Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Calogero-Moser spaces.

Articles de revues sur le sujet « Calogero-Moser spaces »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 29 meilleurs articles de revues pour votre recherche sur le sujet « Calogero-Moser spaces ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Bellamy, Gwyn. "On singular Calogero-Moser spaces." Bulletin of the London Mathematical Society 41, no. 2 (2009): 315–26. http://dx.doi.org/10.1112/blms/bdp019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

BEREST, YURI, ALIMJON ESHMATOV, and FARKHOD ESHMATOV. "MULTITRANSITIVITY OF CALOGERO-MOSER SPACES." Transformation Groups 21, no. 1 (2015): 35–50. http://dx.doi.org/10.1007/s00031-015-9332-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ben-Zvi, David, and Thomas Nevins. "Perverse bundles and Calogero–Moser spaces." Compositio Mathematica 144, no. 6 (2008): 1403–28. http://dx.doi.org/10.1112/s0010437x0800359x.

Texte intégral
Résumé :
AbstractWe present a simple description of moduli spaces of torsion-free 𝒟-modules (𝒟-bundles) on general smooth complex curves, generalizing the identification of the space of ideals in the Weyl algebra with Calogero–Moser quiver varieties. Namely, we show that the moduli of 𝒟-bundles form twisted cotangent bundles to moduli of torsion sheaves on X, answering a question of Ginzburg. The corresponding (untwisted) cotangent bundles are identified with moduli of perverse vector bundles on T*X, which contain as open subsets the moduli of framed torsion-free sheaves (the Hilbert schemes T*X[n] in
Styles APA, Harvard, Vancouver, ISO, etc.
4

Berest, Yuri. "Calogero–Moser spaces over algebraic curves." Selecta Mathematica 14, no. 3-4 (2009): 373–96. http://dx.doi.org/10.1007/s00029-009-0518-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kuyumzhiyan, Karine. "Infinite transitivity for Calogero-Moser spaces." Proceedings of the American Mathematical Society 148, no. 9 (2020): 3723–31. http://dx.doi.org/10.1090/proc/15030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bellamy, Gwyn. "Factorization in generalized Calogero–Moser spaces." Journal of Algebra 321, no. 1 (2009): 338–44. http://dx.doi.org/10.1016/j.jalgebra.2008.09.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Andrist, Rafael. "The density property for Calogero–Moser spaces." Proceedings of the American Mathematical Society 149, no. 10 (2021): 4207–18. http://dx.doi.org/10.1090/proc/15457.

Texte intégral
Résumé :
We prove the algebraic density property for the Calogero–Moser spaces C n {\mathcal {C}_{n}} , and give a description of the identity component of the group of holomorphic automorphisms of C n {\mathcal {C}_{n}} .
Styles APA, Harvard, Vancouver, ISO, etc.
8

HAINE, LUC, EMIL HOROZOV, and PLAMEN ILIEV. "TRIGONOMETRIC DARBOUX TRANSFORMATIONS AND CALOGERO–MOSER MATRICES." Glasgow Mathematical Journal 51, A (2009): 95–106. http://dx.doi.org/10.1017/s0017089508004813.

Texte intégral
Résumé :
AbstractWe characterize in terms of Darboux transformations the spaces in the Segal–Wilson rational Grassmannian, which lead to commutative rings of differential operators having coefficients which are rational functions of ex. The resulting subgrassmannian is parametrized in terms of trigonometric Calogero–Moser matrices.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Oblomkov, Alexei. "Double affine Hecke algebras and Calogero-Moser spaces." Representation Theory of the American Mathematical Society 8, no. 10 (2004): 243–66. http://dx.doi.org/10.1090/s1088-4165-04-00246-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Horozov, Emil. "Calogero-Moser spaces and an adelic $W$-algebra." Annales de l’institut Fourier 55, no. 6 (2005): 2069–90. http://dx.doi.org/10.5802/aif.2152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bellamy, Gwyn, and Victor Ginzburg. "SL2-action on Hilbert Schemes and Calogero-Moser spaces." Michigan Mathematical Journal 66, no. 3 (2017): 519–32. http://dx.doi.org/10.1307/mmj/1496995337.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Eshmatov, Farkhod, Alimjon Eshmatov, and Yuri Berest. "On subgroups of the Dixmier group and Calogero-Moser spaces." Electronic Research Announcements in Mathematical Sciences 18 (March 2011): 12–21. http://dx.doi.org/10.3934/era.2011.18.12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chabaud, Ulysse, and Saeed Mehraban. "Holomorphic representation of quantum computations." Quantum 6 (October 6, 2022): 831. http://dx.doi.org/10.22331/q-2022-10-06-831.

Texte intégral
Résumé :
We study bosonic quantum computations using the Segal-Bargmann representation of quantum states. We argue that this holomorphic representation is a natural one which not only gives a canonical description of bosonic quantum computing using basic elements of complex analysis but also provides a unifying picture which delineates the boundary between discrete- and continuous-variable quantum information theory. Using this representation, we show that the evolution of a single bosonic mode under a Gaussian Hamiltonian can be described as an integrable dynamical system of classical Calogero-Moser p
Styles APA, Harvard, Vancouver, ISO, etc.
14

Przeździecki, Tomasz. "The combinatorics of C⁎-fixed points in generalized Calogero-Moser spaces and Hilbert schemes." Journal of Algebra 556 (August 2020): 936–92. http://dx.doi.org/10.1016/j.jalgebra.2020.04.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kesten, J., S. Mathers, and Z. Normatov. "Infinite transitivity on the Calogero-Moser space C2." Algebra and Discrete Mathematics 31, no. 2 (2021): 227–50. http://dx.doi.org/10.12958/adm1656.

Texte intégral
Résumé :
We prove a particular case of the conjecture of Berest--Eshmatov--Eshmatov by showing that the group of unimodular automorphisms of C[x,y] acts in an infinitely-transitive way on the Calogero-Moser space C2.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Prykarpatski, Anatolij K. "Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems." Universe 8, no. 5 (2022): 288. http://dx.doi.org/10.3390/universe8050288.

Texte intégral
Résumé :
This review is devoted to the universal algebraic and geometric properties of the non-relativistic quantum current algebra symmetry and to their representations subject to applications in describing geometrical and analytical properties of quantum and classical integrable Hamiltonian systems of theoretical and mathematical physics. The Fock space, the non-relativistic quantum current algebra symmetry and its cyclic representations on separable Hilbert spaces are reviewed and described in detail. The unitary current algebra family of operators and generating functional equations are described.
Styles APA, Harvard, Vancouver, ISO, etc.
17

BONNAFÉ, CÉDRIC. "AUTOMORPHISMS AND SYMPLECTIC LEAVES OF CALOGERO–MOSER SPACES." Journal of the Australian Mathematical Society, October 17, 2022, 1–32. http://dx.doi.org/10.1017/s1446788722000180.

Texte intégral
Résumé :
Abstract We study the symplectic leaves of the subvariety of fixed points of an automorphism of a Calogero–Moser space induced by an element of finite order of the normalizer of the associated complex reflection group. We give a parametrization à la Harish-Chandra of its symplectic leaves (generalizing earlier works of Bellamy and Losev). This result is inspired by the mysterious relations between the geometry of Calogero–Moser spaces and unipotent representations of finite reductive groups, which is the theme of another paper, C. Bonnafé [‘Calogero–Moser spaces vs unipotent representations’,
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bonnafé, Cédric, and Ulrich Thiel. "Computational aspects of Calogero–Moser spaces." Selecta Mathematica 29, no. 5 (2023). http://dx.doi.org/10.1007/s00029-023-00878-3.

Texte intégral
Résumé :
AbstractWe present a series of algorithms for computing geometric and representation-theoretic invariants of Calogero–Moser spaces and rational Cherednik algebras associated with complex reflection groups. In particular, we are concerned with Calogero–Moser families (which correspond to the $$\mathbb {C}^\times $$ C × -fixed points of the Calogero–Moser space) and cellular characters (a proposed generalization by Rouquier and the first author of Lusztig’s constructible characters based on a Galois covering of the Calogero–Moser space). To compute the former, we devised an algorithm for determi
Styles APA, Harvard, Vancouver, ISO, etc.
19

Normatov, Zafar, Yingqi Wang, and Shuai Zeng. "On trigonometric Calogero-Moser spaces." Journal of Geometry and Physics, April 2025, 105515. https://doi.org/10.1016/j.geomphys.2025.105515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

"Calogero-Moser spaces vs unipotent representations." Pure and Applied Mathematics Quarterly 21, no. 1 (2024): 131–200. https://doi.org/10.4310/pamq.241203032151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Berest, Yuri, and Oleg Chalykh. "A∞-modules and Calogero-Moser spaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2007, no. 607 (2007). http://dx.doi.org/10.1515/crelle.2007.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bonnafé, Cédric, and Ruslan Maksimau. "Fixed points in smooth Calogero–Moser spaces." Annales de l'Institut Fourier, June 7, 2021, 1–36. http://dx.doi.org/10.5802/aif.3404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Bonnafé, Cédric, and Peng Shan. "On the Cohomology of Calogero–Moser Spaces." International Mathematics Research Notices, March 28, 2018. http://dx.doi.org/10.1093/imrn/rny036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Andrist, Rafael B., and Gaofeng Huang. "The symplectic density property for Calogero–Moser spaces." Journal of the London Mathematical Society 111, no. 2 (2025). https://doi.org/10.1112/jlms.70100.

Texte intégral
Résumé :
AbstractWe introduce the symplectic density property and the Hamiltonian density property together with the corresponding versions of Andersén–Lempert theory. We establish these properties for the Calogero–Moser space of particles and describe its group of holomorphic symplectic automorphisms.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hu, Sen, Andrey Losev, and Dongheng Ye. "QFT on fuzzy disc and Calogero–Moser phase space." Modern Physics Letters A, February 26, 2025. https://doi.org/10.1142/s0217732324502298.

Texte intégral
Résumé :
Noncommutative spaces with boundaries are expected to play an important role in connection between Feynman and functorial definitions of quantum field theory. Since actions of all field theories may be written in terms of De Rham algebra, the crucial step is to construct it on such noncommutative spaces. Here, we do it for the fuzzy disc. In our construction, we had to include new degrees of freedom associated to boundary. Surprisingly, the noncommutative analogue of the moduli space of flat connections turns out to be a phase space of Calogero–Moser system. We proceed by construction of nonco
Styles APA, Harvard, Vancouver, ISO, etc.
26

Voit, Michael. "Freezing limits for Calogero–Moser–Sutherland particle models." Studies in Applied Mathematics, August 4, 2023. http://dx.doi.org/10.1111/sapm.12628.

Texte intégral
Résumé :
AbstractOne‐dimensional interacting particle models of Calogero–Moser–Sutherland type with N particles can be regarded as diffusion processes on suitable subsets of like Weyl chambers and alcoves with second‐order differential operators as generators of the transition semigroups, where these operators are singular on the boundaries of the state spaces. The most relevant examples are multivariate Bessel processes and Heckman–Opdam processes in a compact and noncompact setting where in all cases, these processes are related to special functions associated with root systems. More precisely, the t
Styles APA, Harvard, Vancouver, ISO, etc.
27

Normatov, Zafar, and Rustam Turdibaev. "Calogero-Moser Spaces and the Invariants of Two Matrices of Degree 3." Transformation Groups, October 18, 2022. http://dx.doi.org/10.1007/s00031-022-09776-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Berntson, Bjorn K., Ernest G. Kalnins, and Willard Miller. "Toward Classification of 2nd Order Superintegrable Systems in 3-Dimensional Conformally Flat Spaces with Functionally Linearly Dependent Symmetry Operators." Symmetry, Integrability and Geometry: Methods and Applications, December 16, 2020. http://dx.doi.org/10.3842/sigma.2020.135.

Texte intégral
Résumé :
We make significant progress toward the classification of 2nd order superintegrable systems on 3-dimensional conformally flat space that have functionally linearly dependent (FLD) symmetry generators, with special emphasis on complex Euclidean space. The symmetries for these systems are linearly dependent only when the coefficients are allowed to depend on the spatial coordinates. The Calogero-Moser system with 3 bodies on a line and 2-parameter rational potential is the best known example of an FLD superintegrable system. We work out the structure theory for these FLD systems on 3D conformall
Styles APA, Harvard, Vancouver, ISO, etc.
29

Eshmatov, Farkhod, Xabier García-Martínez, Zafar Normatov, and Rustam Turdibaev. "On the Coordinate Rings of Calogero-Moser Spaces and the Invariant Commuting Variety of a Pair of Matrices." Results in Mathematics 80, no. 3 (2025). https://doi.org/10.1007/s00025-025-02385-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!