Articles de revues sur le sujet « Carbon dioxide methanation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Carbon dioxide methanation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Carbon dioxide methanation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Hutchings, G. J. « Methanation of carbon dioxide ». Applied Catalysis A : General 84, no 2 (mai 1992) : N18. http://dx.doi.org/10.1016/0926-860x(92)80119-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tsiotsias, Anastasios I., Nikolaos D. Charisiou, Ioannis V. Yentekakis et Maria A. Goula. « The Role of Alkali and Alkaline Earth Metals in the CO2 Methanation Reaction and the Combined Capture and Methanation of CO2 ». Catalysts 10, no 7 (21 juillet 2020) : 812. http://dx.doi.org/10.3390/catal10070812.

Texte intégral
Résumé :
CO2 methanation has great potential for the better utilization of existing carbon resources via the transformation of spent carbon (CO2) to synthetic natural gas (CH4). Alkali and alkaline earth metals can serve both as promoters for methanation catalysts and as adsorbent phases upon the combined capture and methanation of CO2. Their promotion effect during methanation of carbon dioxide mainly relies on their ability to generate new basic sites on the surface of metal oxide supports that favour CO2 chemisorption and activation. However, suppression of methanation activity can also occur under certain conditions. Regarding the combined CO2 capture and methanation process, the development of novel dual-function materials (DFMs) that incorporate both adsorption and methanation functions has opened a new pathway towards the utilization of carbon dioxide emitted from point sources. The sorption and catalytically active phases on these types of materials are crucial parameters influencing their performance and stability and thus, great efforts have been undertaken for their optimization. In this review, we present some of the most recent works on the development of alkali and alkaline earth metal promoted CO2 methanation catalysts, as well as DFMs for the combined capture and methanation of CO2.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhou, Long, Li Ping Ma, Ze Cheng Zi, Jun Ma et Jian Tao Chen. « Study on Ni Catalytic Hydrogenation of Carbon Dioxide for Methane ». Applied Mechanics and Materials 628 (septembre 2014) : 16–19. http://dx.doi.org/10.4028/www.scientific.net/amm.628.16.

Texte intégral
Résumé :
Catalyst by different carriers prepared of carbon dioxide conversion sequence is: Ni/TiO2> Ni/γ-Al2O3> Ni/MgO > Ni/SiO2. Second metal, Co, Mn, Cu, La and Ce, was significantly enhanced the activity of methanation nickel-based catalysts in the carbon dioxide methanation reaction, but second metal of Cu was bad for the activity of methanation. The 10%Ni/Al2O3 and 2.5%Ce-10%Ni/Al2O3 catalysts were characterized by TG and H2-TPR,it was revealed to Ce which is benefit for reduce NiO reduction temperature and the optimal reduction temperature of the catalysts in between 400°C and 500 °C
Styles APA, Harvard, Vancouver, ISO, etc.
4

Burkhardt, Marko, et Günter Busch. « Methanation of hydrogen and carbon dioxide ». Applied Energy 111 (novembre 2013) : 74–79. http://dx.doi.org/10.1016/j.apenergy.2013.04.080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wei, Wang, et Gong Jinlong. « Methanation of carbon dioxide : an overview ». Frontiers of Chemical Science and Engineering 5, no 1 (28 décembre 2010) : 2–10. http://dx.doi.org/10.1007/s11705-010-0528-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lach, Daniel, Jaroslaw Polanski et Maciej Kapkowski. « CO2—A Crisis or Novel Functionalization Opportunity ? » Energies 15, no 5 (22 février 2022) : 1617. http://dx.doi.org/10.3390/en15051617.

Texte intégral
Résumé :
The growing emission of carbon dioxide (CO2), combined with its ecotoxicity, is the reason for the intensification of research on the new technology of CO2 management. Currently, it is believed that it is not possible to eliminate whole CO2 emissions. However, a sustainable balance sheet is possible. The solution is technologies that use carbon dioxide as a raw material. Many of these methods are based on CO2 methanation, for example, projects such as Power-to-Gas, production of fuels, or polymers. This article presents the concept of using CO2 as a raw material, the catalytic conversion of carbon dioxide to methane, and consideration on CO2 methanation catalysts and their design.
Styles APA, Harvard, Vancouver, ISO, etc.
7

DARENSBOURG,, DONALD J., CHRISTOPHERG BAUCH, et CESAR OVALLES,. « MECHANISTIC ASPECTS OF CATALYTIC CARBON DIOXIDE METHANATION ». Reviews in Inorganic Chemistry 7, no 4 (octobre 1985) : 315–40. http://dx.doi.org/10.1515/revic.1985.7.4.315.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ando, Hisanori, Masahiro Fujiwara, Yasuyuki Matsumura, Hiroshi Miyamura et Yoshie Souma. « Methanation of carbon dioxide over LaNi4X type catalysts ». Energy Conversion and Management 36, no 6-9 (juin 1995) : 653–56. http://dx.doi.org/10.1016/0196-8904(95)00090-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ando, H. « Methanation of carbon dioxide over LaNi4X type catalysts ». Fuel and Energy Abstracts 37, no 3 (mai 1996) : 182. http://dx.doi.org/10.1016/0140-6701(96)88531-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dias, Yan Resing, et Oscar W. Perez-Lopez. « Carbon dioxide methanation over Ni-Cu/SiO2 catalysts ». Energy Conversion and Management 203 (janvier 2020) : 112214. http://dx.doi.org/10.1016/j.enconman.2019.112214.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Luong, J., Y. Hua, R. Gras et M. Hawryluk. « In situ methanation with flame ionization detection for the determination of carbon dioxide in various matrices ». Analytical Methods 10, no 10 (2018) : 1275–79. http://dx.doi.org/10.1039/c8ay00079d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Thampi, K. Ravindranathan, John Kiwi et Michael Grätzel. « Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure ». Nature 327, no 6122 (juin 1987) : 506–8. http://dx.doi.org/10.1038/327506a0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Hasrack, Golshid, Maria Carmen Bacariza, Carlos Henriques et Patrick Da Costa. « On the Effect of Cobalt Promotion over Ni/CeO2 Catalyst for CO2 Thermal and Plasma Assisted Methanation ». Catalysts 12, no 1 (30 décembre 2021) : 36. http://dx.doi.org/10.3390/catal12010036.

Texte intégral
Résumé :
In recent years, carbon dioxide hydrogenation leading to synthetic fuels and value-added molecules has been proposed as a promising technology for stabilizing anthropogenic greenhouse gas emissions. Methanation or Sabatier are possible reactions to valorize the CO2. In the present work, thermal CO2 methanation and non-thermal plasma (NTP)-assisted CO2 methanation was performed over 15Ni/CeO2 promoted with 1 and 5 wt% of cobalt. The promotion effect of cobalt is proven both for plasma and thermal reaction and can mostly be linked with the basic properties of the materials.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lin, Jianghui, Caiping Ma, Jing Luo, Xianghui Kong, Yanfei Xu, Guangyuan Ma, Jie Wang, Chenghua Zhang, Zhengfeng Li et Mingyue Ding. « Preparation of Ni based mesoporous Al2O3 catalyst with enhanced CO2 methanation performance ». RSC Advances 9, no 15 (2019) : 8684–94. http://dx.doi.org/10.1039/c8ra10348h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Li, Li, Wenqing Zeng, Mouxiao Song, Xueshuang Wu, Guiying Li et Changwei Hu. « Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature : A Review ». Catalysts 12, no 2 (21 février 2022) : 244. http://dx.doi.org/10.3390/catal12020244.

Texte intégral
Résumé :
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Cam, Le Minh, Nguyen Thi Thu Ha, Le Van Khu, Nguyen Ngoc Ha et Trevor C. Brown. « Carbon Dioxide Methanation Over Nickel Catalysts Supported on Activated Carbon at Low Temperature ». Australian Journal of Chemistry 72, no 12 (2019) : 969. http://dx.doi.org/10.1071/ch19355.

Texte intégral
Résumé :
The methanation of carbon over nickel catalysts supported on activated carbon was investigated using a continuous flow microreactor. Catalysts with nickel loadings of 5, 7, and 10% were synthesised by incipient wetness impregnation methods and characterised using Brunauer–Emmett–Teller (BET), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2-temperature-programmed reduction (TPR), BET, XRD, SEM, TEM and H2-TPR. The methanation reaction was studied over the temperature range 200–500°C with a H2 to CO2 ratio of 4:1 in He and at 1 atm. With an increase in Ni content from 5 to 7% both conversion of CO2 and CH4 selectivity increased. Increasing the nickel content to 10%, however decreased conversion and selectivity due to the larger crystallite size and lower surface area of the catalyst. The most active catalyst with 7% Ni does not deactivate during 15h time on stream at 350°C. The high catalytic activity and stability of the studied catalysts is a consequence of the reducibility of Ni and a synergetic effect between the nickel active sites and the activated carbon surface.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Fujita, Shinichiro, Hiroyuki Terunuma, Masato Nakamura et Nobutsune Takezawa. « Mechanisms of methanation of carbon monoxide and carbon dioxide over nickel ». Industrial & ; Engineering Chemistry Research 30, no 6 (juin 1991) : 1146–51. http://dx.doi.org/10.1021/ie00054a012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tripodi, Antonio, Francesco Conte et Ilenia Rossetti. « Carbon Dioxide Methanation : Design of a Fully Integrated Plant ». Energy & ; Fuels 34, no 6 (7 mai 2020) : 7242–56. http://dx.doi.org/10.1021/acs.energyfuels.0c00580.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Asri Mohd. Esa, Yusak, et Norzahir Sapawe. « A short review on carbon dioxide (CO2) methanation process ». Materials Today : Proceedings 31 (2020) : 394–97. http://dx.doi.org/10.1016/j.matpr.2020.07.191.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Goodarzi, Farnoosh, Liqun Kang, Feng Ryan Wang, Finn Joensen, Søren Kegnaes et Jerrik Mielby. « Methanation of Carbon Dioxide over Zeolite-Encapsulated Nickel Nanoparticles ». ChemCatChem 10, no 7 (27 février 2018) : 1566–70. http://dx.doi.org/10.1002/cctc.201701946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Veselovskaya, Janna V., Pavel D. Parunin, Olga V. Netskina, Lidiya S. Kibis, Anton I. Lysikov et Aleksey G. Okunev. « Catalytic methanation of carbon dioxide captured from ambient air ». Energy 159 (septembre 2018) : 766–73. http://dx.doi.org/10.1016/j.energy.2018.06.180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Van Thi Minh, Hue, Lan Phung Thi, Ha Nguyen Thi Thu, Cam Le Minh et Ha Nguyen Ngoc. « A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part II : Reaction pathways ». Vietnam Journal of Catalysis and Adsorption 9, no 1 (30 avril 2020) : 73–80. http://dx.doi.org/10.51316/jca.2020.012.

Texte intégral
Résumé :
The methanation of carbon dioxide over Ni5 supported on activated carbon (Ni5/AC) was studied by using density functional theory and climbing image – nudged elastic band methods. A reaction diagram for the formation of methane via CO or HCOO species, which consists of 14 reaction steps was proposed. The reaction energy and activation energy for the overall steps involved in the reaction process were calculated and analyzed. Following the proposed mechanism possible carbon byproducts of the CO2 methanation reaction are CO and HCHO. Formation of these products can occur at high temperatures, but it is more thermodynamically difficult than formation of CH4. The formation of CH4 is more preferably occur via the CO pathway than the HCOO pathway.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Hoffarth, Marc Philippe, Timo Broeker et Jan Schneider. « Effect of N2 on Biological Methanation in a Continuous Stirred-Tank Reactor with Methanothermobacter marburgensis ». Fermentation 5, no 3 (2 juillet 2019) : 56. http://dx.doi.org/10.3390/fermentation5030056.

Texte intégral
Résumé :
In this contribution, the effect of the presence of a presumed inert gas like N2 in the feed gas on the biological methanation of hydrogen and carbon dioxide with Methanothermobacter marburgensis was investigated. N2 can be found as a component besides CO2 in possible feed gases like mine gas, weak gas, or steel mill gas. To determine whether there is an effect on the biological methanation of CO2 and H2 from renewable sources or not, the process was investigated using feed gases containing CO2, H2, and N2 in different ratios, depending on the CO2 content. A possible effect can be a lowered conversion rate of CO2 and H2 to CH4. Feed gases containing up to 47N2 were investigated. The conversion of hydrogen and carbon dioxide was possible with a conversion rate of up to 91 but was limited by the amount of H2 when feeding a stoichiometric ratio of 4:1 and not by adding N2 to the feed gas.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kaczmarczyk, Robert, Agata Mlonka-Mędrala et Sebastian Gurgul. « Methanation of carbon dioxide by hydrogen reduction – a thermodynamic analysis ». E3S Web of Conferences 14 (2017) : 02041. http://dx.doi.org/10.1051/e3sconf/20171402041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhou, Guilin, Tian Wu, Haibing Zhang, Hongmei Xie et Yongcheng Feng. « CARBON DIOXIDE METHANATION ON ORDERED MESOPOROUS CO/KIT-6 CATALYST ». Chemical Engineering Communications 201, no 2 (6 novembre 2013) : 233–40. http://dx.doi.org/10.1080/00986445.2013.766881.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Aziz, M. A. A., A. A. Jalil, S. Triwahyono et S. M. Sidik. « Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles ». Applied Catalysis A : General 486 (septembre 2014) : 115–22. http://dx.doi.org/10.1016/j.apcata.2014.08.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Šnajdrová, Veronika, Tomáš Hlinčík, Karel Ciahotný et Lukáš Polák. « Pilot unit of carbon dioxide methanation using nickel-based catalysts ». Chemical Papers 72, no 9 (23 mars 2018) : 2339–46. http://dx.doi.org/10.1007/s11696-018-0456-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Schlereth, David, Philipp J. Donaubauer et Olaf Hinrichsen. « Metallic Honeycombs as Catalyst Supports for Methanation of Carbon Dioxide ». Chemical Engineering & ; Technology 38, no 10 (4 septembre 2015) : 1845–52. http://dx.doi.org/10.1002/ceat.201400717.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Do, Jeong Yeon, No-Kuk Park, Myung Won Seo, Doyeon Lee, Ho-Jung Ryu et Misook Kang. « Effective thermocatalytic carbon dioxide methanation on Ca-inserted NiTiO3 perovskite ». Fuel 271 (juillet 2020) : 117624. http://dx.doi.org/10.1016/j.fuel.2020.117624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Unwiset, Preeya, Kingkaew Chayakul Chanapattharapol, Pinit Kidkhunthod, Yingyot Poo-arporn et Bunsho Ohtani. « Catalytic activities of titania-supported nickel for carbon-dioxide methanation ». Chemical Engineering Science 228 (décembre 2020) : 115955. http://dx.doi.org/10.1016/j.ces.2020.115955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ibraeva, Z. A., N. V. Nekrasov, B. S. Gudkov, V. I. Yakerson, Z. T. Beisembaeva, E. Z. Golosman et S. L. Kiperman. « Kinetics of methanation of carbon dioxide on a nickel catalyst ». Theoretical and Experimental Chemistry 26, no 5 (1991) : 584–88. http://dx.doi.org/10.1007/bf00531916.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Habazaki, H., M. Yamasaki, A. Kawashima et K. Hashimoto. « Methanation of carbon dioxide on Ni/(Zr-Sm)Ox catalysts ». Applied Organometallic Chemistry 14, no 12 (2000) : 803–8. http://dx.doi.org/10.1002/1099-0739(200012)14:12<803 ::aid-aoc89>3.0.co;2-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Pan, Yung-Tin, et Hong Yang. « Rhodium-on-Palladium Nanocatalysts for Selective Methanation of Carbon Dioxide ». ChemNanoMat 3, no 9 (9 août 2017) : 639–45. http://dx.doi.org/10.1002/cnma.201700185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

El-Salamony, Radwa A., Ahmed S. Al-Fatesh, Kenit Acharya, Abdulaziz A. M. Abahussain, Abdulaziz Bagabas, Nadavala Siva Kumar, Ahmed A. Ibrahim, Wasim Ullah Khan et Rawesh Kumar. « Carbon Dioxide Valorization into Methane Using Samarium Oxide-Supported Monometallic and Bimetallic Catalysts ». Catalysts 13, no 1 (4 janvier 2023) : 113. http://dx.doi.org/10.3390/catal13010113.

Texte intégral
Résumé :
Samarium oxide (Sm2O3) is a versatile surface for CO2 and H2 interaction and conversion. Samarium oxide-supported Ni, samarium oxide-supported Co-Ni, and samarium oxide-supported Ru-Ni catalysts were tested for CO2 methanation and were characterized by X-ray diffraction, nitrogen physisorption, infrared spectroscopy, H2-temperature programmed reduction, and X-ray photoelectron spectroscopy. Limited H2 dissociation and widely available surface carbonate and formate species over 20 wt.% Ni, dispersed over Sm2O3, resulted in ~98% CH4 selectivity. The low selectivity for CO could be due to the reforming reaction between CH4 (methanation product) and CO2. Co-impregnation of cobalt with nickel over Sm2O3 had high surface adsorbed oxygen and higher CO selectivity. On the other hand, co-impregnation of ruthenium and nickel over Sm2O3 led to more than one catalytic active site, carbonate species, lack of formate species, and 94% CH4 selectivity. It indicated the following route of CH4 synthesis over Ru-Ni/Sm2O3; carbonate → unstable formate → CO → CH4.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Dyachenko, Alla G., Olena V. Ischenko, Snizhana V. Gaidai, Tetiana M. Zakharova, Andrii V. Yatsymyrskyi et Vladyslav V. Lisnyak. « Kinetic study of carbon dioxide catalytic methanation over cobalt–nickel catalysts ». French-Ukrainian Journal of Chemistry 7, no 1 (2019) : 74–80. http://dx.doi.org/10.17721/fujcv7i1p74-80.

Texte intégral
Résumé :
Based on the data of the thermoprogrammed desorption and using mass-spectroscopic analysis of desorbed products and on the kinetic patterns of the methanation process for cobalt–nickel catalysts, we suggested a mechanism for the reaction which passes through forming intermediate formyl compounds: CHO*, HCOH*, and HCOOH*. Because of the high stability of the carbon dioxide molecule, the step of adding the first hydrogen atom is the limiting step. Such a mechanism is in good agreement with the proposed kinetic equations.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wang, Wei, Wei Chu, Ning Wang, Wen Yang et Chengfa Jiang. « Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation ». International Journal of Hydrogen Energy 41, no 2 (janvier 2016) : 967–75. http://dx.doi.org/10.1016/j.ijhydene.2015.11.133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Fujita, Shin-ichiro, Masato Nakamura, Tosiaki Doi et Nobutsune Takezawa. « Mechanisms of methanation of carbon dioxide and carbon monoxide over nickel/alumina catalysts ». Applied Catalysis A : General 104, no 1 (octobre 1993) : 87–100. http://dx.doi.org/10.1016/0926-860x(93)80212-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Nieß, Selina, Udo Armbruster, Sebastian Dietrich et Marco Klemm. « Recent Advances in Catalysis for Methanation of CO2 from Biogas ». Catalysts 12, no 4 (25 mars 2022) : 374. http://dx.doi.org/10.3390/catal12040374.

Texte intégral
Résumé :
Biogas, with its high carbon dioxide content (30–50 vol%), is an attractive feed for catalytic methanation with green hydrogen, and is suitable for establishing a closed carbon cycle with methane as energy carrier. The most important questions for direct biogas methanation are how the high methane content influences the methanation reaction and overall efficiency on one hand, and to what extent the methanation catalysts can be made more resistant to various sulfur-containing compounds in biogas on the other hand. Ni-based catalysts are the most favored for economic reasons. The interplay of active compounds, supports, and promoters is discussed regarding the potential for improving sulfur resistance. Several strategies are addressed and experimental studies are evaluated, to identify catalysts which might be suitable for these challenges. As several catalyst functionalities must be combined, materials with two active metals and binary oxide support seem to be the best approach to technically applicable solutions. The high methane content in biogas appears to have a measurable impact on equilibrium and therefore CO2 conversion. Depending on the initial CH4/CO2 ratio, this might lead to a product with higher methane content, and, after work-up, to a drop in-option for existing natural gas grids.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Hashimoto, K., N. Kumagai, K. Izumiya, H. Takano, P. R. Zabinski, A. A. El-Moneim, M. Yamasaki, Z. Kato, E. Akiyama et H. Habazaki. « The Use of Renewable Energy in the Form of Methane Via Electrolytic Hydrogen Generation / Zastosowanie Odnawialnej Energii W Formie Metanu Na Drodze Elektrolitycznej Produkcji Wodoru ». Archives of Metallurgy and Materials 58, no 1 (1 mars 2013) : 231–39. http://dx.doi.org/10.2478/v10172-012-0179-0.

Texte intégral
Résumé :
Extrapolation of world energy consumption from 1990 to 2010 indicates the complete exhaustion of world reserves of oil, natural gas, uranium and coal by 2040, 2043, 2046 and 2053, respectively. For the survival of all people in the whole world, intermittent and fluctuating electricity generated from renewable energy should be supplied in the form of usable fuel to all people in the whole world. We have been working on research and development of global carbon dioxide recycling for the use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock. We created energy-saving cathodes for hydrogen production, anodes for oxygen evolution without chlorine formation in seawater electrolysis, and catalysts for methanation of carbon dioxide and built pilot plants of industrial scale. Recent advances in materials are described. Industrial applications are in progress.
Styles APA, Harvard, Vancouver, ISO, etc.
40

SONG, Huanling, Jian YANG, Jun ZHAO et Lingjun CHOU. « Methanation of Carbon Dioxide over a Highly Dispersed Ni/La2O3 Catalyst ». Chinese Journal of Catalysis 31, no 1 (janvier 2010) : 21–23. http://dx.doi.org/10.1016/s1872-2067(09)60036-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Champon, Isabelle, Alain Bengaouer, Albin Chaise, Sébastien Thomas et Anne-Cécile Roger. « Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst ». Journal of CO2 Utilization 34 (décembre 2019) : 256–65. http://dx.doi.org/10.1016/j.jcou.2019.05.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Muroyama, Hiroki, Yuji Tsuda, Toshiki Asakoshi, Hasan Masitah, Takeou Okanishi, Toshiaki Matsui et Koichi Eguchi. « Carbon dioxide methanation over Ni catalysts supported on various metal oxides ». Journal of Catalysis 343 (novembre 2016) : 178–84. http://dx.doi.org/10.1016/j.jcat.2016.07.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Traa, Yvonne, et Jens Weitkamp. « Kinetics of the Methanation of Carbon Dioxide over Ruthenium on Titania ». Chemical Engineering & ; Technology 22, no 4 (avril 1999) : 291–93. http://dx.doi.org/10.1002/(sici)1521-4125(199904)22:4<291 ::aid-ceat291>3.0.co;2-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Stuchlý, Vladimír, et Karel Klusáček. « Kinetics of carbon monoxide methanation on a Ni/SiO2 catalyst ». Collection of Czechoslovak Chemical Communications 55, no 7 (1990) : 1678–85. http://dx.doi.org/10.1135/cccc19901678.

Texte intégral
Résumé :
Kinetics of CO methanation on a commercial Ni/SiO2 catalyst was evaluated at atmospheric pressure, between 528 and 550 K and for hydrogen to carbon monoxide molar ratios ranging from 3 : 1 to 200 : 1. The effect of reaction products on the reaction rate was also examined. Below 550 K, only methane was selectively formed. Above this temperature, the formation of carbon dioxide was also observed. The experimental data could be described by two modified Langmuir-Hinshelwood kinetic models, based on hydrogenation of surface CO by molecularly or by dissociatively adsorbed hydrogen in the rate-determining step. Water reversibly lowered catalyst activity and its effect was more pronounced at higher temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Fujita, S., H. Terunuma, H. Kobayashi et N. Takezawa. « Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state ». Reaction Kinetics and Catalysis Letters 33, no 1 (mars 1987) : 179–84. http://dx.doi.org/10.1007/bf02066720.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ishchenko, Olena V., Alla G. Dyachenko, Andrii V. Yatsymyrskiy, Tetiana M. Zakharova, Snizhana V. Gaidai, Vladyslav V. Lisnyak et Ruslan Mariychuk. « CO2 methanation over Co–Ni catalysts ». E3S Web of Conferences 154 (2020) : 02001. http://dx.doi.org/10.1051/e3sconf/202015402001.

Texte intégral
Résumé :
One of the major goals when creating new energy systems is to provide clean and affordable energy. Currently, there is an excessive increase in the cost of fossil fuels and natural gas because of increased energy consumption and the inability to meet demand. That is why it is necessary to find reliable renewable energy sources and processes that will produce energy materials without toxic by-products in order to preserve the environment and to ensuring sustainable development and a strong economy. From environmental safety reasons, this need has led to the development of the catalytic synthesis of energetic materials from greenhouse gases; in particular, this paper proposes an efficient approach to producing methane by hydrogenation of carbon dioxide over Co–Ni catalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Frontera, Patrizia, Mariachiara Miceli, Francesco Mauriello, Pierantonio De Luca et Anastasia Macario. « Investigation on the Suitability of Engelhard Titanium Silicate as a Support for Ni-Catalysts in the Methanation Reaction ». Catalysts 11, no 10 (12 octobre 2021) : 1225. http://dx.doi.org/10.3390/catal11101225.

Texte intégral
Résumé :
Methanation reaction of carbon dioxide is currently envisaged as a facile solution for the storage and transportation of low-grade energies, contributing at the same time to the mitigation of CO2 emissions. In this work, a nickel catalyst impregnated onto a new support, Engelhard Titanium Silicates (ETS), is proposed, and its catalytic performance was tested toward the CO2 methanation reaction. Two types of ETS material were investigated, ETS-4 and ETS-10, that differ from each other in the titanium content, with Si/Ti around 2 and 3% by weight, respectively. Catalysts, loaded with 5% of nickel, were tested in the CO2 methanation reaction in the temperature range of 300–500 °C and were characterized by XRD, SEM–EDX, N2 adsorption–desorption and H2-TPR. Results showed an interesting catalytic activity of the Ni/ETS catalysts. Particularly, the best catalytic performances are showed by Ni/ETS-10: 68% CO2 conversion and 98% CH4 selectivity at T = 400 °C. The comparison of catalytic performance of Ni/ETS-10 with those obtained by other Ni-zeolites catalysts confirms that Ni/ETS-10 catalyst is a promising one for the CO2 methanation reaction.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bacariza, M. Carmen, Daniela Spataru, Leila Karam, José M. Lopes et Carlos Henriques. « Promising Catalytic Systems for CO2 Hydrogenation into CH4 : A Review of Recent Studies ». Processes 8, no 12 (13 décembre 2020) : 1646. http://dx.doi.org/10.3390/pr8121646.

Texte intégral
Résumé :
The increasing utilization of renewable sources for electricity production turns CO2 methanation into a key process in the future energy context, as this reaction allows storing the temporary renewable electricity surplus in the natural gas network (Power-to-Gas). This kind of chemical reaction requires the use of a catalyst and thus it has gained the attention of many researchers thriving to achieve active, selective and stable materials in a remarkable number of studies. The existing papers published in literature in the past few years about CO2 methanation tackled the catalysts composition and their related performances and mechanisms, which served as a basis for researchers to further extend their in-depth investigations in the reported systems. In summary, the focus was mainly in the enhancement of the synthesized materials that involved the active metal phase (i.e., boosting its dispersion), the different types of solid supports, and the frequent addition of a second metal oxide (usually behaving as a promoter). The current manuscript aims in recapping a huge number of trials and is divided based on the support nature: SiO2, Al2O3, CeO2, ZrO2, MgO, hydrotalcites, carbons and zeolites, and proposes the main properties to be kept for obtaining highly efficient carbon dioxide methanation catalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Siudyga, Tomasz, Maciej Kapkowski, Dawid Janas, Tomasz Wasiak, Rafał Sitko, Maciej Zubko, Jacek Szade et al. « Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation ». Catalysts 10, no 5 (7 mai 2020) : 513. http://dx.doi.org/10.3390/catal10050513.

Texte intégral
Résumé :
In this study, we investigated the catalytic performance of Ru nanoparticles (NPs) supported on Ni-nanowires for the first time. This appears to be a highly efficient catalyst for low-temperature methanation, e.g., ca. 100% conversion and 100% of CH4 selectivity can be achieved at ca. 179 °C, while the turnover frequency (TOF) value was 2479.2 h−1. At the same time, the onset of a reaction was observed at a temperature as low as 130 °C. The comparison of nano-Pd and nano-Ru supported on Ni-nanowires enabled us to prove that oxidized surface metals are highly important for the high activity of the investigated nano-Ru@nanowired-Ni. Moreover, similar to the microscopic Sabatier rule, which indicates that some optimal reactivity level of a catalyst exists, we showed that Ni-nanowires (a higher specific surface area than a standard metal surface, e.g., in the form of a metal foam, but lower than nano-sized materials) significantly enhances the performance of the Ru-Ni catalytic system.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Tomiczek, Blażej, Marek Szindler, Miroslawa Pawlyta et Paulina Borylo. « Material characterization of Au/Ni nanocatalyst for low-temperature carbon dioxide methanation ». IOP Conference Series : Materials Science and Engineering 1178 (22 septembre 2021) : 012058. http://dx.doi.org/10.1088/1757-899x/1178/1/012058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie