológico e para assegurar o correto comprometimento nas várias linhagens cardíacas recorre-se à expressão génica de marcadores genéticos específicos para cada linhagem esperada em cada ponto específico de tempo. Através desta monitorização é possível identificar células de mesoderme cardíaca pela expressão dos genes Mesp-1 e Isl-1 a dia 4 de diferenciação das células estaminais, e também diferentes populações de células progenitoras cardíacas pela expressão concomitante de genes como Isl-1 e Nkx2.5 em dias posteriores. Assim é possível estabelecer em laboratório um modelo fidedigno e manipulável para se estudar a cardiogénese. Num rastreio génico efetuado pelo nosso laboratório em células progenitoras cardíacas de galinha com expressão do marcador Nkx2.5, foram identificados genes não caracterizados, mas com um potencial envolvimento na cardiogénese. Um destes novos genes identificados foi o collagen and calcium binding EGF domains 1 ou Ccbe1. Na literatura, é possível hoje ver que em modelos animais knockout para este gene, um outro processo biológico é afetado i.e. a linfangiogénese. Estes animais apresentam uma total ausência de vasos linfáticos. Este fenótipo deve-se em parte ao papel já identificado que o CCBE1 tem na maturação do fator pro-linfangiogénico VEGF-C. Em humanos a síndrome de Hennekam (associado também a mutações em CCBE1), é caracterizada pela existência de uma rede linfática disfuncional fazendo com que estes apresentem um edema generalizado. Não obstante estes estudos, recentemente verificou-se em ratinho e galinha a expressão deste gene nas regiões embrionárias que dão origem ao coração, sugerindo assim também um potencial papel neste processo. De facto, trabalho efectuado no nosso laboratório veio a demonstrar que o silenciamento deste gene em galinha leva ao desenvolvimento de defeitos cardíacos incompatíveis com a vida, associados a uma redução da proliferação das células cardiacas. Também, em ratinhos knockout para este gene é possível identificar um miocárdio subdesenvolvido pelo estreitamento da camada compacta do miocárdio também associado a problemas na proliferação. Assim, no presente trabalho propusemo-nos a estudar mais detalhadamente o envolvimento deste gene nos estadios iniciais da cardiogénese. Como este gene codifica para uma proteína secretada, a verificar-se um importante papel na cardiogénese, a sua manipulação como um fator de crescimento torna-se de grande interesse visando a otimização de protocolos para derivação de cardiomiócitos. Para estudar os estadios iniciais da cardiogénese recorremos ao uso de uma linha de células estaminais duplamente transgénica que nos permite acompanhar o processo de diferenciação para linhagens cardíacas pois expressam a proteína fluorescente GFP sob o controlo do promotor de Nkx2.5 e a proteína fluorescente dsRed sob um promotor específico de cardiogénese de Mef2c. Assim pode-se confirmar que é possível obter células progenitoras cardíacas in vitro correspondentes aos estadios iniciais do desenvolvimento do coração de ratinho. De seguida analisámos o padrão de expressão de Ccbe1 e verificou-se que coincide com o aparecimento da expressão dos marcadores genéticos cardíacos, mostrando que in vitro a sua expressão ocorre aquando da especificação das células para as linhagens cardíacas. Posteriormente gerámos duas linhas estáveis de células estaminais com silenciamento de Ccbe1 para avaliar o seu impacto na cardiogénese. Os resultados demonstram que ao diferenciar estas células em agregados 3D conhecidos como corpos embrióides (nome dado devido à sua semelhança física e funcional com um embrião nos estadios iniciais do desenvolvimento), estas células são incapazes de se especificar em mesoderme cardíaca pois apresentam a expressão de Mesp-1 e Isl-1 reduzida. Em paralelo com estes resultados, foi possível verificar que os corpos embrióides gerados a partir de células estaminais com silenciamento de Ccbe1 apresentam um tamanho muito reduzido. Este defeito é devido não a um aumento da morte celular mas sim a um défice na proliferação das células estaminais silenciadas. Estes defeitos na proliferação estão de acordo com outros estudos efetuados pela nossa equipa, em que fibroblastos embrionários derivados de ratinhos knockout apresentam grandes problemas na proliferação. Adicionalmente, em embriões de galinha foi verificado necessidade de Ccbe1 para a correta proliferação de células precursoras cardíacas para formar o tubo cardíaco. Em conjunto, estes resultados demonstram que CCBE1 tem um papel importante em proliferação. Tais resultados são corroborados por experiências onde foi feita a adição de CCBE1 recombinante ao meio de cultura e se observou a recuperação parcial dos corpos embrióides silenciados. Apesar das dificuldades em produzir quantidades elevadas desta proteína recombinante, os resultados indicam que CCBE1 foi capaz de aumentar a proliferação dos corpos embrióides silenciados. No entanto, as células demonstram-se incapazes de se especificar em mesoderme cardíaca, sugerindo que para além deste papel que Ccbe1 tem em proliferação, o seu papel na cardiogénese é independente deste mecanismo. Conclui-se assim que Ccbe1 é indispensável para a especificação das células em diferenciação em mesoderme cardíaca. Para vir a ser utilizado no futuro como fator de crescimento em células estaminais em diferenciação, para derivar grandes quantidades de células cardíacas, é necessário desenvolver ainda mais estudos que permitam ultrapassar as limitações associadas à sua produção e à sua bioatividade. Paralelamente a estes estudos, uma outra parte do meu trabalho incidiu numa colaboração com uma equipa de bioinformática, na qual nos propusemos a analisar o transcriptoma de diferentes tipos de células progenitoras cardíacas. O objetivo desta análise seria primariamente identificar através de sequenciação RNA novas isoformas de genes envolvidos na cardiogénese, e adicionalmente identificar novos genes não caracterizados com potencial impacto na cardiogénese. Para tal utilizámos a linha de células estaminais duplamente transgénica já referida, da qual isolámos diferentes populações de células progenitoras cardíacas em dias de diferenciação diferentes. Conseguimos analisar o dataset resultante utilizando algumas ferramentas bioinformáticas, que nos permitiu construir uma lista de genes potencialmente envolvidos em cardiogénese ainda não caracterizados. Deste trabalho resultam alguns genes que merecerão um estudo funcional mais detalhado visto estarem claramente expressos nas regiões embrionárias cardiogénicas.
The identification and use of new growth factors to stimulate the cardiogenic potential of pluripotent cells is a safe and alternative approach to develop cell therapies to address the limited regenerative capacity of the heart. Collagen and calcium binding EGF domains 1 (Ccbe1) was firstly identified in our laboratory, which encodes for a secreted protein with potential involvement in cardiogenesis. Knockout animal models for this gene and humans with mutations in CCBE1, have lymphangiogenic defects, resulting in the absence of lymphatic vessels. This is in part due to the known described role that CCBE1 has in the processing of the pro lymphangiogenic factor VEGF-C. However, Ccbe1 is also expressed in the embryonic cardiogenic regions of both mouse and chick and in fact, silencing this gene in chick embryos leads to the development of heart defects incompatible with life. Noteworthy, knockout mice show an underdeveloped myocardium. The objective of the present work is to perform a detailed study of the involvement of this gene in the early stages of cardiogenesis. The results demonstrate that silencing the expression of Ccbe1 or blocking CCBE1 in differentiating stem cells, impairs their specification towards cardiac mesodermal lineages. Additionally, we found that differentiating Ccbe1 KD ESCs have a reduced proliferation rate that leads to smaller EBs. In agreement with this result, when supplementing the differentiating Ccbe1 KD ESCs lines with recombinant CCBE1, we were able to partially rescue the size of the EBs, but the expression of the cardiac mesoderm markers remained downregulated. These data suggest that those defects are independent from each other, but are intimately related to the disruption of Ccbe1, placing CCBE1 as a direct regulator of cell proliferation and cardiac mesoderm specification during ESC differentiation.
Georges, Romain O. « Diversité fonctionnelle du facteur de transcription Tbx5 dans le coeur ». Thèse, 2011. http://hdl.handle.net/1866/7071.
Texte intégralThe vertebrate heart is a modular organ, which requires the complex patterning of the morphogenetic heart fields and the coordinated convergence of the diverse subpopulations of cardiogenic progenitors. At least 7 transcription factors of the T-box family cooperate within these numerous subpopulations of cardiogenic progenitors to regulate the morphogenesis and the layout of multiple structures along the primordial heart tube, which explains that the human mutations of these genes induce various congenital heart defects (CHDs). One of these T-box genes, Tbx5, whose haploinsufficiency generates the Holt-Oram syndrome (HOS), intervenes in a wide variety of gene regulatory networks (GRNs) that orchestrate the morphogenesis of the atria, the left ventricle, the mitral valve, the inter-atrial and inter-ventricular septa, as well as the cardiac conduction system. The diversity of GRNs involved in the formation of these cardiac structures suggests that Tbx5 holds a profusion of functions which will be identifiable only by indexing its molecular activities in each separately examined cardiac lineage. To address this problem, a conditional knockout of Tbx5 in the endocardium was generated. This experiment demonstrated a crucial role of Tbx5 in the survival of the endocardial cells lining the septum primum and the cardiomyocytes within this embryonic structure, which will contribute to the morphogenesis of the inter-atrial septum. Moreover, this study revealed a crosstalk between the Tbx5-positive endocardial cells subpopulation and the myocardium at the level of the septum primum to ensure the survival of cardiomyocytes, and ultimately to guarantee the maturation of the inter-atrial septum. Our results also confirmed the importance of genetic interdependence (Tbx5 and Gata4 as well as Tbx5 and Nos3) between different loci in the morphogenesis of the inter-atrial septum, and particularly the influence that the environment can have on the penetrance and the expressivity of atrial septal defects (ASDs) in the HOS. Besides, since the functions of a gene usually depend on the different isoforms it can generate, a second study focused more on the transcriptional aspect of Tbx5. This approach led to the discovery of 6 alternative transcripts exhibiting both common and specific functions. The characterization of 2 of these isoforms revealed the role of the long isoform (Tbx5_v1) in the regulation of cardiomyocytes growth during cardiogenesis, whereas the short isoform (Tbx5_v2), preferentially expressed in the mature heart, represses cell growth. It is thus entirely conceivable that TBX5 mutations leading to a C-terminal truncation increase the concentration of a mutated protein, which, like Tbx5_v2, interferes with the growth of certain cardiac structures. On the other hand, the divergence of functions of these isoforms, characterized by the disparities of subcellular localization and interaction with other cardiac cofactors, suggests that mutations affecting more one isoform would favor the emergence of a particular type of CHD. Finally, a last objective was to identify one or several molecular mechanism(s) by which Tbx5 regulates its main target gene, Nppa, and to extract clues that might clarify its transcriptional function. This objective required in a first place to identify the various cis-regulatory modules (CRMs) coordinating the transcriptional regulation of Nppa and Nppb, two natriuretic genes whose tandem organization and expression pattern during cardiogenesis are preserved in most vertebrates. The phylogenetic footprint approach employed to scan the Nppb/Nppa locus allowed the identification of three CRMs evolutionary conserved between different mammals species, one of which (US3) is specific to eutherians. This study confirmed that the regulation of the tandem genes Nppb/Nppa required the transcriptional activity of enhancers in complement to Nppa and Nppb promoters. The almost perfect concordance between the expression profiles of Tbx5 and these two natriuretic genes in mammals, suggests that the ventricular expression gradient of Tbx5 is interpreted by the recruitment of this factor to the identified enhancers. Altogether, the studies presented in this thesis allowed clarifying the profusion of Tbx5 cardiac functions. Some of these functions emanate from the alternative splicing of Tbx5, which favors the synthesis of isoforms endowed with specific properties. The diverse combinatorial interactions between these isoforms and other cardiac factors within the various cardiogenic progenitor subpopulations contribute to the emergence of distinct cardiac RRGs.