Articles de revues sur le sujet « Capture et la conversion du CO2 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Capture et la conversion du CO2.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Capture et la conversion du CO2 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Yin, Huayi, et Dihua Wang. « (Invited) Electrochemical Conversion of CO2 Into Oxygen/ and C/CO in Molten Carbonate ». ECS Meeting Abstracts MA2023-01, no 56 (28 août 2023) : 2737. http://dx.doi.org/10.1149/ma2023-01562737mtgabs.

Texte intégral
Résumé :
The molten salt CO2 capture and electrochemical transformation (MSCC-ET) process has been demonstrated as an effective approach to capturing and converting CO2 into oxygen and C/CO [1-2]. The effective CO2 capture and electrochemical conversion rely on the high-temperature molten carbonate electrolytes and the cost-effective inert oxygen-evolution anode. In recent years, we have focused on the electrolyte engineering to modulate the reactions at both the cathode and anode as well as the CO2 capture efficiency [3-4]. Besides, we insist on developing iron- and nickel-base oxygen-evolution inert anodes in terms of revealing the fundamental principles and basic guidelines for choosing proper materials and fabrication processes [5]. By doing so, we can prepare functional carbon materials or CO at the cathode with a high current efficiency of over 90%, and produce oxygen at the inert anode. In addition, the kilo-ampere scale electrolyzer was built to produce oxygen, carbon or CO with an energy efficiency of over 50%. Therefore, the molten carbonate CO2 electrolyzer shows its potential to convert CO2 on the Mars to produce oxygen and fuels to support the future exploration of outer space. References [1] H. Y. Yin, D. H. Wang*, et al., Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy & Environmental Science, 2013, 6: 1538-1545. [2] R. Jiang, M. X. Gao, X. H. Mao, D. H. Wang*. Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process, Current Opinion in Electrochemistry, 2019, 17: 38-46. [3] B. W. Deng, J. J. Tang, X. H. Mao, Y. Q. Song, H. Zhu, W. Xiao, D. H. Wang*. Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate, Environmental Science & Technology, 2016, 50(19): 10588-10595. [4] Z. S Yang, B. W. Deng, K. F. Du, H. Y. Yin*, D. H. Wang*, A general descriptor for guiding the electrolysis of CO2 in molten carbonate, 2022, in press. [5] P. L. Wang, K. F. Du, Y. P. Dou, H. Zhu, D. H. Wang*, Corrosion behaviour and mechanism of nickel anode in SO42- containing molten Li2CO3-Na2CO3-K2CO3. Corrosion Science 2022, 166. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
2

Song, Jun Tae, Yuta Takaoka, Atsushi Takagaki, Motonori Watanabe et Tatsumi Ishihara. « Synergistic Integration of Zr-MOF (UiO-66) and Bi Electrocatalysts for Enhanced CO2 Conversion to Formate ». ECS Meeting Abstracts MA2023-02, no 47 (22 décembre 2023) : 2382. http://dx.doi.org/10.1149/ma2023-02472382mtgabs.

Texte intégral
Résumé :
The utilization of renewable energy-driven CO2 conversion technology has garnered considerable attention as a potential remedy for both the energy crisis and climate change. Among various methods, the electrocatalytic CO2 reduction reaction (CO2RR) has received particular focus due to its mild reaction conditions and its ability to produce various valuable products. Specifically, formic acid holds great promise for CO2 electrolysis due to its potential for energy storage and transportation, as well as its commercial viability as indicated by techno-economic assessments. Bi, In, and Sn are several metal catalysts that have been reported for formic acid production, with Bi catalysts demonstrating favorable properties in terms of both cost-effectiveness and selective production of formic acid. However, despite efforts to enhance the intrinsic catalytic activity of Bi through methods such as nanostructuring and alloying, it has yet to achieve the desired level of performance. In light of recent findings by Nam et al. on the ability of a metal-organic framework (MOF) to regulate reaction intermediates for Ag catalyst, resulting in higher CO production, we draw inspiration from MOF's versatility and demonstrate the successful coupling of Bi with UiO-66, a Zr-MOF, to achieve higher CO2 reduction rates and thus increase formic acid production [1]. We synthesized MOF materials, UiO-66 and NH2-functionalized UiO-66 (UiO-66-NH2), and deposited Bi catalysts on the MOF structures using the NaBH4 reduction method, resulting in Bi/UiO-66 and Bi/UiO-66-NH2 samples. To compare the catalytic activity, we also synthesized Bi particle samples using the same method (Bi). Prior to CO2 reduction examination, all electrocatalysts were pre-treated in a 1.0 M KOH solution for 5 minutes, and then CO2 electrolysis was performed in a flow-cell reactor. Among the synthesized samples, Bi/UiO-66 demonstrated excellent CO2 reduction properties, exhibiting about 5 times higher current density (-220 mA/cm2) at an applied potential of -0.7 V vs. the reversible hydrogen electrode (RHE) than Bi alone (-44 mA/cm2), despite the identical electrochemically active surface area (ECSA) for both samples. On the other hand, Bi/UiO-66-NH2 showed an almost identical ECSA-normalized current density compared to Bi/UiO-66, indicating the negligible effect of NH2 functionalization on UiO-66 for CO2RR. Nevertheless, it is evident that the utilization of Zr-MOF (UiO-66) is beneficial in increasing the CO2 conversion rate of metallic Bi catalyst. To comprehend the reason behind the superior catalytic activity exhibited by the Bi/UiO-66 sample, we conducted various characterizations, such as SEM, TEM, FTIR, Raman, and XPS. Our results revealed that the structural evolution of UiO-66 occurs by the formation of carbonate-coordinated Zr-hydroxide during CO2 electrolysis, contributing to the high CO2 reduction current density. Moreover, the disappearance of the carbonate-relevant peak in the C 1s from XPS analysis after the decline in catalytic activity suggests that the carbonate species formed at Zr-MOF site, which is the captured form of CO2 molecules, play a crucial role in efficient CO2 capture and conversion. These findings suggest that Zr-MOF can be used for CO2 capture and conversion with high efficiency. [1] Nam et al., J. Am. Chem. Soc. 2020, 142, 51, 21513–21521.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Reisner, Erwin. « (Invited) Solar Panel Technologies for Light-to-Chemical Conversion ». ECS Meeting Abstracts MA2023-02, no 47 (22 décembre 2023) : 2370. http://dx.doi.org/10.1149/ma2023-02472370mtgabs.

Texte intégral
Résumé :
Solar panels are well known to produce electricity, but they are also in early-stage development for the production of sustainable fuels and chemicals. These panels mimic plant leaves in shape and function as demonstrated for overall solar water splitting to produce green H2 by the laboratories of Nocera and Domen.1,2 This presentation will give an overview of our recent progress to construct prototype solar panel devices for the conversion of carbon dioxide and solid waste streams into fuels and higher-value chemicals through molecular surface-engineering of solar panels with suitable catalysts. Specifically, a standalone ‘photoelectrochemical leaf’ based on an integrated lead halide perovskite-BiVO4 tandem light absorber architecture has been built for the solar CO2 reduction to produce syngas.3 Syngas is an energy-rich gas mixture containing CO and H2 and currently produced from fossil fuels. The renewable production of syngas may allow for the synthesis of renewable liquid oxygenates and hydrocarbon fuels. Recent advances in the manufacturing have enabled the reduction of material requirements to fabricate such devices and make the leaves sufficiently light weight to even float on water, thereby enabling application on open water sources.4 The tandem design also allows for the integration of biocatalysts and the selective and bias-free conversion of CO2-to-formate has been demonstrated using enzymes.5 The versatility of the integrated leaf architecture has been demonstrated by replacing the perovskite light absorber by BiOI for solar water and CO2 splitting to demonstrate week-long stability.6 An alternative solar carbon capture and utilisation technology is based on co-deposited semiconductor powders on a conducting substrate.2 Modification of these immobilized powders with a molecular catalyst provides us with a photocatalyst sheet that can cleanly produce formic acid from aqueous CO2.7 CO2-fixing bacteria grown on such a ‘photocatalyst sheet’ enable the production of multicarbon products through clean CO2-to-acetate conversion.8 The deposition of a single semiconductor material on glass gives panels for the sunlight-powered conversion plastic and biomass waste into H2 and organic products, thereby allowing for simultaneous waste remediation and fuel production.9 The concept and prospect behind these integrated systems for solar energy conversion,10 related approaches,11 and their relevance to secure and harness sustainable energy supplies in a fossil-fuel free economy will be discussed. References (1) Reece et al., Science, 2011, 334, 645–648. (2) Wang et al., Nat. Mater., 2016, 15, 611–615. (3) Andrei et al., Nat. Mater., 2020, 19, 189–194. (4) Andrei et al., Nature, 2022, 608, 518–522. (5) Moore et al., Angew. Chem. Int. Ed., 2021, 60, 26303–26307. (6) Andrei et al., Nat. Mater., 2022, 21, 864–868. (7) Wang et al., Nat. Energy, 2020, 5, 703–710. (8) Wang et al., Nat. Catal., 2022, 5, 633–641. (9) Uekert et al., Nat. Sustain., 2021, 4, 383–391. (10) Andrei et al., Acc. Chem. Res., 2022, 55, 3376–3386. (11) Wang et al., Nat. Energy, 2022, 7, 13-24.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bohlen, Barbara, Nick Daems et Tom Breugelmans. « Electrochemical Production of Formate Directly from Amine-Based CO2 Capture Media ». ECS Meeting Abstracts MA2023-01, no 26 (28 août 2023) : 1722. http://dx.doi.org/10.1149/ma2023-01261722mtgabs.

Texte intégral
Résumé :
Introduction There is an urgency for the development and establishment of technologies to deal with the effects of climate change and increasing temperature of the planet.1 The decrease in the CO2 emissions is a possible path, and the capture of CO2 from the atmosphere is another alternative to try and tackle the effects of climate change.2 The combination of capture and conversion of CO2 is a potential approach to achieve the net-zero emission goals and a circular economy for the future.3 Amine scrubbing is an industrially established capture technology that utilizes mainly monoethanolamine (MEA) as the capture solution to capture CO2 from post-combustion flue gases. The process has the disadvantage of a high energy demand, which prevents its wider application.2 This study proposes a novel capture and utilization (CCU) combination: the use of the MEA capture solution as electrolyte for the electrochemical CO2 reduction (eCO2R). In that way, the CO2 capture and conversion will be combined in the same medium, avoiding the energy-intensive regeneration step, thus saving energy, as well as generating products of industrial interest. Sn-based catalysts were primarily chosen due to their selectivity towards formate, one of the most straightforward reduction products from CO2. Results The eCO2R from the capture media (30 wt% MEA solutions, saturated with CO2) was promoted in a zero-gap type reactor, composed of an Sn-based cathode, a Ni foam anode and a bipolar membrane (BPM) separating the cathode and anode compartments. The BPM is responsible for providing protons to the cathode side of the electrolyzer, which promote the hydrolysis of the carbamate on the surface of the catalyst and thus enhances the CO2 availability and consequently the eCO2R. Figure 1 presents a scheme of the zero-gap electrolyzer, highlighting the hydrolysis of the carbamate in contact with the catalyst, and compares the faradaic efficiencies (FE) towards formate obtained by different setups of the zero-gap electrolyzer, at -50 mA cm-2. The Sn nanoparticle (SnNP)-based catalysts show a low efficiency for the eCO2R from the capture media (up to 5%). As published in the literature, surfactants are capable to inhibit the hydrogen evolution reaction (HER) in electrochemical systems and thus promote the eCO2R.4 The surfactant cetyltrimethylammonium bromide (CTAB) was therefore added to the system and the FE towards formate increased, although merely up to 6.43%. To further increase the surface area available for the eCO2R, a metal gauze was introduced as support for the working electrode (WE). Here, a Cu gauze with electrodeposited Sn (SnED) was used as WE and the obtained FE was 70% higher than for the carbon supported SnNP catalysts, up to 8.49%, without the addition of the surfactant. The hydrophilic nature of the metal surface (in comparison to the carbon paper substrate of the NPs) and a bigger surface area could be the reasons behind this enhancement in the FE using metal WE. Future studies will focus on the further enhancement of the FE towards formate. Conclusion This study shows the feasibility of a novel CCU technology: the electrochemical reduction of CO2 to formate from an amine-based capture medium. Sn-based catalysts lead to an FE of up to 8.49%. The use of a metallic electrode lead to a larger enhancement of the FE, in comparison to the addition of a surfactant to the electrolyte for the SnNP-based catalyst. There is yet room for further improvement of the faradaic efficiency by the combination of the metal electrode and the use of surfactants to inhibit the HER, as well as the use of catalysts with higher selectivity towards the product, such as Bi. The use of a zero-gap electrolyzer shows the feasibility of scaling up the system to industrially relevant dimensions and the easiness of incorporating the electrochemical system to the end of pre-existing capture plants. References Ghiat, I., & Al-Ansari, T. (2021). Journal of CO2 Utilization, 45. Gutiérrez-Sánchez, O., Bohlen, B., et al. (2022). ChemElectroChem, 9(5), e202101540. Li, M., Irtem, E., et al. (2022). Nature Communications 2022 13:1, 13(1), 1–11. Chen, L., Li, F., et al. (2017). ChemSusChem, 10(20), 4109–4118. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
5

Owhoso, Fiki V., et David G. Kwabi. « Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes ». ECS Meeting Abstracts MA2022-02, no 57 (9 octobre 2022) : 2171. http://dx.doi.org/10.1149/ma2022-02572171mtgabs.

Texte intégral
Résumé :
Electrodes functionalized with molecularly well-defined reactive/catalytic species have become attractive for promoting a wide variety of electrochemical energy conversion processes or systems, such as electrocatalytic CO2 and O2 reduction, as well as metal-sulfur and redox-flow batteries.1-3 Critical to the performance of these electrodes is the interaction between the electric field, and the molecular species at the electrical double layer. Nevertheless, elucidating the potential/electric field experienced at the functionalized interface is challenging. We show in this work that the acid-base thermochemical (i.e. Pourbaix) behavior of molecular quinones can vary depending on their mode of covalent attachment to a carbon electrode and ionic strength of the electrolyte, in a manner that sheds light on the experienced interfacial electric field. This work can inform strategies for effective pH modulation at electrified interfaces in ways that can enhance the electrocatalytic processes and systems mentioned above, and enable newer applications such as pH-swing-based electrochemical CO2 capture using appropriately chemically modified electrodes.4 References 1 Ren, G. et al. Porous Core–Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 8, 4118-4125, doi:10.1021/acsami.5b11786 (2016). 2 Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research 53, 255-264, doi:10.1021/acs.accounts.9b00496 (2020). 3 Zhao, C.-X. et al. Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium–Sulfur Batteries. Journal of the American Chemical Society 143, 19865-19872, doi:10.1021/jacs.1c09107 (2021). 4 Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy & Environmental Science, doi:10.1039/D0EE01834A (2020).
Styles APA, Harvard, Vancouver, ISO, etc.
6

Novoselova, Inessa, Sergiy Kuleshov et Anatoliy Omel'chuk. « (Digital Presentation) Electrochemical Conversion of CO2 into Tungsten Carbides in Molten Salts ». ECS Meeting Abstracts MA2023-01, no 26 (28 août 2023) : 1744. http://dx.doi.org/10.1149/ma2023-01261744mtgabs.

Texte intégral
Résumé :
Huge amounts of anthropogenic emissions of the greenhouse gas carbon dioxide into the Earth's atmosphere are one of the key factors causing global warming. To mitigate the consequences of the severe climate changes caused by this phenomenon, over the last two decades great efforts of researchers have been directed towards the development of sustainable, environmentally friendly, carbon neutral and, if possible, not very expensive (in terms of used energy and inexpensive consumables) technologies for capture, conversion and storage (CCS) of CO2. Electrochemical conversion of CO2 using molten salts can rightfully be classified as CCS technology. In this case, carbon dioxide from various sources of its generation (fossil fuel power plants, industrial enterprises with a high carbon footprint) can be captured by molten salt (as a result of its physical dissolution, or chemical absorption by molten salt), and then electrochemically be converted into high value-added carbon-containing compounds: (a) carbon monoxide [1]; (b) carbon allotropes of various structures and modifications [2]; (c) refractory metal carbides [3], and various composites based on them. The reaction path and composition of the cathode products will depend on the electrolysis conditions. Elemental carbon synthesis precursor can be – carbon dioxide, directly dissolved in the molten salt mixture (direct reduction of CO2), as well as the carbonate anion, formed as a result of carbon dioxide interaction with oxide ions which are presented in the electrolyte bath (indirect reduction of CO2). This work presents the result of research concerning the electrochemical synthesis of the powders of tungsten carbides (WC and W2C) in chloride melt NaCl-KCl (1:1) under carbon dioxide pressure at the temperature range 700 – 800 оС. Refractory metal precursors are its oxy-anions (WО3; W2O7 2-; Меn x[WO4]nx-2; WO3F3 3- where Me – Na; K; Li; Mg; Ca; n – valance of metal Me). The formation of the new forms of tungsten electrochemical active particles in electrolyte is realized by the changing (control) of acidity of the melt. Carbon source is CO2, which was introduced into the electrolyzer under the excessive pressure of 0.1 – 1.7 MPa. The creation of excessive gas pressure is necessary condition for the increasing of the rate of electrolytic process (current densities) throw the rise of CO2 solubility in chloride melt. The general scheme of the high-temperature synthesis of tungsten carbides by the method of Molten Salt Carbon Electrochemical Transformation (MS-CCT) is presented in Fig. 1. The electrochemical investigations of partial and joint electroreduction of tungsten carbide precursors were carried out by the method of cyclic voltammetry. The areas of potentials and current densities, where the joint electrochemical discharge of tungsten carbide precursors (a narrow range of deposition potentials) occurs up to refractory metal and carbon takes place were found. Electrolytical synthesis of nano-sized (10 – 30 nm) powders of tungsten carbides (WC, W2C) and composites WC-C (up to 5 wt % of free carbon); W2C-WC; WC-C-Pt was carried out from the melts of different chemical composition; and the characterization of obtained products was fulfilled by the methods of chemical analysis, X-ray diffraction, DTG, BET adsorption, scanning and transmission electron microscopy. Synthesized composite materials based on tungsten carbides of various compositions were investigated as a cathode material in the reaction of electrolytic splitting of water for hydrogen production in a sulfuric acid solution [4]. The obtained results showed that the best activity has a composite of tungsten monocarbide WC with a content of free carbon up to 5 wt.%. The hydrogen onset potential for this electrode is -0.02 V, the overvoltage of hydrogen release at ik = 10 mA/cm2 is -110 mV, the exchange current is 7.0×10-4 A/cm2, the Tafel slope – -85 mV/dec. The presence of free carbon on the surface of tungsten carbides electrode improves its catalytic activity, increasing the area of the active surface. The catalytic activity of electrodes made of tungsten monocarbide increases with the introduction of platinum (up to 10 wt %) into the composite. References Kaplan V, Wachtel E, Gartsman K et al (2010) Conversion of CO2 to CO by electrolysis of molten lithium carbonate. J Electrochem Soc 157:B552–B556. Novoselova I.A., Kushkhov Kh.B., Malyshev V.V., Shapoval V.I. (2001) Theoretical foundations and implementation of high-temperature electrochemical synthesis of tungsten carbides in ionic melts. Theor. Found. Chem. Eng. 35:175–187. Novoselova I.A., Kuleshov S.V., Volkov S.V. et al (2016) Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts. Electrochim Acta 211:343–355. Novoselova I, Kuleshov S, Fedoryshena E et al (2018) Electrochemical synthesis of tungsten carbide in molten salts, its properties and applications. ECS Trans 86:81–94. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira et Erwin Reisner. « Using Enzymes to Understand and Control the Local Environment of Catalysis ». ECS Meeting Abstracts MA2023-02, no 52 (22 décembre 2023) : 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.

Texte intégral
Résumé :
Local environments within porous electrodes are an inherent, but often neglected component of catalysis as the local conversion of reactants to products means catalysis occurs in a very different environment to bulk solution. By understanding and modifying these local environments using a combination of experimental and computational techniques, we show how to improve the performance of electrocatalytic reactions to address the climate crisis by efficiently converting renewable energy to chemical fuels. The selectivity and activity of enzymes means they are ideal model catalysts that can guide the design of synthetic systems. However, they must be in an environment that is close to their optimal to operate efficiently, with small changes in properties such as pH drastically affecting their activity. By optimising their local environment, the rates of fuel formation can be drastically (>18×) increased.[1] We also demonstrate the crucial role of CO2 hydration kinetics on the local pH and CO2 concentration using the enzyme Carbonic Anhydrase co-immobilised with Formate Dehydrogenase.[2] Carbonic Anhydrase catalyses CO2 hydration, causing CO2 to act as a better buffer to mitigate changes in the local pH environment allowing the system to operate closer to its optimal and how this contrasts with heterogeneous CO2 reduction. (fig. 1a) We extend this approach to low CO2 concentrations, taking inspiration from the natural carboxysome to develop a system where Formate Dehydrogenase and Carbonic Anhydrase are co-immobilised in a nanoconfined structure to improve low CO2 concentration utilisation. (fig. 1b).[3] The electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. Carbonic Anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2. This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO2 streams to chemicals by using all forms of dissolved carbon. References [1] E. E. Moore, S. J. Cobb et al., Proc. Natl. Acad. Sci. USA 2022,119, e2114097119 [2] S. J. Cobb et al., Nat. Chem. 2022, 14, 417 – 424 [3] S. J. Cobb et al., Angew. Chem. Int. Ed.,2023 Just Accepted, DOI: 10.1002/anie.202218782 Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hu, Shu. « (Invited) A Coating Strategy for Heterogeneous Photocatalysis Producing Renewable Fuels ». ECS Meeting Abstracts MA2022-01, no 36 (7 juillet 2022) : 1554. http://dx.doi.org/10.1149/ma2022-01361554mtgabs.

Texte intégral
Résumé :
Photocatalysts coevolve reductive and oxidative reactions in close proximity. Due to simplified reactor implementation, photocatalysis promises solar fuels production at scale. Despite decades of study, their rates and selectivity were often improved by trial and error, and their solar-to-fuel conversion efficiencies remain much lower than the theoretical limit. I will discuss an emerging coating strategy to stabilize particulate photocatalysts in a photo-reactor that promises solar energy utilization at scale. Those photocatalysts coevolve reductive and oxidative reactions in close proximity, and they potentially overcome the scale-up challenge by photoelectrochemical panels. I will first introduce the Hu-lab invented oxide coatings to protect semiconductors, such as silicon and gallium indium phosphide, and achieve efficient and durable photocatalysis. We elucidate the coupled multi-phase processes, including charge separation, charge transfer, and chemical transport across multiple scales. We will show that the local electrochemical potentials of conduction-band electrons and the branching ratios of local charge transfer kinetics under multiple pathways are mutually dependent, and how charge transfer kinetics and surface energetics sensitively determine the charge separation behavior.[1] Based on the holistic understanding of the photophysical, electrocatalytic, and transport processes coupled at the nanoscale, we employ stabilization coatings to coevolve H2 at a record rate of 48.5 mmol∙h-1∙g-1 or 2.5 mL H2∙h-1∙cm-2 under 1-sun solar illumination in ambient air.[2] Additionally, the discovery of new coatings offers the opportunity to tune the local energetics, kinetics, and reaction environments of supported co-catalysts. Manipulation of the electronic defect energetics enables the semiconductor photoabsorbers of 1.1 – 2.3 eV with sufficient band energetics. Coated photocatalysts can perform H2 evolution, water oxidation, and can further achieve CO2 reduction reactions combining with CO2 capture.[3] Recently, Berlinguette and others showed a CO2 electrolyzer for directly converting dissolved bicarbonates into CO2-reduction products.[4] The analogy in photocatalysis is to locally drive pH swing to release CO2 at the oxidative sites, whereas the nearby reductive sites reduce in-situ generated CO2 into CO2R products. We show that in the presence of quinone redox couples in a bicarbonate solution, CO is produced with a 1-atm CO2-free headspace where the only source of CO2 is the (bi)carbonate anions.[6] We envision the direct solar fuels production from natural resources such as sunlight, bicarbonates from the ocean, or moisture in the air in a durable particle reactor.[5] References: [1] Zhenhua Pan, Yanagi Rito, Q. Wang, X. Shen, Q. Zhu, Y. Xue, J. A. Rohr, Takashi Hisatomi, Kazunari Domen, and Shu Hu, “Mutually-dependent kinetics and energetics of photocatalyst/ co-catalyst/two-redox liquid junctions”, Energy & Environmental Science , 13, 162–173 (2020). doi: 10.1039/C9EE02910A [2] T. Zhao, R. Yanagi, Y. Xu, Y. He, Y. Song, M. Yang, and S. Hu, “A Coating Strategy to Achieve Effective Local Charge Separation for Photocatalytic Coevolution”, Proceedings of National Academy of Sciences , 16, 119(7) e2023552118 (2021). doi: 10.1073/pnas.2023552118 [3] J. Tang, D. Solanki, T. Zhao, and S. Hu, “Selective Two-Electron Hydrogen Peroxide Conversion Tailored by Surface, Interface, and Device Engineering,”, Joule , 6, 1432 – 1461 (2021). doi: 10.1016/j.joule.2021.04.012. [4] Li, T.; Lees, E. W.; Zhang, Z.; Berlinguette, C. P. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett 2020, 5 (8), 2624-2630. doi: 10.1021/acsenergylett.0c01291 [5] X. Shen, S. Hu, et al., “Comprehensive Evaluation For Protective Coatings: Optical, Electrical, Photoelectrochemical, and Spectroscopic Characterization”, Frontier in Energy Research .
Styles APA, Harvard, Vancouver, ISO, etc.
9

Carpenter, Chris. « Well-Integrity Risk-Assessment Strategy Applied to CO2 Sequestration Project ». Journal of Petroleum Technology 75, no 01 (1 janvier 2023) : 78–80. http://dx.doi.org/10.2118/0123-0078-jpt.

Texte intégral
Résumé :
_ This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper IPTC 22348, “Scrutinizing Well Integrity for Determining Long-Term Fate of a CO2 Sequestration Project: An Improved and Rigorous Risk-Assessment Strategy,” by Parimal A. Patil, SPE, Asyraf M. Hamimi, and M. Azuan B. Abu Bakar, Petronas, et al. The paper has not been peer reviewed. Copyright 2022 International Petroleum Technology Conference. Reproduced by permission. _ Depleted hydrocarbon reservoirs are considered inherently safe for carbon sequestration, but a high density of wells penetrating the carbon dioxide (CO2) storage reservoir could compromise containment performance in a carbon capture and sequestration (CCS) project. A risk-management methodology can be incorporated to evaluate primary and secondary barriers in existing plugged and abandoned (P&A) and development wells to ensure long-term viability of CO2 sequestration projects. The complete paper evaluates well-integrity and CO2 leakage risks along the wells in a depleted field that penetrates the CO2 storage reservoir. Background The identified CO2 storage site offshore Malaysia is a depleted hydrocarbon field discovered in the early 1980s. Subsequently, two appraisal wells were drilled to further assess the field’s development potential. The structure is a north/south anticline with an aerial extent of approximately 35 km2 and a vertical closure of 100 m on top of the reservoirs. Eighteen major and minor gas-bearing reservoirs exist in the field. The hydrocarbons from deeply buried reservoirs were produced over a period of approximately 15 to 25 years through deviated wellbores. In total, 24 wells are in the targeted field; of these, three are abandoned exploration and appraisal wells and 21 are development wells drilled from the platform. All exploration and appraisal wells are P&A, while 21 development wells are still accessible from the platform. High uncertainties are associated with the P&A wells because the well sites were restored per a regulatory requirement in which the casings were cut below mudline and a surface cement plug was placed with no intention of re-entering these wells. Development wells, on the other hand, were assessed and screened for reuse by conversion into CO2 injectors. Understanding Well Integrity for CO2 Storage Potential leakages that may occur through various mechanisms during geological storage of CO2 in the storage field include failed caprock and trap integrity and leakage along existing wellbores. Parameters that could cause leakage of CO2 because of failed caprock include existing faults or fractures, reactivation of faults, development of new fractures during injection, and caprock failure caused by pressures exceeding fracture pressure during or after injection. The geological analysis of the depleted field for potential development as a future CO2 storage site must understand and mitigate associated risks by integrating information from various databases. However, the integrity of wells in the storage project must be ensured over very long time scales, in the thousands of years.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bass, Adam Stuart, Anand Chandra Singh, Scott Paulson et Viola Ingrid Birss. « Minimizing Coke Formation at La0.3Ca0.7Fe0.7Cr0.3O3-δ Perovskite Anodes in a Syngas Fed-SOFC ». ECS Meeting Abstracts MA2023-02, no 46 (22 décembre 2023) : 2238. http://dx.doi.org/10.1149/ma2023-02462238mtgabs.

Texte intégral
Résumé :
As the world moves to decarbonize the fossil fuel sector, transition technologies are needed that bridge the gap between natural gas power plants and more sustainable low-carbon energy sources. These newer technologies often still rely on fossil fuels but have improved energy conversion efficiencies and lower net carbon dioxide (CO2) outputs over conventional fossil fuel based electric power generation systems. In this work, we are exploring one such technology, namely the use of a syngas-fed solid oxide fuel cell (SOFC) to generate heat, electricity, steam, and captured CO2. Core to this technology is the mixed ion electron conductor deployed at the anode and cathode that catalyzes all of the relevant reactions, namely electrochemical oxidation of hydrogen (H2) and carbon monoxide (CO) at the anode, producing steam and CO2, and reduction of oxygen at the cathode. Carbon formation (coking) is normally a significant problem affecting SOFCs operating on carbon-based fuels, as it leads to a rapid decline in electrochemical performance by blocking catalytically active sites and pores with various carbon species, e.g., amorphous, graphitic, or nanotubular carbon.1 The formation of carbon species from syngas is known to occur through various mechanisms, with the Boudouard reaction (∆H= -172 kJ/mol) and the reduction of CO (∆H= -131 kJ/mol) being the most prominent.2 As such, temperature is a key parameter to optimize as it determines the propensity for carbon formation at equilibrium. In addition, the kinetics of carbon formation can be significantly reduced by introducing oxygen to the fuel gas stream in the form of O2, CO2, or H2O.3 The catalyst materials investigated here are mixed conducting perovskite oxides (La0.3Ca0.7Fe0.7Cr0.3O3- δ, LCFCr) that have been optimized and modified recently by our group, both in the as-prepared undoped form and after B-site doping with variable quantities of transition metals (M), e.g., Ni,4 forming nanoparticle (NP)-decorated ABO3-Mx surfaces. Our catalyst is highly active for H2 and CO oxidation, CO2 reduction, and O2 reduction, where it was demonstrated that the un-doped parent material can deliver a stable power density of 0.2 W/cm2 for several hundred hours with negligible performance degradation in 3% humidified H2.5 In more recent work, excellent resilience to carbon deposition for exsolved Fe-Ni@LCFCr up to 70:30 CO:CO2 was demonstrated.4 Herein, we show that minimal coke forms during exposure of these materials to dry syngas at 600oC, even under open circuit conditions. The catalysts were prepared using combustion synthesis and were characterized by XRD, SEM EDX, and TPO-MS in order to confirm morphology, crystal structure, and composition as a function of temperature and gas environment.4 Symmetrical electrolyte-supported SOFCs were constructed using our catalyst as both the anode and cathode. Catalyst layers of 1 cm2 were screen printed to a thickness of 25 µm on both sides of commercially available 130 µm thick samaria-doped ceria (SDC)-buffered scandia-stabilized zirconia (ScSZ) electrolyte, followed by sintering at 1100°C for 2 h,4 with porous metal current collectors used. The cells were mounted and tested in a Fiaxel SOFC test station with gas flow controlled by mass flow controllers. Preliminary electrochemistry experiments were conducted in 5:95 H2:N2, or 1:1 H2:CO (syngas) balanced by CO2 in a 1:2 ratio of fuel to oxidant into the anode chamber, and air into the cathode chamber at 600 oC, with performance evaluation carried out using CV, EIS and chronopotentiometry. The power density was found to be ca. 2x higher in dry H2 vs. in syngas, as expected, considering that H2 is a more active fuel vs. CO. Additionally, EIS exhibited ca. 2x higher resistance in the low frequency arc in syngas, which can be attributed to sluggish CO oxidation kinetics.4 Chronopotentiometry was performed for 20 h at 10 mA cm-2, showing a degradation rate of only 0.08 mV h-1, suspected to be primarily due to current collector delamination. Coking studies were also conducted on button cells at 600 oC in 1:1 H2:CO for 25 h at open circuit, comparing to a NiO standard that was painted on the electrolyte just next to the LCFCr-Ni working electrode. Imaging by SEM showed negligible carbon formation on the perovskite surface, supported by EDX analysis, compared to the extensive degree of coking observed at the standard. Further quantification was conducted by TPO-MS, also confirming minimal carbon formation. References Bengaard et al., Journal of Catalysis, 2002, 209, 365–384. Farshchi Tabrizi et al., Energy Conversion and Management, 2015, 103, 1065–1077. Sasaki et al., Journal of The Electrochemical Society, 2003, 150. Ansari et al., Journal of Materials Chemistry A, 2022, 10, 2280–2294. Addo et al., ECS Transactions, 2015, 66, 219–228.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Gado, Alanna M., Deniz Ipekçi, Stoyan Bliznakov, Leonard J. Bonville, Jeffrey McCutcheon et Radenka Maric. « Investigation of the Performance and Durability of Reactive Spray Deposition Fabricated Electrodes on a Bifunctional Membrane for Alkaline Water Electrolysis and CO2 Reduction Reaction ». ECS Meeting Abstracts MA2023-01, no 38 (28 août 2023) : 2250. http://dx.doi.org/10.1149/ma2023-01382250mtgabs.

Texte intégral
Résumé :
Alkaline water electrolysis (AWE) is a promising technology for carbon capture [1]. Anion exchange membrane water electrolyzers (AEMWEs) utilize low-cost, non-precious metal materials, providing an economically viable alternative to more expensive proton exchange membrane water electrolyzers (PEMWEs). While PEMWEs can operate at much higher current densities, they require noble metal catalysts and titanium components for the high potential environment anode [1]. The implementation of a bipolar membrane (BPM) will allow both HER and OER to occur under kinetically favorable conditions [2, 3] by combining both thin AEM and thin PEM layers within a single membrane. AEMs, PEMs, and BPMs have been tested in CO2RR electrolyzers [4]. The BPM may provide a pathway to combine the advantages of both AEMs and PEMs for CO2 reduction. Altering both the membrane and CCM is a focus in the research and development in CO2RR electrolyzers. Lee et al. [5] explored the use of a porous membrane for CO2 reduction. While work can be done to improve performance and crossover, the porous membrane provided excellent mechanical properties and good economic potential. There has been some work done on developing bifunctional membranes for water electrolysis and CO2 reduction [3, 6, 7]. Two key issues with operation of a CO2RR electrolyzer with a BPM is the reactant CO2 that is lost to the AEM and PEM membrane layer interface and the instability of the cell. Both issues contribute to a significant decrease in performance and faradaic efficiency in product conversion. Development of the BPM, both on the membrane’s fabrication and configuration, and electrode layers, needs to be explored to reach higher performances and longer lifespans. In this work, reactive spray deposition technology (RSDT) was used to fabricate electrodes on a UConn fabricated bipolar membrane. Testing of each configuration was conducted as both an AEM water electrolyzer and CO2RR electrolyzer. Polarization, electrochemical impedance spectroscopy, electrochemical equivalent circuits, and distribution of relaxation times were used to investigate cell performance and durability. References [1] B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, D. Seeberger, and S. Thiele, “Bipolar membrane electrode assemblies for water electrolysis,” ACS applied energy materials, vol. 3, no. 10, pp. 9635–9644, 2020. [2] J. Xu, I. Amorim, Y. Li, J. Li, Z. Yu, B. Zhang, A. Araujo, N. Zhang, and L. Liu, “Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt-nickel phosphide nanowire electrodes,” Carbon Energy, vol. 2, no. 4, pp. 646–655, 2020. [3] Q. Lei, B. Wang, P. Wang, and S. Liu, “Hydrogen generation with acid/alkaline amphoteric water electrolysis,” Journal of Energy Chemistry, vol. 38, pp. 162–169, 2019. [13] W. H. Lee, K. Kim, C. Lim, Y. J. Ko, Y. J. Hwang, B. K. Min, U. Lee, and H. S. Oh, “New strategies for economically feasible CO2 electroreduction using a porous membrane in zero-gap configuration,” Journal of Materials Chemistry A, vol. 9, pp. 16169–16177, 8 2021 [4] D. A. Salvatore, C. M. Gabardo, A. Reyes, C. P. O’Brien, S. Holdcroft, P. Pintauro, B. Bahar, M. Hickner, C. Bae, D. Sinton, E. H. Sargent, and C. P. Berlinguette, “Designing anion exchange membranes forCO2 electrolysers,” Nature Energy, vol. 6, pp. 339–348, 4 202 [5] W. H. Lee, K. Kim, C. Lim, Y. J. Ko, Y. J. Hwang, B. K. Min, U. Lee, and H. S. Oh, “New strategies for economically feasible CO2 electroreduction using a porous membrane in zero-gap configuration,” Journal of Materials Chemistry A, vol. 9, pp. 16169–16177, 8 2021 [6] W. Li, Z. Yin, Z. Gao, G. Wang, Z. Li, F. Wei, X. Wei, H. Peng, X. Hu, L. Xiao, J. Lu, and L. Zhuang, “Bifunctional ionomers for efficient CO electrolysis of CO2 and pure water towards ethylene production at industrialscale current densities,” Nature Energy, 2022 [7] C. P. O’Brien, R. K. Miao, S. Liu, Y. Xu, G. Lee, A. Robb, J. E. Huang, K. Xie, K. Bertens, C. M. Gabardo, et al., “Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration,” ACS Energy Letters, vol. 6, no. 8, pp. 2952–2959, 2021.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas et Chengxiang Xiang. « Coupling electrochemical CO2 conversion with CO2 capture ». Nature Catalysis 4, no 11 (novembre 2021) : 952–58. http://dx.doi.org/10.1038/s41929-021-00699-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Gupta, Subodh. « Technology Focus : Decarbonization (July 2023) ». Journal of Petroleum Technology 75, no 07 (1 juillet 2023) : 96–97. http://dx.doi.org/10.2118/0723-0096-jpt.

Texte intégral
Résumé :
With several applications under its belt, carbon capture and sequestration (CCS) is a proven technology. Costs are a concern, however, when it is not accompanied with CO2 enhanced oil recovery. Naturally, the effort is now to bring down costs by understanding various aspects of the process. This is reflected amply in the overwhelming majority of the approximately 300 papers on emissions reduction produced since late 2021 at various SPE conferences. These cover a range of CCS-related topics, such as onshore to offshore applications, drilling operations, well metallurgy, well-flow modeling, repurposing wells, storage capacity, and reservoir suitability. Because the basics of CCS and carbon capture, use, and storage (CCUS) are mostly familiar to a large part of the readership, I am choosing to bring to your attention the summary of those articles that are devoted to approaches other than or beyond CCS, even if they have to climb further on the development ladder. These include bio-based approaches, geothermal, and use of hydrogen as a substitute fuel. The first of these papers discusses the generation of biomethane and hydrogen from palm oil mill effluent and using hyperthermophile bacteria. The second deals with making use of seaweeds such as Macrocystis pyrifera, commonly found in desertic or semidesertic climates though thermal conversion to hydrogen. The third deals with mangrove restoration for biomass growth and carbon fixation. For further reading and interest I have two topics to suggest: geothermal and hydrogen. Geothermal is not a new technology, but selecting and targeting the right reservoir can make a huge difference to its commercial viability. In this respect, the readers will find the included paper to be a good atlas. While I have been skeptical about hydrogen’s capacity to play an immediate role in decarbonization, the recommended paper focused on hydrogen challenges my preconceptions to an extent, and I think is therefore worthy of mention. In a 2019 International Energy Agency report, the cost of blue hydrogen from natural gas was mentioned to be approximately $1.50/kg in a few favorable jurisdictions, including the US. Can the cost of producing clean hydrogen from noncommercial gas pools be in the same range? The recommended-reading paper on this subject estimates the calculation-based cost of green hydrogen to be even 5–10 times more favorable. Although it may be premature to celebrate, given that this is still based on paper estimates and that other challenges in hydrogen storage and transport exist, it still bodes well for the commerce of clean hydrogen. While it causes optimism, caution is warranted, given significant challenges (not dwelled upon in the paper) in purification and sustainability of a subsurface hydrogen-production process. I am confident you will find these papers to be interesting and stimulating reads. Recommended additional reading at OnePetro: www.onepetro.org. OTC 32035 A Fully Integrated and Updated Geothermal Gradient Atlas of the World by Susan Smith Nash, American Association of Petroleum Geologists, et al. SPE 209558 Subsurface Hydrogen Generation: Low-Cost and Low-Footprint Method of Hydrogen Production by Roman Berenblyum, Hydrogen Source, et al.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas et Chengxiang Xiang. « Author Correction : Coupling electrochemical CO2 conversion with CO2 capture ». Nature Catalysis 5, no 1 (janvier 2022) : 75–76. http://dx.doi.org/10.1038/s41929-022-00734-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Zhang, Kexin, Dongfang Guo, Xiaolong Wang, Ye Qin, Lin Hu, Yujia Zhang, Ruqiang Zou et Shiwang Gao. « Sustainable CO2 management through integrated CO2 capture and conversion ». Journal of CO2 Utilization 72 (juin 2023) : 102493. http://dx.doi.org/10.1016/j.jcou.2023.102493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hu, Shu. « (Invited) Tuning Photocatalytic Activity with Energetic and Kinetic Asymmetry at Coating-Stabilized Particulate Semiconductors ». ECS Meeting Abstracts MA2023-01, no 37 (28 août 2023) : 2186. http://dx.doi.org/10.1149/ma2023-01372186mtgabs.

Texte intégral
Résumé :
Semiconductor photocatalysts coevolve reductive and oxidative reactions at nanoscale proximity. The local charge separation and local coevolution have unique advantages: i) photocatalysts can operate in neutral pH water or water vapor instead of strong acid or base; ii) most semiconductors form a self-passivating layer at corroded surfaces to prevent corrosion propagation; and iii) nanoparticulate photoabsorbers or nanocrystalline films have achieved near-unity quantum efficiency, promising scale-up solar-to-chemical conversion. Despite the near-unity quantum efficiency achieved for SrTiO3 particles, the Edisonian approach is applied to the vast majority of photocatalysts, thus limiting progress. Technologically important semiconductors of 1.1 – 2.3 eV bandgaps and properly adjusted band edges, such as GaP and Si, can be ball milled into powder, followed by chemical passivation and protective coating processes. Thus, we introduce the Hu-lab-invented charge-transport coatings to protect semiconductors, such as silicon and gallium indium phosphide. We tune their photocatalytic activity by varying and measuring the energetics and kinetics at local reactive sites, in the following case studies. First, we combine photoelectrochemical cells with local potential-sensing probe microscopy to elucidate photocatalytic processes. In particular, we focus on local energetics and kinetics of multiple concurrent redox processes, i.e., two-redox chemistry. Figure 1A illustrates such a three-terminal photo-electro-catalytic cell setup, where the photoelectrode materials are photocatalysts by themselves. We showcase the efficient charge-separation design by fabricating photocatalysts with particulate semiconductors (e.g., commercial CdS powders, GaInP2 epitaxial layers, and ball-milled GaP nanoparticles), TiO2 coatings, and Rh cocatalysts for the concurring reduction of water and oxidation of reversible redox mediators or sacrificial reagents. We discovered that nanoscale site energetics are mutually dependent on local charge-transfer kinetics.[1] Besides, all known visible-light active photocatalysts of 1.1 – 2.3 eV bandgap photo-oxidize or corrode in water.[2] We discovered multi-functional protective coatings that i) allow for both electrons and holes to transport at tunable energy levels;[3] ii) shift band edges favorably, [4]; iii) reduce charge trapping and recombination,[5] and iv) tune water-oxidation selectivity between O2 and hydrogen peroxide production. [6] We show that in the presence of quinone redox couples in a bicarbonate solution, CO is produced with a 1-atm CO2-free Ar-purged headspace where the only source of CO2 is the (bi)carbonate anions, whilst the quinone redox couples can systematically vary the band edge positions of GaInP photoabsorbers. As shown in Figure 1B, CO evolution rate for both Fe(CN)6 3-/4- and H2BQ/BQ are higher at pH 7 than pH 8.5. The local CO2 concentration at pH 8.5 limited CO production rates. This observation corroborates our hypothesis that photocatalytic redox reactions locally drive pH swing to release CO2 at the oxidative sites, whereas the nearby reductive sites reduce in-situ generated CO2 into CO2R products. We envision direct solar fuel production from natural resources such as sunlight, bicarbonates from the ocean, or moisture in the air in a durable particle reactor.[7] We also processed wood and leaves into pulps and performed photocatalytic H2 production from the CdS/TiO2/Rh/CoOx panel (Figure 1C) using bottom LED illumination, as the glucose solution became colored. In summary, we show the rational design of photocatalysts. These coating-stabilized semiconductor particles present a scalable pathway for making H2 while effectively activating water and biomass as the two most abundant oxidants. We address the timescale mismatch between light absorption and catalysis by effectively accumulating electrons and holes at the respective reductive and oxidative sites.[8] The study paves the way for utilizing biomass to obtain bioenergy with carbon capture and storage. References: [1] Z. Pan, R. Yanagi, S. Hu, et al. Energy & Environmental Science 2020. [2] S. Hu, in Handbook on Inorganic Photochemistry, Springer, 2022. [3] T. Zhao, R. Yanagi, S. Hu, Proceedings of the National Academy of Sciences 2021, 118. [4] X. Shen, T. Zhao, S. Hu, et al. Advanced Energy Materials 2022, 12, 2201314. [5] X. Chen, X. Shen, S. Shen, M. O. Reese, S. Hu, ACS Energy Letters 2020, 5, 1865-1871. [6] J. Li, D. Solanki, Q. Zhu, X. Shen, G. Callander, J. Kim, Y. Li, H. Wang, S. Hu, Journal of Materials Chemistry A 2021, 9, 18498-18505. [7] X. Shen, R. Yanagi, D. Solanki, H. Su, Z. Li, C-X Xiang, S. Hu., Frontiers in Energy Research 2021, 9:7997762021. [8] R. Yanagi, T. Zhao, D. Solanki, Z. Pan, S. Hu, ACS Energy Letters 2022, 7, 432-452. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kafi, Maedeh, Hamidreza Sanaeepur et Abtin Ebadi Amooghin. « Grand Challenges in CO2 Capture and Conversion ». Journal of Resource Recovery 1, no 2 (1 avril 2023) : 0. http://dx.doi.org/10.52547/jrr.2302-1007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ning, Huanghao, Yongdan Li et Cuijuan Zhang. « Recent Progress in the Integration of CO2 Capture and Utilization ». Molecules 28, no 11 (1 juin 2023) : 4500. http://dx.doi.org/10.3390/molecules28114500.

Texte intégral
Résumé :
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water–gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture and conversion over dual functional materials is also discussed. This review is aimed to encourage more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon neutrality around the world.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hu, Yong, Qian Xu, Yao Sheng, Xueguang Wang, Hongwei Cheng, Xingli Zou et Xionggang Lu. « The Effect of Alkali Metals (Li, Na, and K) on Ni/CaO Dual-Functional Materials for Integrated CO2 Capture and Hydrogenation ». Materials 16, no 15 (2 août 2023) : 5430. http://dx.doi.org/10.3390/ma16155430.

Texte intégral
Résumé :
Ni/CaO, a low-cost dual-functional material (DFM), has been widely studied for integrated CO2 capture and hydrogenation. The core of this dual-functional material should possess both good CO2 capture–conversion performance and structural stability. Here, we synthesized Ni/CaO DFMs modified with alkali metals (Na, K, and Li) through a combination of precipitation and combustion methods. It was found that Na-modified Ni/CaO (Na-Ni/CaO) DFM offered stable CO2 capture–conversion activity over 20 cycles, with a high CO2 capture capacity of 10.8 mmol/g and a high CO2 conversion rate of 60.5% at the same temperature of 650 °C. The enhanced CO2 capture capacity was attributed to the improved surface basicity of Na-Ni/CaO. In addition, the incorporation of Na into DFMs had a favorable effect on the formation of double salts, which shorten the CO2 capture and release process and promoted DFM stability by hindering their aggregation and the sintering of DFMs.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Liu, Lei, Chang-Ce Ke, Tian-Yi Ma et Yun-Pei Zhu. « When Carbon Meets CO2 : Functional Carbon Nanostructures for CO2 Utilization ». Journal of Nanoscience and Nanotechnology 19, no 6 (1 juin 2019) : 3148–61. http://dx.doi.org/10.1166/jnn.2019.16590.

Texte intégral
Résumé :
Major fossil fuel consumption associated with CO2 emission and socioeconomic instability has received much concern within the global community regarding the long-term sustainability and security of these commodities. The capture, sequestration, and conversion of CO2 emissions from flue gas are now becoming familiar worldwide. Nanostructured carbonaceous materials with designed functionality have been extensively used in some key CO2 exploitation processes and techniques, because of their excellent electrical conductivity, chemical/mechanical stability, adjustable chemical compositions, and abundant active sites. This review focuses on a variety of carbonaceous materials, like graphene, carbon nanotubes, amorphous porous carbons and carbon hybrid composites, which have been demonstrated promising in CO2 capture/separation and conversion (electrocatalysis and photocatalysis) to produce value-added chemicals and fuels. Along with the discussion and concerning synthesis strategies, characterization and conversion and capture/separation techniques employed, we further elaborate the structure-performance relationships in terms of elucidating active sites, reaction mechanisms and kinetics improvement. Finally, challenges and future perspectives of these carbon-based materials for CO2 applications using well-structured carbons are remarked in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lin, Roger, Jiaxun Guo, Xiaojia Li, Poojan Patel et Ali Seifitokaldani. « Electrochemical Reactors for CO2 Conversion ». Catalysts 10, no 5 (26 avril 2020) : 473. http://dx.doi.org/10.3390/catal10050473.

Texte intégral
Résumé :
Increasing risks from global warming impose an urgent need to develop technologically and economically feasible means to reduce CO2 content in the atmosphere. Carbon capture and utilization technologies and carbon markets have been established for this purpose. Electrocatalytic CO2 reduction reaction (CO2RR) presents a promising solution, fulfilling carbon-neutral goals and sustainable materials production. This review aims to elaborate on various components in CO2RR reactors and relevant industrial processing. First, major performance metrics are discussed, with requirements obtained from a techno-economic analysis. Detailed discussions then emphasize on (i) technical benefits and challenges regarding different reactor types, (ii) critical features in flow cell systems that enhance CO2 diffusion compared to conventional H-cells, (iii) electrolyte and its effect on liquid phase electrolyzers, (iv) catalysts for feasible products (carbon monoxide, formic acid and multi-carbons) and (v) strategies on flow channel and anode design as next steps. Finally, specific perspectives on CO2 feeds for the reactor and downstream purification techniques are annotated as part of the CO2RR industrial processing. Overall, we focus on the component and system aspects for the design of a CO2RR reactor, while pointing out challenges and opportunities to realize the ultimate goal of viable carbon capture and utilization technology.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Zhang, Shuzhen, Celia Chen, Kangkang Li, Hai Yu et Fengwang Li. « Materials and system design for direct electrochemical CO2 conversion in capture media ». Journal of Materials Chemistry A 9, no 35 (2021) : 18785–92. http://dx.doi.org/10.1039/d1ta02751d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kothandaraman, Jotheeswari, et David J. Heldebrant. « Towards environmentally benign capture and conversion : heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents ». Green Chemistry 22, no 3 (2020) : 828–34. http://dx.doi.org/10.1039/c9gc03449h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Acuña-Girault, Adalberto, Ximena Gómez del Campo-Rábago, Marco Antonio Contreras-Ruiz et Jorge G. Ibanez. « CO2 capture and conversion : A homemade experimental approach ». Journal of Technology and Science Education 12, no 2 (7 juillet 2022) : 440. http://dx.doi.org/10.3926/jotse.1610.

Texte intégral
Résumé :
During the SARS-2-Covid pandemic our institution sought to continue the teaching and learning of experimental laboratories by designing, assembling, and delivering a microscale chemistry kit to the students´ homes. Thanks to this approach students were able to perform ~25 experiments during each one of the Fall 2020 and Spring 2021 semesters in an elective Electrochemistry and Corrosion course offered to Chemical Engineering undergraduates. In addition to performing traditional experiments, students were encouraged to design some of their own and have the entire group reproduce them. One of such student-designed experiments involved the capture of CO2 and its reduction with a readily available active metal (i.e., Al foil) in aqueous media to generate potentially useful products. The highly negative standard potential of Al is exploited for the reduction of lab-generated CO2, and the products are chemically tested. Al as a foil has been reported to be electrochemically inactive for carbon dioxide reduction. However, encouraged by an earlier report of the reduction of CO2 to CO, the Al surface is activated in the present experiment by removal of its natural oxide layer with a solution of CuCl2 produced in an electrochemical cell. This procedure enables Al to react with CO2 and yield useful chemistry. This experiment turned to be a discovery trip. The detailed procedure is discussed here, as well as the teaching methodology, grading scheme, and student outcomes.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Talekar, Sachin, Byung Hoon Jo, Jonathan S. Dordick et Jungbae Kim. « Carbonic anhydrase for CO2 capture, conversion and utilization ». Current Opinion in Biotechnology 74 (avril 2022) : 230–40. http://dx.doi.org/10.1016/j.copbio.2021.12.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Hanusch, Jan M., Isabel P. Kerschgens, Florian Huber, Markus Neuburger et Karl Gademann. « Pyrrolizidines for direct air capture and CO2 conversion ». Chemical Communications 55, no 7 (2019) : 949–52. http://dx.doi.org/10.1039/c8cc08574a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Melo Bravo, Paulina, et Damien P. Debecker. « Combining CO2 capture and catalytic conversion to methane ». Waste Disposal & ; Sustainable Energy 1, no 1 (23 avril 2019) : 53–65. http://dx.doi.org/10.1007/s42768-019-00004-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Tian, Sicong, Feng Yan, Zuotai Zhang et Jianguo Jiang. « Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency ». Science Advances 5, no 4 (avril 2019) : eaav5077. http://dx.doi.org/10.1126/sciadv.aav5077.

Texte intégral
Résumé :
Closing the anthropogenic carbon cycle is one important strategy to combat climate change, and requires the chemistry to effectively combine CO2 capture with its conversion. Here, we propose a novel in situ CO2 utilization concept, calcium-looping reforming of methane, to realize the capture and conversion of CO2 in one integrated chemical process. This process couples the calcium-looping CO2 capture and the CH4 dry reforming reactions in the CaO-Ni bifunctional sorbent-catalyst, where the CO2 captured by CaO is reduced in situ by CH4 to CO, a reaction catalyzed by catalyzed by the adjacent metallic Ni. The process coupling scheme exhibits excellent decarbonation kinetics by exploiting Le Chatelier’s principle to shift reaction equilibrium through continuous conversion of CO2, and results in an energy consumption 22% lower than that of conventional CH4 dry reforming for CO2 utilization. The proposed CO2 utilization concept offers a promising option to recycle carbon directly at large CO2 stationary sources in an energy-efficient manner.
Styles APA, Harvard, Vancouver, ISO, etc.
29

North, M., et P. Styring. « Perspectives and visions on CO2 capture and utilisation ». Faraday Discussions 183 (2015) : 489–502. http://dx.doi.org/10.1039/c5fd90077h.

Texte intégral
Résumé :
This article summarises and contextualises the debates which occurred during the Carbon Dioxide Utilisation Faraday Discussion meeting. The utilisation of carbon dioxide is discussed in terms of both conversion to fuel, with a potential impact on atmospheric carbon dioxide levels, and conversion to chemicals with a potential impact on sustainability.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Xiao, Yurou Celine, Christine M. Gabardo, Shijie Liu, Geonhui Lee, Yong Zhao, Colin P. O'Brien, Rui Kai Miao et al. « Integrated Capture and Electrochemical Conversion of CO2 into CO ». ECS Meeting Abstracts MA2023-02, no 47 (22 décembre 2023) : 2390. http://dx.doi.org/10.1149/ma2023-02472390mtgabs.

Texte intégral
Résumé :
The capture and electrochemical conversion of CO2, powered by renewable electricity, is an attractive method of sustainably producing valuable chemicals and fuels (e.g. carbon monoxide (CO)), reducing atmospheric CO2, and storing intermittent renewable energy. Integrated capture and conversion (reactive capture) of CO2 presents a CO2-to-CO electrolysis pathway that eliminates most of the upstream capital and energy costs by releasing CO2 directly inside the electrolyzer using an internal pH-swing. The reactive capture system readily allows for the collection of produced gas products via phase separation, thus minimizing downstream separation costs. Industrial-scale integration of reactive capture systems with upgrading processes require a pure and consistent product stream. Previous studies using bicarbonate electrolytes have demonstrated high selectivity towards CO. However, the limited CO2 capture capacity of bicarbonate electrolytes dilute the cathode product gas stream with excess CO2. This mandates a secondary CO2 capture unit and increases the cost of downstream separation. Other studies using carbonate or carbamate electrolyte as the inlet feed did not simultaneously achieve high CO selectivity and long-term stability. This study sought to improve the Faradaic efficiency (FE) toward CO in our carbonate electrolysis system by engineering a novel membrane electrode assembly structure. We designed a composite CO2 diffusion layer (CDL) between the cathode and the membrane that attains high CO selectivity by simultaneously achieving high alkalinity and sufficient CO2 availability at the cathode. We determined that the thickness, wettability, and permeability of the CDL affected species transport and were important optimization parameters. Applying this strategy, we produced syngas, a mixture of CO and hydrogen (H2), with an industrial H2/CO ratio of 1.16 at 200 mA cm-2. This corresponded to a CO Faradaic efficiency (FE) of 46% and energy intensity of 52 GJ tsyngas-1. The syngas produced in this system was not diluted by CO2 and contained sufficient CO content to meet industrial standards. We further increased the FE towards CO by exploring different capture solutions and designing selective catalysts for energy efficient CO production. System parameters such as temperature and pressure effects were also investigated to improve the CO2 concentration at the cathode. This study illustrated the potential for the industrial implementation of an energy efficient and capital cost effective CO2-to-CO pathway via reactive capture.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Brunetti, Adele, et Enrica Fontananova. « CO2 Conversion by Membrane Reactors ». Journal of Nanoscience and Nanotechnology 19, no 6 (1 juin 2019) : 3124–34. http://dx.doi.org/10.1166/jnn.2019.16649.

Texte intégral
Résumé :
Membrane reactors technology represents a promising tool for the CO2 capture and reuse by conversion to valuable products. After a preliminary presentation of the fundamentals of this technology, a critical overview of the last achievements and new perspectives in the CO2 conversion by membrane reactors is given, highlighting the still existing limitations for large scale applications. Among the low temperature (≤100 °C) membrane reactor for CO2 conversion, electrochemical membrane reactors and photocatalytic reactors, represent the two mainly pursued systems and they were discussed starting from selected case studies. Dry reforming of methane and CO2 hydrogenation to methanol were selected as interesting examples of high temperature (>100 °C) membrane based conversion of CO2 to energy bearing products.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Yang, Zhibin, Ze Lei, Ben Ge, Xingyu Xiong, Yiqian Jin, Kui Jiao, Fanglin Chen et Suping Peng. « Development of catalytic combustion and CO2 capture and conversion technology ». International Journal of Coal Science & ; Technology 8, no 3 (juin 2021) : 377–82. http://dx.doi.org/10.1007/s40789-021-00444-2.

Texte intégral
Résumé :
AbstractChanges are needed to improve the efficiency and lower the CO2 emissions of traditional coal-fired power generation, which is the main source of global CO2 emissions. The integrated gasification fuel cell (IGFC) process, which combines coal gasification and high-temperature fuel cells, was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO2 emissions. Supported by the National Key R&D Program of China, the IGFC for near-zero CO2 emissions program was enacted with the goal of achieving near-zero CO2 emissions based on (1) catalytic combustion of the flue gas from solid oxide fuel cell (SOFC) stacks and (2) CO2 conversion using solid oxide electrolysis cells (SOECs). In this work, we investigated a kW-level catalytic combustion burner and SOEC stack, evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO2 co-electrolysis, and established a multi-scale and multi-physical coupling simulation model of SOFCs and SOECs. The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Zhang, Ruina, Daqing Hu, Ying Zhou, Chunliang Ge, Huayan Liu, Wenyang Fan, Lai Li et al. « Tuning Ionic Liquid-Based Catalysts for CO2 Conversion into Quinazoline-2,4(1H,3H)-diones ». Molecules 28, no 3 (19 janvier 2023) : 1024. http://dx.doi.org/10.3390/molecules28031024.

Texte intégral
Résumé :
Carbon capture and storage (CCS) and carbon capture and utilization (CCU) are two kinds of strategies to reduce the CO2 concentration in the atmosphere, which is emitted from the burning of fossil fuels and leads to the greenhouse effect. With the unique properties of ionic liquids (ILs), such as low vapor pressures, tunable structures, high solubilities, and high thermal and chemical stabilities, they could be used as solvents and catalysts for CO2 capture and conversion into value-added chemicals. In this critical review, we mainly focus our attention on the tuning IL-based catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones from o-aminobenzonitriles during this decade (2012~2022). Due to the importance of basicity and nucleophilicity of catalysts, kinds of ILs with basic anions such as [OH], carboxylates, aprotic heterocyclic anions, etc., for conversion CO2 and o-aminobenzonitriles into quinazoline-2,4(1H,3H)-diones via different catalytic mechanisms, including amino preferential activation, CO2 preferential activation, and simultaneous amino and CO2 activation, are investigated systematically. Finally, future directions and prospects for CO2 conversion by IL-based catalysts are outlined. This review is benefit for academic researchers to obtain an overall understanding of the synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and o-aminobenzonitriles by IL-based catalysts. This work will also open a door to develop novel IL-based catalysts for the conversion of other acid gases such as SO2 and H2S.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Sieradzka, Małgorzata, Ningbo Gao, Cui Quan, Agata Mlonka-Mędrala et Aneta Magdziarz. « Biomass Thermochemical Conversion via Pyrolysis with Integrated CO2 Capture ». Energies 13, no 5 (26 février 2020) : 1050. http://dx.doi.org/10.3390/en13051050.

Texte intégral
Résumé :
The presented work is focused on biomass thermochemical conversion with integrated CO2 capture. The main aim of this study was the in-depth investigation of the impact of pyrolysis temperature (500, 600 and 700 °C) and CaO sorbent addition on the chemical and physical properties of obtained char and syngas. Under the effect of the pyrolysis temperature, the properties of biomass chars were gradually changed, and this was confirmed by examination using thermal analysis, scanning electron microscopy, X-ray diffraction, and porosimetry methods. The chars were characterised by a noticeable carbon content (two times at 700 °C) resulting in a lower O/C ratio. The calculated combustion indexes indicated the better combustible properties of chars. In addition, structural morphology changes were observed. However, the increasing pyrolysis temperature resulted in changes of solid products; the differences of char properties were not significant in the range of 500 to 700 °C. Syngas was analysed using a gas chromatograph. The following main components were identified: CO, CO2, CH4, H2 and C2H4, C2H6, C3H6, C3H8. A significant impact of CaO on CO2 adsorption was found. The concentration of CO2 in syngas decreased with increased temperature, and the highest decrease occurred in the presence of CaO from above 60% to below 30% at 600 °C.
Styles APA, Harvard, Vancouver, ISO, etc.
35

L. de Miranda, Jussara, Luiza C. de Moura, Heitor Breno P. Ferreira et Tatiana Pereira de Abreu. « The Anthropocene and CO2 : Processes of Capture and Conversion ». Revista Virtual de Química 10, no 6 (2018) : 1915–46. http://dx.doi.org/10.21577/1984-6835.20180123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Buyukcakir, Onur, Sang Hyun Je, Siddulu Naidu Talapaneni, Daeok Kim et Ali Coskun. « Charged Covalent Triazine Frameworks for CO2 Capture and Conversion ». ACS Applied Materials & ; Interfaces 9, no 8 (20 février 2017) : 7209–16. http://dx.doi.org/10.1021/acsami.6b16769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Li, Ruipeng, Yanfei Zhao, Zhiyong Li, Yunyan Wu, Jianji Wang et Zhimin Liu. « Choline-based ionic liquids for CO2 capture and conversion ». Science China Chemistry 62, no 2 (9 novembre 2018) : 256–61. http://dx.doi.org/10.1007/s11426-018-9358-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Hollingsworth, Nathan, S. F. Rebecca Taylor, Miguel T. Galante, Johan Jacquemin, Claudia Longo, Katherine B. Holt, Nora H. de Leeuw et Christopher Hardacre. « CO2 capture and electrochemical conversion using superbasic [P66614][124Triz] ». Faraday Discussions 183 (2015) : 389–400. http://dx.doi.org/10.1039/c5fd00091b.

Texte intégral
Résumé :
The ionic liquid trihexyltetradecylphosphonium 1,2,4-triazolide, [P66614][124Triz], has been shown to chemisorb CO2 through equimolar binding of the carbon dioxide with the 1,2,4-triazolide anion. This leads to a possible new, low energy pathway for the electrochemical reduction of carbon dioxide to formate and syngas at low overpotentials, utilizing this reactive ionic liquid media. Herein, an electrochemical investigation of water and carbon dioxide addition to the [P66614][124Triz] on gold and platinum working electrodes is reported. Electrolysis measurements have been performed using CO2 saturated [P66614][124Triz] based solutions at −0.9 V and −1.9 V on gold and platinum electrodes. The effects of the electrode material on the formation of formate and syngas using these solutions are presented and discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Liu, Zhi-Wei, et Bao-Hang Han. « Ionic porous organic polymers for CO2 capture and conversion ». Current Opinion in Green and Sustainable Chemistry 16 (avril 2019) : 20–25. http://dx.doi.org/10.1016/j.cogsc.2018.11.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zhao, Lan, Hai-Yang Hu, An-Guo Wu, Alexander O. Terent’ev, Liang-Nian He et Hong-Ru Li. « CO2 capture and in-situ conversion to organic molecules ». Journal of CO2 Utilization 82 (avril 2024) : 102753. http://dx.doi.org/10.1016/j.jcou.2024.102753.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Anand, Abhas, Ram Ji Dixit, Anil Verma et Suddhasatwa Basu. « (Digital Presentation) Understanding the Electrochemical Stability of Potential Current Collectors in Zinc Sulfate Electrolyte for Rechargeable Aqueous Zinc Ion Battery Application ». ECS Meeting Abstracts MA2023-01, no 5 (28 août 2023) : 962. http://dx.doi.org/10.1149/ma2023-015962mtgabs.

Texte intégral
Résumé :
The need for clean and sustainable energy sources has witnessed a sudden upsurge in recent years owing to rising environmental degradation and climate disruption brought on by an overdependence on fossil fuels [1-3]. Electrochemical energy conversion technology is a crucial complement to the storage and on-demand utilization of renewable energy resources [4-6]. Rechargeable aqueous zinc ion batteries (AZIBs) have gained a significant research upsurge in recent times owing to their attractive potential for large-scale energy storage applications. In addition to low cost and naturally abundant raw materials, AZIBs technology offers competitive electrochemical performance and compatibility with water-based electrolyte systems, thereby eliminating the safety concerns associated with prevalent lithium-based battery technology. Moreover, multivalent AZIBs offer the opportunity to attain high energy and power density by permitting multiple electron transfers during reversible electrochemical operations [7]. In the context of AZIBs, significant research efforts are being actively pursued to develop high energy density cathode materials and to address the issue of Zn dendrite formation [8]. However, the selection of stable and low-cost current collectors is equally important as it serves as a bridge between the battery components and the external circuit, thereby influencing the battery capacity and its rate capability [9-10]. In this work, we have analyzed the electrochemical behavior of potential current collectors that are used globally in battery applications, namely Ni, Al, carbon paper, Cu mesh, graphite, and stainless steel in near-neutral aqueous ZnSO4 electrolyte (pH value = 5-6). The electrochemical stability of different current collectors has been investigated using linear sweep voltammetry and chronoamperometry techniques for their application as anode and cathode collectors. Scanning electron microscopy analysis has also been performed to understand the sign of corrosion post-electrochemical study. With stability up to 2.3 V w.r.t. Zn/Zn2+, Ni has proved to be the most corrosion-resistant current collector among the tested collectors on the cathode side. Although Zn itself is sufficiently stable at the anode side than any other current collector under the ZnSO4 electrolyte environment, Ni has shown considerable stability. Nonetheless, understanding the electrochemical stability of current collectors for AZIBs is a vital step in their design and future practical applications. References [1] Anand, Abhas, and Amitabh Shankar. "Study of Coal Cake Bulk Density and Its Shear Strength for Stamp Charging Coke Making Technique at Tata Steel." Coke and Chemistry 64, no. 7 (2021): 311-321. [2] Mukherjee, Subhrajit, Soumendu Boral, Hammad Siddiqi, Asmita Mishra, and Bhim Charan Meikap. "Present cum future of SARS-CoV-2 virus and its associated control of virus-laden air pollutants leading to potential environmental threat–A global review." Journal of Environmental Chemical Engineering 9, no. 2 (2021): 104973. [3] Singh, Manish Kr, Jayashree Pati, Deepak Seth, Jagdees Prasad, Manish Agarwal, M. Ali Haider, Jeng-Kuei Chang, and Rajendra S. Dhaka. "Diffusion mechanism and electrochemical investigation of 1T phase Al-MoS2@ rGO nano-composite as a high-performance anode for sodium-ion batteries." Chemical Engineering Journal (2022): 140140. [4] Dixit, Ram Ji, Kaustava Bhattacharyya, Vijay K. Ramani, and Suddhasatwa Basu. "Electrocatalytic hydrogenation of furfural using non-noble-metal electrocatalysts in alkaline medium." Green Chemistry 23, no. 11 (2021): 4201-4212. [5] Dixit, Ram Ji, and C. B. Majumder. "CO2 capture and electro-conversion into valuable organic products: A batch and continuous study." Journal of CO2 Utilization 26 (2018): 80-92. [6] Tiwari, Pankaj Kr, and Suddhasatwa Basu. "Testing of 5x5 cm2 Solid Oxide Fuel Cell in Direct Methane." ECS Transactions 91, no. 1 (2019): 349. [7] Li, Tian Chen, Daliang Fang, Jintao Zhang, Mei Er Pam, Zhi Yi Leong, Juezhi Yu, Xue Liang Li, Dong Yan, and Hui Ying Yang. "Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes." Journal of Materials Chemistry A 9, no. 10 (2021): 6013-6028. [8] Guo, Na, Wenjie Huo, Xiaoyu Dong, Zhefei Sun, Yutao Lu, Xianwen Wu, Lei Dai et al. "A review on 3D zinc anodes for zinc ion batteries." Small Methods 6, no. 9 (2022): 2200597. [9] Kühnel, Ruben-Simon, and Andrea Balducci. "Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors." Journal of Power Sources 249 (2014): 163-171. [10] Chakrabarty, Sankalpita, J. Alberto Blázquez, Tali Sharabani, Ananya Maddegalla, Olatz Leonet, Idoia Urdampilleta, Daniel Sharon, Malachi Noked, and Ayan Mukherjee. "Stability of Current Collectors Against Corrosion in APC Electrolyte for Rechargeable Mg Battery." Journal of The Electrochemical Society 168, no. 8 (2021): 080526. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zhang, Shuai, et Liang-Nian He. « Capture and Fixation of CO2 Promoted by Guanidine Derivatives ». Australian Journal of Chemistry 67, no 7 (2014) : 980. http://dx.doi.org/10.1071/ch14125.

Texte intégral
Résumé :
Guanidine compounds and their derivatives can be developed as catalysts, additives, or promoters in organic synthesis due to their unique chemical properties, which have attracted much attention in the chemistry and catalysis communities. Particularly, the strong basicity and ease of structural modification allow them to offer wide applications in the field of CO2 capture and conversion. Guanidine compounds modified as ionic liquids or heterogeneous catalysts have also been developed for CO2 capture and conversion. In this context, the latest progress on CO2 capture using guanidine and their derivatives as absorbents with high capacity will be summarized. Furthermore, guanidine-catalyzed transformation of CO2 to a series of value-added chemicals with mechanistic consideration on a molecular level will be particularly elaborated in this article.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Peres, Christiano B., Pedro M. R. Resende, Leonel J. R. Nunes et Leandro C. de Morais. « Advances in Carbon Capture and Use (CCU) Technologies : A Comprehensive Review and CO2 Mitigation Potential Analysis ». Clean Technologies 4, no 4 (17 novembre 2022) : 1193–207. http://dx.doi.org/10.3390/cleantechnol4040073.

Texte intégral
Résumé :
One of society’s major current challenges is carbon dioxide emissions and their consequences. In this context, new technologies for carbon dioxide (CO2) capture have attracted much attention. One of these is carbon capture and utilization (CCU). This work focuses on the latest trends in a holistic approach to carbon dioxide capture and utilization. Absorption, adsorption, membranes, and chemical looping are considered for CO2 capture. Each CO2 capture technology is described, and its benefits and drawbacks are discussed. For the use of carbon dioxide, various possible applications of CCU are described, starting with the utilization of carbon dioxide in agriculture and proceeding to the conversion of CO2 into fuels (catalytic processes), chemicals (photocatalytic processes), polymers, and building supplies. For decades, carbon dioxide has been used in industrial processes, such as CO2-enhanced oil recovery, the food industry, organic compound production (such as urea), water treatment, and, therefore, the production of flame retardants and coolants. There also are several new CO2-utilization technologies at various stages of development and exploitation, such as electrochemical conversion to fuels, CO2-enhanced oil recovery, and supercritical CO2. At the end of this review, future opportunities are discussed regarding machine learning (ML) and life cycle assessment (LCA).
Styles APA, Harvard, Vancouver, ISO, etc.
44

Maniam, Kranthi Kumar, Madhuri Maniam, Luis A. Diaz, Hari K. Kukreja, Athanasios I. Papadopoulos, Vikas Kumar, Panos Seferlis et Shiladitya Paul. « Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products ». Processes 11, no 4 (8 avril 2023) : 1148. http://dx.doi.org/10.3390/pr11041148.

Texte intégral
Résumé :
Carbon capture, utilisation and storage (CCUS) is a key area of research for CO2 abatement. To that end, CO2 capture, transport and storage has accrued several decades of development. However, for successful implementation of CCUS, utilisation or conversion of CO2 to valuable products is important. Electrochemical conversion of the captured CO2 to desired products provides one such route. This technique requires a cathode “electrocatalyst” that could favour the desired product selectivity. Copper (Cu) is unique, the only metal “electrocatalyst” demonstrated to produce C2 products including ethylene. In order to achieve high-purity Cu deposits, electrodeposition is widely acknowledged as a straightforward, scalable and relatively inexpensive method. In this review, we discuss in detail the progress in the developments of electrodeposited copper, oxide/halide-derived copper, copper-alloy catalysts for conversion of CO2 to valuable products along with the future challenges.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Pérez-Gallent, Elena, Chirag Vankani, Carlos Sánchez-Martínez, Anca Anastasopol et Earl Goetheer. « Integrating CO2 Capture with Electrochemical Conversion Using Amine-Based Capture Solvents as Electrolytes ». Industrial & ; Engineering Chemistry Research 60, no 11 (10 mars 2021) : 4269–78. http://dx.doi.org/10.1021/acs.iecr.0c05848.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yang, Zhen-Zhen, Ya-Nan Zhao et Liang-Nian He. « CO2 chemistry : task-specific ionic liquids for CO2 capture/activation and subsequent conversion ». RSC Advances 1, no 4 (2011) : 545. http://dx.doi.org/10.1039/c1ra00307k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Tan, Wei Jie, et Poernomo Gunawan. « Integration of CO2 Capture and Conversion by Employing Metal Oxides as Dual Function Materials : Recent Development and Future Outlook ». Inorganics 11, no 12 (30 novembre 2023) : 464. http://dx.doi.org/10.3390/inorganics11120464.

Texte intégral
Résumé :
To mitigate the effect of CO2 on climate change, significant efforts have been made in the past few decades to capture CO2, which can then be further sequestered or converted into value-added compounds, such as methanol and hydrocarbons, by using thermochemical or electrocatalytic processes. However, CO2 capture and conversion have primarily been studied independently, resulting in individual processes that are highly energy-intensive and less economically viable due to high capital and operation costs. To enhance the overall process efficiency, integrating CO2 capture and conversion into a single system offers an opportunity for a more streamlined process that can reduce energy and capital costs. This strategy can be achieved by employing dual function materials (DFMs), which possess the unique capability to simultaneously adsorb and convert CO2. These materials combine basic metal oxides with active metal catalytic sites that enable both sorption and conversion functions. In this review paper, we focus on the recent strategies that utilize mixed metal oxides as DFMs. Their material design and characteristics, reaction mechanisms, as well as performance and limitations will be discussed. We will also address the challenges associated with this integrated system and attempt to provide insights for future research endeavors.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Pang, Xueqi, Sumit Verma, Chao Liu et Daniel V. Esposito. « Electrochemical CO2 Conversion with Packed Bed Membraneless Electrolyzers ». ECS Meeting Abstracts MA2022-02, no 49 (9 octobre 2022) : 1884. http://dx.doi.org/10.1149/ma2022-02491884mtgabs.

Texte intégral
Résumé :
(Bi)carbonate electrolysis offers an attractive opportunity for integrated carbon dioxide (CO2) capture and conversion whereby a carbonate-laden aqueous capture solution can be directly fed to an electrolyzer before being recycled to the CO2 capture unit(s). Among the previous studies that have demonstrated the viability of (bi)carbonate electrolysis, bipolar membranes are commonly used to deliver protons to the cathode where they convert (bi)carbonate into CO2 that is subsequently reduced at the cathode. However, these membranes can be susceptible to fouling or degradation, which may lead to device failure. Here, we present a scalable and potentially low-cost packed bed membraneless electrolyzer (PBME) concept for the conversion of bicarbonate into CO based on train of porous flow-through electrodes. At the anode, hydrogen oxidation reaction is used to produce protons, which rapidly react with bicarbonate to generate CO2 for electrochemical CO2 reduction at the downstream cathode in this membrane-free electrolyzer design. This study highlights the ability of the PBME design to minimize the magnitude of pH swings within the electrolyzer and enable high CO2 utilization rates. Tests of multi-cell PBMEs show enhanced performance compared to single-cell PBMEs and demonstrate the scalability of this PBME design.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Joshi, N., L. Sivachandiran et A. A. Assadi. « Perspectives in advance technologies/strategies for combating rising CO2 levels in the atmosphere via CO2 utilisation : A review ». IOP Conference Series : Earth and Environmental Science 1100, no 1 (1 décembre 2022) : 012020. http://dx.doi.org/10.1088/1755-1315/1100/1/012020.

Texte intégral
Résumé :
Abstract This review provides exhaustive literature on carbon dioxide (CO2) capture, storage and utilization. CO2 is one of the greenhouse gas, emitted into the atmosphere and has reached an alarming level of well above 400 ppm. The consequences of rising CO2 levels and global warming are visual in day today life such as floods, wildfires, droughts and irregular precipitation cycles. Several reviews, focused on a particular topic, have been published since the 19th century and recently. However, in this review, we have attempted to cover all the CO2 mitigation techniques available for their advantages and disadvantages have been discussed. The blooming technology of carbon capture and storage (CCS) and the pros and cons of CO2 capture, transportation and storage techniques are showcased. Interestingly the transportation of captured CO2 to the potential storage sites requires more than 50% of the total energy budget, therefore, this review is dedicated to the onsite CO2 conversion into value-added chemicals. Various technological advancements for CO2 conversion into other products by the solar thermochemical, electrochemical and photochemical processes have been analysed. From the extensive literature, it’s demonstrated that NTP (Non-Thermal Plasma) is one of the emerging techniques for the direct conversion of CO2 into value-added products as it is energetically efficient. The mechanisms of CO2 activation by thermal and NTP-catalysis have been discussed. Moreover, the benefits of DBD to obtain oxygenates like methanol, aldehydes, acids, and hydrocarbons from direct one-pot synthesis are discussed. The production of such value-added chemicals from CO2 is of prime importance as it will be our step towards a carbon-neutral economy which is the need of the hour. This review has also attempted to compare the cost-effectiveness of current existing techniques for CO2 capture and utilized solar to fuel efficiency to compare distinct technologies available for the utilization of CO2 to value-added chemicals.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Khdary, Nezar H., Alhanouf S. Alayyar, Latifah M. Alsarhan, Saeed Alshihri et Mohamed Mokhtar. « Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review ». Catalysts 12, no 3 (7 mars 2022) : 300. http://dx.doi.org/10.3390/catal12030300.

Texte intégral
Résumé :
Various carbon dioxide (CO2) capture materials and processes have been developed in recent years. The absorption-based capturing process is the most significant among other processes, which is widely recognized because of its effectiveness. CO2 can be used as a feedstock for the production of valuable chemicals, which will assist in alleviating the issues caused by excessive CO2 levels in the atmosphere. However, the interaction of carbon dioxide with other substances is laborious because carbon dioxide is dynamically relatively stable. Therefore, there is a need to develop types of catalysts that can break the bond in CO2 and thus be used as feedstock to produce materials of economic value. Metal oxide-based processes that convert carbon dioxide into other compounds have recently attracted attention. Metal oxides play a pivotal role in CO2 hydrogenation, as they provide additional advantages, such as selectivity and energy efficiency. This review provides an overview of the types of metal oxides and their use for carbon dioxide adsorption and conversion applications, allowing researchers to take advantage of this information in order to develop new catalysts or methods for preparing catalysts to obtain materials of economic value.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie