Littérature scientifique sur le sujet « Cancer immunity »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Cancer immunity ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Cancer immunity"
Michael, J. Dochniak. « Maladaptive Immunity and Metastasizing Cancer ». Cancer Medicine Journal 3, no 1 (30 juin 2020) : 31–34. http://dx.doi.org/10.46619/cmj.2020.3-1017.
Texte intégralPersing, David H., et Franklyn G. Prendergast. « Infection, Immunity, and Cancer ». Archives of Pathology & ; Laboratory Medicine 123, no 11 (1 novembre 1999) : 1015–22. http://dx.doi.org/10.5858/1999-123-1015-iiac.
Texte intégralKazbarienė, Birutė. « Tumor and immunity ». Medicina 45, no 2 (10 février 2009) : 162. http://dx.doi.org/10.3390/medicina45020021.
Texte intégralUrushizaki, Ichiro, et Yutaka Kohgo. « Cancer and immunity ». Japanese Journal of Clinical Immunology 8, no 1 (1985) : 1–14. http://dx.doi.org/10.2177/jsci.8.1.
Texte intégralSteinle, Alexander, et Adelheid Cerwenka. « MULT1plying cancer immunity ». Science 348, no 6230 (2 avril 2015) : 45–46. http://dx.doi.org/10.1126/science.aaa9842.
Texte intégralBekeschus, Sander, Thomas von Woedtke, Klaus-Dieter Weltmann et Hans-Robert Metelmann. « Plasma, Cancer, Immunity ». Clinical Plasma Medicine 9 (février 2018) : 13–14. http://dx.doi.org/10.1016/j.cpme.2017.12.021.
Texte intégralHeidari, Alireza, Katrina Schmitt, Maria Henderson et Elizabeth Besana. « Hereditary immunity in cancer ». International Journal of Advanced Chemistry 8, no 1 (28 avril 2020) : 94. http://dx.doi.org/10.14419/ijac.v8i1.30607.
Texte intégralHiam-Galvez, Kamir J., Breanna M. Allen et Matthew H. Spitzer. « Systemic immunity in cancer ». Nature Reviews Cancer 21, no 6 (9 avril 2021) : 345–59. http://dx.doi.org/10.1038/s41568-021-00347-z.
Texte intégralRathmell, Jeffrey C. « Obesity, Immunity, and Cancer ». New England Journal of Medicine 384, no 12 (25 mars 2021) : 1160–62. http://dx.doi.org/10.1056/nejmcibr2035081.
Texte intégralOrzołek, Izabela, Jan Sobieraj et Joanna Domagała-Kulawik. « Estrogens, Cancer and Immunity ». Cancers 14, no 9 (30 avril 2022) : 2265. http://dx.doi.org/10.3390/cancers14092265.
Texte intégralThèses sur le sujet "Cancer immunity"
Zunino, Barbara. « Dialogue entre le métabolisme et l’immunité dans le traitement des cancers ». Thesis, Nice, 2014. http://www.theses.fr/2014NICE4113.
Texte intégralThe link between cell metabolism and cancer at the cellular level has long been known. Caloric restriction (CR) is known to prolong lifespan and to protect from cancer incidence. The molecular mechanisms involved in these benefic effects have been evaluated and may offer new opportunities for therapeutic intervention. Moreover, CR and CR-mimetics such as 2-deoxyglucose (2DG) has been shown to enhance chemotherapy efficiency and to induce an anti-cancer immune response. During the period of my PhD I demonstrated how the modulation of metabolism through caloric restriction or through its mimetics could significantly reduce the expression of the anti-apoptotic protein Mcl-1 and sensitize lymphoma-bearing mice to apoptosis induced by a Bcl-2/XL inhibitor, ABT-737. We have demonstrated that CR can control Mcl-1 translation and sensitize cells to ABT-737-induced death regardless of the presence or absence of p53 and/or of the main “BH3-only proteins”. Then, I focused on deciphering the molecular mechanisms allowing the Hyper-thermic Intra-Peritoneal Chemotherapy (HIPEC) to be beneficial to patients suffering from peritoneal carcinomatosis. Part of the protective effect was mediated through the induction of an efficient anti-cancer immune response. Next, I showed the involvement of heat shock proteins 90 (Hsp90) in the observed effect. Indeed, when Hsp90 was blocked we lost the protection induced by the HIPEC-treated cells, therefore underling the role of Hsp90 in this HIPEC-dependent induction of anti-cancer immune response
They, Laetitia. « Renforcement des effets immunomodulateurs d’un anticorps monoclonal anti-tumoral : étude des effets potentialisateurs de thérapies combinées et analyse des mécanismes impliqués ». Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT076/document.
Texte intégralMelanoma is the most aggressive form of skin cancer. Although early management is of good prognosis, the survival of patients decrease dramatically for metastatic stages. Despite the recent spectacular therapeutic advances, the major problem lies in resistance to treatment and relapse and the main challenge now is to develop an effective and sustainable control. Monoclonal antibodies (mAbs) have the ability to specifically target and eliminate tumor cells while recruiting cells from the immune system, to develop and / or enhance the immunity of the host with the development of a vaccinal immune response. In a solid tumor model of murine melanoma after subcutaneous transplantation of B16F10 cells, we investigated the immunomodulatory effect of TA99 mAb targeting a TYRP-1 surface antigen overexpressed in tumor melanocytes. Our results showed that about 30% of mice are protected in the long term and have an antitumoral humoral and cellular immune response. Moreover, the analysis of the immune infiltrate in mice that escape to the treatment with TA99 mAb and develop a tumor, shows an overexpression of PD-1 and Tim3 associated with a loss of effector cell functions within the tumor. This same phenotype has been observed in biopsies of patients with metastatic melanoma. Thus, blocking the PD-1 / PDL-1 axis by inoculation of an anti-PD1 mAb at the time of tumor escape potentiates the anti-tumor immune response and results in increased survival. However, the absence of complete regression suggests the establishment of other immunosuppressive pathways. Indeed we have observed an overexpression of CD39 and CD73 ectonucleotidases in the tumor microenvironment suggesting the involvement of adenosine in the resistance mechanisms observed and opening interesting perspectives for the concomitant blocking of this pathway and the PD1 / PDL-1 axis. Another strategy has been to improve the early immunomodulatory effects of TA99 mAb by combining it with oxaliplatin, a chemotherapy that promotes immunogenic death. Although the therapeutic combinations tested in this study showed encouraging in vivo effects with a significant delay in overall survival, no significant increase in the long-term anti-tumor response was observed, suggesting the establishment of other non-redundant immunosuppressive mechanisms or unsuitable combinations strategies. Both phenotypic and functional analysis of the different cellular actors of the tumor microenvironment will be a key step in the implementation of relevant combinations in association with the TA99 mAb. This work is highlighted by a phase I clinical trial (IMC-20D7S) using flanvotumab (human equivalent of mAb TA99) in 27 patients with metastatic melanoma that shows interesting clinical outcome without severe side effects, opening the way for the development of therapeutic combinations associated with this mAb
Zunino, Barbara. « Dialogue entre le métabolisme et l’immunité dans le traitement des cancers ». Electronic Thesis or Diss., Nice, 2014. http://www.theses.fr/2014NICE4113.
Texte intégralThe link between cell metabolism and cancer at the cellular level has long been known. Caloric restriction (CR) is known to prolong lifespan and to protect from cancer incidence. The molecular mechanisms involved in these benefic effects have been evaluated and may offer new opportunities for therapeutic intervention. Moreover, CR and CR-mimetics such as 2-deoxyglucose (2DG) has been shown to enhance chemotherapy efficiency and to induce an anti-cancer immune response. During the period of my PhD I demonstrated how the modulation of metabolism through caloric restriction or through its mimetics could significantly reduce the expression of the anti-apoptotic protein Mcl-1 and sensitize lymphoma-bearing mice to apoptosis induced by a Bcl-2/XL inhibitor, ABT-737. We have demonstrated that CR can control Mcl-1 translation and sensitize cells to ABT-737-induced death regardless of the presence or absence of p53 and/or of the main “BH3-only proteins”. Then, I focused on deciphering the molecular mechanisms allowing the Hyper-thermic Intra-Peritoneal Chemotherapy (HIPEC) to be beneficial to patients suffering from peritoneal carcinomatosis. Part of the protective effect was mediated through the induction of an efficient anti-cancer immune response. Next, I showed the involvement of heat shock proteins 90 (Hsp90) in the observed effect. Indeed, when Hsp90 was blocked we lost the protection induced by the HIPEC-treated cells, therefore underling the role of Hsp90 in this HIPEC-dependent induction of anti-cancer immune response
Decque, Adrien. « Etude de la SUMOylation dans l’immunité innée et l’oncogenèse ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066312/document.
Texte intégralSUMOylation is a reversible post-translational modification modifying the functions of hundreds ofproteins. It is implicated in essential cellular and organismal processes, such as nuclear shuttling, DNArepair, mitosis, transcription. Using genetically modified models, deficient for the uniqueSUMOylation E2 enzyme UBC9, we characterized the consequences of a decrease in globalSUMOylation in two processes: innate immunity and oncogenesis.We reveal a major role for SUMOylation in the negative regulation of the gene coding for IFN-.Deregulation of this gene in the absence of Ubc9 has dramatic consequences on innate immunity, withincreased inflammatory transcriptional program expression, endotoxic shock hypersensitivity, andprotection against viral infection. Chromatin binding profile analysis of SUMO surrounding the Ifnb1gene revealed three new putative regulatory domains. Finally, SUMOylation regulates endogenousretroviruses expression, potential triggers for interferon response.Our second research axis allowed the characterization of the consequences of global SUMOylationdecrease on cellular transformation and colorectal oncogenesis. Our results show increased sensitivityof transformed cells to SUMOylation loss, when compared to primary cells. Furthermore, decreasingUBC9 levels by half causes a two-fold decrease in intestinal polyp numbers developing in the colon ofmice, in a chemically-induced model of colorectal oncogenesis.Altogether, these results helped increasing our knowledge of the role of SUMOylation in majorcellular processes implicated in oncogenesis and innate immunity
Meyer, Andrea Michael. « Ro52 in innate immunity, proliferation control and cancer / ». Zürich : ETH, 2009. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18198.
Texte intégralAl, Khathami Ali Gaithan. « Towards gastric cancer immunotherapy : assessment of cancer immunity and potential immune targets ». Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8855/.
Texte intégralTitu, Liviu. « Specific cytotoxic lymphocyte immunity against telomerase in colorectal cancer ». Thesis, University of Hull, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273656.
Texte intégralGajurel, Damodar. « Boosting Anti-Cancer Immunity with a Novel Chimeric Molecule ». Thesis, Griffith University, 2017. http://hdl.handle.net/10072/370742.
Texte intégralThesis (Masters)
Master of Medical Research (MMedRes)
School of Medical Science
Griffith Health
Full Text
Lemay, Chantal. « Harnessing Oncolytic Virus-mediated Anti-tumour Immunity ». Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23318.
Texte intégralAloulou, Nijez. « Rôle de la leptine dans le cancer colorectal humain ». Thesis, Paris Est, 2008. http://www.theses.fr/2008PEST0027.
Texte intégralCancer of the colon and rectum (CRC) is a real challenge in Western countries because of the prevalence, cost and bad prognosis. With they 37,000 new cases each year and 15% of mortality it is currently the 2nd cause of cancer death in France. Despite significant advances in diagnosis and treatment over the past decade, it remains with bad prognosis. Genetic and environmental factors were involved in the genesis of this cancer. Molecular characterization of CRC leaded to the identification of gene instability (MSI) in tumors with mismatch repair (MMR) abnormalities. This is found frequently (80%) the CRC hereditary no polyposis colon cancer family (HNPCC) and rarely (15%) in sporadic cancers. Those tumors with MSI phenotype are considered to be of good prognosis. The possible role of food and particulary energy balance on the occurrence of MMR abnormalities has been suggested. Several hormones including leptin have been reported to promote tumour growth. In addition, leptin may regulate immune response tin GIT. Its pro immunogenic effect results from cytokines production by gastrointestinal epithelial cells as well as its ability to control the proliferation of lymphocytes. We hypothesised that leptin might regulate anti tumour immune response. The analysis of prospective data from 171 patients with CRC showed that overexpression of leptin receptor in subset of tumours. Relationships between leptin recptor and tumour immune response have been studied in the tumour microenvironment in human tissues, and in culture cells in vitro as well as in animal models in vivo. Results showed intensity of immune response was depended on the level of leptin receptor expression and MSI in colon tumour cells. Thus leptin receptor expression may be considered as a prognostic marker in colon and rectal cancer in human
Livres sur le sujet "Cancer immunity"
E, Reif Arnold, Mitchell Malcolm S et Biological Response Modifier Program (U.S.), dir. Immunity to cancer. Orlando : Academic Press, 1985.
Trouver le texte intégralBo, Dupont, dir. Immunity to cancer. Copenhagen : Munksgaard, 2002.
Trouver le texte intégralE, Macher, et Sorg Clemens, dir. Local immunity in cancer. Münster : Wissenschaftliche Verlagsgesellschaft Regensberg & Biermann, 1986.
Trouver le texte intégralRaz, Yirmiya, et Taylor Anna N, dir. Alcohol, immunity, and cancer. Boca Raton : CRC Press, 1993.
Trouver le texte intégralOrentas, Rimas, James W. Hodge et Bryon D. Johnson, dir. Cancer Vaccines and Tumor Immunity. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470170113.
Texte intégralSeya, Tsukasa, Misako Matsumoto, Keiko Udaka et Noriyuki Sato, dir. Inflammation and Immunity in Cancer. Tokyo : Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55327-4.
Texte intégralOrentas, Rimas. Cancer vaccines and tumor immunity. Hoboken, N.J : Wiley-Interscience, 2008.
Trouver le texte intégralRimas, Orentas, Hodge James W et Johnson Bryon D, dir. Cancer vaccines and tumor immunity. Hoboken, N.J : John Wiley & Sons, 2008.
Trouver le texte intégralRay, P. K., dir. Advances in Immunity and Cancer Therapy. New York, NY : Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-9558-4.
Texte intégralRay, P. K. Advances in Immunity and Cancer Therapy. New York, NY : Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5068-5.
Texte intégralChapitres de livres sur le sujet "Cancer immunity"
Mora, Javier, Warner Alpízar-Alpízar et Andreas Weigert. « Cancer Immunity ». Dans Nijkamp and Parnham's Principles of Immunopharmacology, 191–208. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10811-3_12.
Texte intégralTu, Shi-Ming. « Cancer Immunity ». Dans Cancer Treatment and Research, 147–59. Boston, MA : Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5968-3_14.
Texte intégralCarlberg, Carsten, et Eunike Velleuer. « Cancer Immunity ». Dans Cancer Biology : How Science Works, 129–46. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75699-4_10.
Texte intégralHuang, Gonghua. « Innate Immunity ». Dans Encyclopedia of Cancer, 1–5. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_3064-6.
Texte intégralSchwab, Manfred. « Adaptive Immunity ». Dans Encyclopedia of Cancer, 1. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_74-2.
Texte intégralHuang, Gonghua. « Innate Immunity ». Dans Encyclopedia of Cancer, 2282–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_3064.
Texte intégralGratama, Jan W., Cor H. J. Lamers et Reno Debets. « A10 Cancer immunity ». Dans Principles of Immunopharmacology, 151–78. Basel : Birkhäuser Basel, 2011. http://dx.doi.org/10.1007/978-3-0346-0136-8_10.
Texte intégralSharifi, Laleh. « Nutrition and Cancer ». Dans Nutrition and Immunity, 283–300. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16073-9_13.
Texte intégralSilva, Lindsey M., et Jae U. Jung. « Autophagy and Immunity ». Dans Autophagy and Cancer, 145–65. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6561-4_8.
Texte intégralAbolhassani, Hassan, Niyaz Mohammadzadeh Honarvar, Terezie T. Mosby et Maryam Mahmoudi. « Nutrition, Immunity, and Cancers ». Dans Cancer Immunology, 533–44. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30845-2_24.
Texte intégralActes de conférences sur le sujet "Cancer immunity"
Pittet, Mikael. « Abstract IA04 : Cancer-promoting immunity ». Dans Abstracts : AACR Special Conference on Cellular Heterogeneity in the Tumor Microenvironment ; February 26 — March 1, 2014 ; San Diego, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.chtme14-ia04.
Texte intégralLeslie, Christina S. « Decoding Epigenomic Programs in Immunity and Cancer ». Dans BCB '19 : 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA : ACM, 2019. http://dx.doi.org/10.1145/3307339.3342129.
Texte intégralZou, Weiping. « Abstract IA18 : Metabolic impact on cancer immunity ». Dans Abstracts : AACR Special Conference on Advances in Ovarian Cancer Research ; September 13-16, 2019 ; Atlanta, GA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1557-3265.ovca19-ia18.
Texte intégralIsaeva, O. G., et V. A. Osipov. « Photodynamic therapy influence on anti-cancer immunity ». Dans Saratov Fall Meeting 2009, sous la direction de Valery V. Tuchin et Elina A. Genina. SPIE, 2009. http://dx.doi.org/10.1117/12.853588.
Texte intégralOuni, Rim, Ying Henderson, Yunyun Chen, Naimah Turner, William Padron, Ali Dadbin, Elena McBeath Fujiwara et al. « Characterization of Altered immunity in Anaplastic Thyroid Cancer ». Dans Leading Edge of Cancer Research Symposium. The University of Texas at MD Anderson Cancer Center, 2022. http://dx.doi.org/10.52519/00072.
Texte intégralMilani, Valeria, Veit Buecklein et Rolf Dieter Issels. « Abstract B11 : Hyperthermia and antitumor immunity ». Dans Abstracts : AACR International Conference on Translational Cancer Medicine-- ; Mar 21–24, 2010 ; Amsterdam, The Netherlands. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1078-0432.tcme10-b11.
Texte intégralKudo-Saito, Chie, Masayoshi Toyoura, Yuji Shoya, Akiko Ishida et Ryoko Kon. « Abstract 3224 : Blocking FSTL1 reprograms cancer-caused abnormal immunity ». Dans Proceedings : AACR 107th Annual Meeting 2016 ; April 16-20, 2016 ; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3224.
Texte intégralKhan, Mohammad W., Shingo Tsuji, MengXi Tian, Nairika Meshgin, Shea Grenier, Matthew J. Giacalone et Kathleen L. McGuire. « Abstract A05 : Immunity, the colonic environment, and colon cancer ». Dans Abstracts : AACR Special Conference : The Function of Tumor Microenvironment in Cancer Progression ; January 7-10, 2016 ; San Diego, CA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tme16-a05.
Texte intégralStromnes, Ingunn M., Scott Brockenbrough, Thomas M. Schmitt, Jennifer D. Hotes, Markus A. Carlson, Carlos Cuevos, Philip D. Greenberg et Sunil R. Hingorani. « Abstract PR10 : Re-engineering immunity to treat pancreas cancer ». Dans Abstracts : AACR Special Conference on Pancreatic Cancer : Innovations in Research and Treatment ; May 18-21, 2014 ; New Orleans, LA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.panca2014-pr10.
Texte intégralMittendorf, Elizabeth A., Gheath Alatrash, Na Qiao, Haile Xiao, Pariya Sukhumalchandra, Kathryn Quintanilla, Karen Clise-Dwyer et Jeffrey Molldrem. « Abstract 801 : Uptake of exogenous neutrophil elastase by breast cancer cells : A novel link between innate immunity, inflammation and breast cancer immunity ». Dans Proceedings : AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011 ; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-801.
Texte intégralRapports d'organisations sur le sujet "Cancer immunity"
Andersen, Barbara L. Stress and Immunity Breast Cancer Project. Fort Belvoir, VA : Defense Technical Information Center, septembre 2001. http://dx.doi.org/10.21236/ada398948.
Texte intégralAndersen, Barbara L. Stress and Immunity Breast Cancer Project. Fort Belvoir, VA : Defense Technical Information Center, septembre 1997. http://dx.doi.org/10.21236/ada334925.
Texte intégralEck, Stephen, et Heike Boxhorn. Gene Therapy Mediated Breast Cancer Immunity. Fort Belvoir, VA : Defense Technical Information Center, septembre 1997. http://dx.doi.org/10.21236/ada335064.
Texte intégralNesbit, Heike K. Gene Therapy Mediated Breast Cancer Immunity. Fort Belvoir, VA : Defense Technical Information Center, septembre 1999. http://dx.doi.org/10.21236/ada382694.
Texte intégralWeinberg, Andrew D. Enhancing Anti-Prostate Cancer Immunity through OX40 Engagement. Fort Belvoir, VA : Defense Technical Information Center, février 2005. http://dx.doi.org/10.21236/ada437192.
Texte intégralVieweg, Johannes. Enhancement of Anti-Telomerase Immunity Against Prostate Cancer. Fort Belvoir, VA : Defense Technical Information Center, novembre 2007. http://dx.doi.org/10.21236/ada485726.
Texte intégralVieweg, Johannes W. Enhancement of Anti-Telomerase Immunity Against Prostate Cancer. Fort Belvoir, VA : Defense Technical Information Center, novembre 2005. http://dx.doi.org/10.21236/ada444923.
Texte intégralWeinberg, Andrew D. Enhancing Anti-Prostate Cancer Immunity Through OX40 Engagement. Fort Belvoir, VA : Defense Technical Information Center, février 2006. http://dx.doi.org/10.21236/ada455612.
Texte intégralIoannides, Constantin G. Epitope Specific T Cell Immunity to Breast Cancer. Fort Belvoir, VA : Defense Technical Information Center, juin 2002. http://dx.doi.org/10.21236/ada414361.
Texte intégralWeinberg, Andrew D. Enhancing Anti-Prostate Cancer Immunity Through OX40 Engagement. Fort Belvoir, VA : Defense Technical Information Center, février 2004. http://dx.doi.org/10.21236/ada422213.
Texte intégral