Littérature scientifique sur le sujet « Cardiac baroreflex sensitivity »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cardiac baroreflex sensitivity ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Cardiac baroreflex sensitivity"

1

Kollai, M., G. Jokkel, I. Bonyhay, J. Tomcsanyi, and A. Naszlady. "Relation between baroreflex sensitivity and cardiac vagal tone in humans." American Journal of Physiology-Heart and Circulatory Physiology 266, no. 1 (1994): H21—H27. http://dx.doi.org/10.1152/ajpheart.1994.266.1.h21.

Texte intégral
Résumé :
The extent of dependence of cardiac vagal tone on arterial baroreceptor input has been studied in 12 healthy, young adult subjects. Cardiac vagal tone was defined as the chang in R-R interval after complete cholinergic blockade by atropine. Baroreflex sensitivity was determined with the "Oxford-method": R-R interval was regressed against systolic pressure. The interindividual correlation between cardiac vagal tone and baroreflex sensitivity for falling pressures was found to be significant, but not close (R = 0.81, P = 0.002). In each subject, the baroreflex regression line for falling pressures was extrapolated to the post-atropine R-R interval level; 50 mmHg was considered as minimum and 80 mmHg as maximum threshold level for the integrated baroreflex. From the relation between the individual regression lines and the minimum and maximum threshold levels, it was concluded that cardiac vagal tone could be generated by both baroreflex-dependent and -independent mechanisms, the ratio of which varies in different individuals, with the baroreflex-dependent mechanism being the dominant factor.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bealer, Steven L. "Peripheral hyperosmolality reduces cardiac baroreflex sensitivity." Autonomic Neuroscience 104, no. 1 (2003): 25–31. http://dx.doi.org/10.1016/s1566-0702(02)00265-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Akimoto, Toshinari, Jun Sugawara, Daisuke Ichikawa, Nobuyuki Terada, Paul J. Fadel, and Shigehiko Ogoh. "Enhanced open-loop but not closed-loop cardiac baroreflex sensitivity during orthostatic stress in humans." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301, no. 5 (2011): R1591—R1598. http://dx.doi.org/10.1152/ajpregu.00347.2011.

Texte intégral
Résumé :
The neural interaction between the cardiopulmonary and arterial baroreflex may be critical for the regulation of blood pressure during orthostatic stress. However, studies have reported conflicting results: some indicate increases and others decreases in cardiac baroreflex sensitivity (i.e., gain) with cardiopulmonary unloading. Thus the effect of orthostatic stress-induced central hypovolemia on regulation of heart rate via the arterial baroreflex remains unclear. We sought to comprehensively assess baroreflex function during orthostatic stress by identifying and comparing open- and closed-loop dynamic cardiac baroreflex gains at supine rest and during 60° head-up tilt (HUT) in 10 healthy men. Closed-loop dynamic “spontaneous” cardiac baroreflex sensitivities were calculated by the sequence technique and transfer function and compared with two open-loop carotid-cardiac baroreflex measures using the neck chamber system: 1) a binary white-noise method and 2) a rapid-pulse neck pressure-neck suction technique. The gain from the sequence technique was decreased from −1.19 ± 0.14 beats·min−1·mmHg−1 at rest to −0.78 ± 0.10 beats·min−1·mmHg−1 during HUT ( P = 0.005). Similarly, closed-loop low-frequency baroreflex transfer function gain was reduced during HUT ( P = 0.033). In contrast, open-loop low-frequency transfer function gain between estimated carotid sinus pressure and heart rate during white-noise stimulation was augmented during HUT ( P = 0.01). This result was consistent with the maximal gain of the carotid-cardiac baroreflex stimulus-response curve (from 0.47 ± 0.15 beats·min−1·mmHg−1 at rest to 0.60 ± 0.20 beats·min−1·mmHg−1 at HUT, P = 0.037). These findings suggest that open-loop cardiac baroreflex gain was enhanced during HUT. Moreover, under closed-loop conditions, spontaneous baroreflex analyses without external stimulation may not represent open-loop cardiac baroreflex characteristics during orthostatic stress.
Styles APA, Harvard, Vancouver, ISO, etc.
4

PICCIRILLO, Gianfranco, Mauro CACCIAFESTA, Emanuela VIOLA, et al. "Influence of aging on cardiac baroreflex sensitivity determined non-invasively by power spectral analysis." Clinical Science 100, no. 3 (2001): 267–74. http://dx.doi.org/10.1042/cs1000267.

Texte intégral
Résumé :
Aging reduces cardiac baroreflex sensitivity. Our primary aim in the present study was to assess the effects of aging on cardiac baroreflex sensitivity, as determined by power spectral analysis (α index), in a large population of healthy subjects. We also compared the α indexes determined by power spectral analysis with cardiac baroreflex sensitivity measured by the phenylephrine method (BSphen). We studied 142 subjects (79 males/63 females; age range 9–94 years), who were subdivided into five groups according to percentiles of age (25, 50, 75 and 95). Power spectral analysis yields three α indexes: an α low-frequency (LF) index of cardiac baroreflex sensitivity that ranges around 0.1 Hz; an α high-frequency (HF) index reflecting cardiac baroreflex sensitivity corresponding to the respiratory rate; and α total frequency (α TF), a new index whose spectral window includes all power in the range 0.03–0.42 Hz. Spectra were recorded during controlled and uncontrolled respiration. Under both conditions, all three α indexes were higher in the youngest age group (⩽ 34 years old) than in the three oldest groups. Notably, α TF was significantly higher in younger subjects than in the three oldest groups [14±1 ms/mmHg compared with 9±1 (P < 0.05), 8.1±1 (P < 0.001) and 8.1±1 (P < 0.05) ms/mmHg respectively]. BSphen showed a similar pattern [12±1 ms/mmHg compared with 8±0.5 (P < 0.001), 6±0.5 (P < 0.05) and 6±1 (P < 0.05) ms/mmHg respectively]. No significant differences were found for cardiac baroreflex sensitivity among the three oldest groups. All α indexes were correlated inversely with age. The index yielding the closest correlation with BSphen was α TF (r = 0.81, P < 0.001). Cardiac baroreflex sensitivity in normotensive individuals declines with age. It falls predominantly in middle age (from approx. 48 years onwards) and remains substantially unchanged thereafter. The elderly subjects we selected for this study probably had greater resistance to cardiovascular disease that is manifested clinically, with preserved cardiac baroreceptor sensitivity.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Taylor, C. E., T. Witter, K. El Sayed, S. L. Hissen, A. Johnson, and V. G. Macefield. "Spontaneous sympathetic baroreflex sensitivity is correlated with cardiac baroreflex sensitivity in healthy, young individuals." Autonomic Neuroscience 192 (November 2015): 88. http://dx.doi.org/10.1016/j.autneu.2015.07.109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dutoit, Andrea P., Emma C. Hart, Nisha Charkoudian, B. Gunnar Wallin, Timothy B. Curry, and Michael J. Joyner. "Cardiac Baroreflex Sensitivity Is Not Correlated to Sympathetic Baroreflex Sensitivity Within Healthy, Young Humans." Hypertension 56, no. 6 (2010): 1118–23. http://dx.doi.org/10.1161/hypertensionaha.110.158329.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Taylor, Chloe E., Trevor Witter, Khadigeh El Sayed, Sarah L. Hissen, Aaron W. Johnson, and Vaughan G. Macefield. "Relationship between spontaneous sympathetic baroreflex sensitivity and cardiac baroreflex sensitivity in healthy young individuals." Physiological Reports 3, no. 11 (2015): e12536. http://dx.doi.org/10.14814/phy2.12536.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Padley, James R., David H. Overstreet, Paul M. Pilowsky, and Ann K. Goodchild. "Impaired cardiac and sympathetic autonomic control in rats differing in acetylcholine receptor sensitivity." American Journal of Physiology-Heart and Circulatory Physiology 289, no. 5 (2005): H1985—H1992. http://dx.doi.org/10.1152/ajpheart.00430.2005.

Texte intégral
Résumé :
Acetylcholine receptors (AChR) are important in premotor and efferent control of autonomic function; however, the extent to which cardiovascular function is affected by genetic variations in AChR sensitivity is unknown. We assessed heart rate variability (HRV) and baroreflex sensitivity (BRS) in rats bred for resistance (FRL) or sensitivity (FSL) to cholinergic agents compared with Sprague-Dawley rats (SD), confirmed by using hypothermic responses evoked by the muscarinic agonist oxotremorine (0.2 mg/kg ip) ( n ≥ 9 rats/group). Arterial pressure, ECG, and splanchnic sympathetic (SNA) and phrenic (PNA) nerve activities were acquired under anesthesia (urethane 1.3 g/kg ip). HRV was assessed in time and frequency domains from short-term R-R interval data, and spontaneous heart rate BRS was obtained by using a sequence method at rest and after administration of atropine methylnitrate (mATR, 2 mg/kg iv). Heart rate and SNA baroreflex gains were assessed by using conventional pharmacological methods. FRL and FSL were normotensive but displayed elevated heart rates, reduced HRV and HF power, and spontaneous BRS compared with SD. mATR had no effect on these parameters in FRL or FSL, indicating reduced cardiovagal tone. FSL exhibited reduced PNA frequency, longer baroreflex latency, and reduced baroreflex gain of heart rate and SNA compared with FRL and SD, indicating in FSL dual impairment of cardiac and circulatory baroreflexes. These findings show that AChR resistance results in reduced cardiac muscarinic receptor function leading to cardiovagal insufficiency. In contrast, AChR sensitivity results in autonomic and respiratory abnormalities arising from alterations in central muscarinic and or other neurotransmitter receptors.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sarzi Braga, Simona, Maria Teresa La Rovere, and Roberto Franco Enrico Pedretti. "Baroreflex sensitivity normalization after cardiac resynchronization therapy." International Journal of Cardiology 109, no. 1 (2006): 118–20. http://dx.doi.org/10.1016/j.ijcard.2005.03.072.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Engelke, K. A., D. F. Doerr, and V. A. Convertino. "A single bout of exhaustive exercise affects integrated baroreflex function after 16 days of head-down tilt." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 269, no. 3 (1995): R614—R620. http://dx.doi.org/10.1152/ajpregu.1995.269.3.r614.

Texte intégral
Résumé :
We tested the hypothesis that one bout of maximal exercise performed 24 h before reambulation from 16 days of 6 degrees head-down tilt (HDT) could increase integrated baroreflex sensitivity. Isolated carotid-cardiac and integrated baroreflex function was assessed in seven subjects before and after two periods of HDT separated by 11 mo. On the last day of one HDT period, subjects performed a single bout of maximal cycle ergometry (exercise). Subjects did not exercise after the other HDT period (control). Carotid-cardiac baroreflex sensitivity was evaluated using a neck collar device. Integrated baroreflex function was assessed by recording heart rate (HR) and blood pressure (MAP) during a 15-s Valsalva maneuver (VM) at a controlled expiratory pressure of 30 mmHg. The ratio of change in HR to change in MAP (delta HR/ delta MAP) during phases II and IV of the VM was used as an index of cardiac baroreflex sensitivity. Baroreflex-mediated vasoconstriction was assessed by measuring the late phase II rise in MAP. Following HDT, carotid-cardiac baroreflex sensitivity was reduced (2.8 to 2.0 ms/mmHg; P = 0.05) as was delta HR/ delta MAP during phase II (-1.5 to -0.8 beats/mmHg; P = 0.002). After exercise, isolated carotid baroreflex activity and phase II delta HR/ delta MAP returned to pre-HDT levels but remained attenuated in the control condition. Phase IV delta HR/ delta MAP was not altered by HDT or exercise. The late phase II increase of MAP was 71% greater after exercise compared with control (7 vs. 2 mmHg; P = 0.041).(ABSTRACT TRUNCATED AT 250 WORDS)
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie