Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Bulk heterojunction organic solar cell.

Articles de revues sur le sujet « Bulk heterojunction organic solar cell »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Bulk heterojunction organic solar cell ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Haque, A., F. Sultana, M. A. Awal et M. Rahman. « Efficiency Improvement of Bulk Heterojunction Organic Photovoltaic Solar Cell through Device Architecture Modification ». International Journal of Engineering and Technology 4, no 5 (2012) : 567–72. http://dx.doi.org/10.7763/ijet.2012.v4.434.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Deibel, Carsten, Vladimir Dyakonov et Christoph J. Brabec. « Organic Bulk-Heterojunction Solar Cells ». IEEE Journal of Selected Topics in Quantum Electronics 16, no 6 (novembre 2010) : 1517–27. http://dx.doi.org/10.1109/jstqe.2010.2048892.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cheng, Pei, Cenqi Yan, Yang Wu, Shuixing Dai, Wei Ma et Xiaowei Zhan. « Efficient and stable organic solar cells via a sequential process ». Journal of Materials Chemistry C 4, no 34 (2016) : 8086–93. http://dx.doi.org/10.1039/c6tc02338j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Arbab, Elhadi A. A., Bidini A. Taleatu et Genene Tessema Mola. « Ternary molecules blend organic bulk heterojunction solar cell ». Materials Science in Semiconductor Processing 40 (décembre 2015) : 158–61. http://dx.doi.org/10.1016/j.mssp.2015.06.057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Majumder, Chandrachur, Akansha Rai et Chayanika Bose. « Performance optimization of bulk heterojunction organic solar cell ». Optik 157 (mars 2018) : 924–29. http://dx.doi.org/10.1016/j.ijleo.2017.11.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ismail, Yasser A. M., T. Soga et T. Jimbo. « Investigation of PCBM Concentration on the Performance of Small Organic Solar Cell ». ISRN Renewable Energy 2012 (16 août 2012) : 1–8. http://dx.doi.org/10.5402/2012/385415.

Texte intégral
Résumé :
We have fabricated bulk heterojunction organic solar cells using coumarin 6 (C6) as a small organic dye, for light harvesting and electron donating, with fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM), acting as an electron acceptor, by spin-coating technique of the blend solutions. We have studied effect of PCBM concentration on photocurrent and performance parameters of the solar cells. We found that the optical absorption of the dye increased with increasing its concentration in the active layer blends. The higher concentrations of PCBM in active layer enhanced the photocurrent of the solar cells, as a result of improving charge carrier separation and electron transport in solar cell active layer. The improved charge carrier separation between C6, as a donor, and PCBM, as an acceptor, was indicated through the formation of bulk heterojunction by blending C6 with PCBM. The formation of C6:PCBM bulk heterojunction blend was confirmed through the symbatic behavior of the corresponding solar cell and, also, through the homogeneity and smoothing in the atomic force microscopy images of the C6:PCBM blend films. For the same reasons, the performance parameters of the C6:PCBM solar cell improved by modification of the PCBM concentration in the solar cell active layer.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Widmer, Johannes, Karl Leo et Moritz Riede. « Temperature dependent behavior of flat and bulk heterojunction organic solar cells ». MRS Proceedings 1493 (2013) : 269–73. http://dx.doi.org/10.1557/opl.2013.101.

Texte intégral
Résumé :
ABSTRACTThe open-circuit voltage of an organic solar cell is increasing with decreasing temperature and with increasing illumination intensity. These dependencies are quantitatively investigated for two types of organic solar cells, one with a flat donor-acceptor heterojunction and one with a mixed layer bulk heterojunction. Zinc-phthalocyanine and C60 are used as donor and acceptor, respectively. A qualitative difference is found for the two geometries. We find that a logarithmic illumination intensity dependence with temperature as a linear pre-factor of the logarithm, which is commonly reported and observed, is applicable for the bulk heterojunction. The flat heterojunction, in contrast, shows a constant illumination intensity pre-factor which is independent of the temperature, and the temperature can be modeled as additional linear summand.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Trindade, A. J., et L. Pereira. « Bulk Heterojunction Organic Solar Cell Area-Dependent Parameter Fluctuation ». International Journal of Photoenergy 2017 (2017) : 1–10. http://dx.doi.org/10.1155/2017/1364152.

Texte intégral
Résumé :
Organic solar cell efficiency is known to be active area dependent and is usually a problem in the upscale factor for market applications. In this work, a detailed study of organic photovoltaic devices with active layer based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) is made, evaluating the effect of the change on the active area from 10−2 to 4 cm4. The device structure was kept simple in order to allow the understanding of the physical effects involved. Device figures of merit were extracted from the equivalent circuit using a genetic-based algorithm, and their relationship with the active area was compared. It is observed that the efficiency drops significantly with the active area increase (as the fill factor) while the parallel and series resistance, adjusted to the active area, seems to be relatively constant and increases linearly, respectively. The short circuit current and the generated photocurrent also drop significantly with the active area increase. The open circuit voltage does not show major changes. These results are discussed considering the main influences for the observed efficiency data. Particularly, as the basic circuit model seems to fail to explain the macroscopic results, the behavior can be related with the enlargement of defect interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kronenberg, Nils M. « Optimized solution-processed merocyanine:PCBM organic bulk heterojunction solar cell ». Journal of Photonics for Energy 1, no 1 (1 janvier 2011) : 011101. http://dx.doi.org/10.1117/1.3528043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kesinro, R. O., A. O. Boyo, M. L. Akinyemi et G. T. Mola. « Fabrication of P3HT : PCBM bulk heterojunction organic solar cell ». IOP Conference Series : Earth and Environmental Science 331 (16 octobre 2019) : 012028. http://dx.doi.org/10.1088/1755-1315/331/1/012028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

R. Murad, Ary, Ahmed Iraqi, Shujahadeen B. Aziz, Sozan N. Abdullah et Mohamad A. Brza. « Conducting Polymers for Optoelectronic Devices and Organic Solar Cells : A Review ». Polymers 12, no 11 (9 novembre 2020) : 2627. http://dx.doi.org/10.3390/polym12112627.

Texte intégral
Résumé :
In this review paper, we present a comprehensive summary of the different organic solar cell (OSC) families. Pure and doped conjugated polymers are described. The band structure, electronic properties, and charge separation process in conjugated polymers are briefly described. Various techniques for the preparation of conjugated polymers are presented in detail. The applications of conductive polymers for organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), and organic photovoltaics (OPVs) are explained thoroughly. The architecture of organic polymer solar cells including single layer, bilayer planar heterojunction, and bulk heterojunction (BHJ) are described. Moreover, designing conjugated polymers for photovoltaic applications and optimizations of highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy levels are discussed. Principles of bulk heterojunction polymer solar cells are addressed. Finally, strategies for band gap tuning and characteristics of solar cell are presented. In this article, several processing parameters such as the choice of solvent(s) for spin casting film, thermal and solvent annealing, solvent additive, and blend composition that affect the nano-morphology of the photoactive layer are reviewed.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Daniel, Susan G., B. Devu et C. O. Sreekala. « Active Layer Thickness Optimization for Maximum Efficiency in Bulk Heterojunction Solar Cell ». IOP Conference Series : Materials Science and Engineering 1225, no 1 (1 février 2022) : 012017. http://dx.doi.org/10.1088/1757-899x/1225/1/012017.

Texte intégral
Résumé :
Abstract Organic solar cell (OSC) is one of the best promising candidate for harvesting energy mainly due to their simple and economic fabrication process, the reduced manufacturing cost, and easy integration to other products. Bulk heterojunction solar cell in which the active layer is a blend of donor –acceptor materials are one of the best organic photovoltaic device with highest efficiency and a significant improvement in the device performance occur over last years. Bulk heterojunction architecture gives a high interfacial surface area for efficient charge dissociation. In this study, bulk heterojunction solar cell is simulated using General Purpose Photovoltaic Device Model Software. A donor-acceptor blend of Zinc pthalocyanine (ZnPc) fullerene C60 is used as the active layer. The power conversion efficiency for various thickness of the active layer is studied. Optimization of active layer thickness for maximum power conversion efficiency are done. The dependence of various electrical parameters such as short circuit current density(Jsc), Open circuit voltage(Voc), fill factor (FF), average carrier mobility on power conversion efficiency are also studied.
Styles APA, Harvard, Vancouver, ISO, etc.
13

CHIEW, ENG KOK, MUHAMMAD YAHAYA et AHMAD PUAAD OTHMAN. « ELECTRICAL CHARACTERIZATION OF P3HT/PCBM BULK HETEROJUNCTION ORGANIC SOLAR CELL ». International Journal of Computational Materials Science and Engineering 01, no 01 (mars 2012) : 1250004. http://dx.doi.org/10.1142/s2047684112500042.

Texte intégral
Résumé :
Photovoltaic performance of bulk heterojunction organic solar cell based on poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) were investigated. The active layer is a spin coated organic blend of a p material (P3HT) and an n-material from the fullerene derivative PCBM; it is sandwiched between electrodes ITO-PEDOT/PSS and Al/LiF as back-contact. Modeling of organic bulk heterojunction solar cells is complicated because of various internal mechanisms involved. Two models have been suggested, namely an effective medium model and a network model. We applied an effective medium model where the main assumption is the p–n nanostructure is treated as one single effective semiconductor layer, and parameters in this configuration are fed into a standard solar cell device simulator, called SCAPS. In this model, other non-carrier related properties, such as the refractive index n, the dielectric constant ε and the absorption constant α are influenced by both p–n materials and used as input parameters. The power conversion efficiency of 3.88% with short circuit current density of 20.61 mA/cm2, open circuit voltage of 0.39 V and fill factor of 48% were obtained. Finally, factors which could limit cell conversion efficiency are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mohamed El Amine, Boudia, Yi Zhou, Hongying Li, Qiuwang Wang, Jun Xi et Cunlu Zhao. « Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency ». Energies 16, no 9 (4 mai 2023) : 3895. http://dx.doi.org/10.3390/en16093895.

Texte intégral
Résumé :
Single-junction organic solar cells have reached a power conversion efficiency of 20% with narrow bandgap non-fullerene electron acceptor materials such as Y6, as well as with large band gap electron donor materials and their derivatives. The power conversion efficiency improvement of single-junction organic solar cells is a result of highly efficient light harvesting in the near-infrared light range and reduced energy losses with the most promising active layer layout currently available, Bulk-Heterojunction. Ternary blending is known to be the most advanced strategy to construct Bulk-Heterojunction structures in organic solar cells at present. In this review, we examine different devices based on Bulk-Heterojunction structures with efficient electron donors and acceptors. Then, we review the performance of binary and ternary organic solar cells with high power conversion efficiency, in conjunction with different anode and cathode interfaces used in recent studies of high-power conversion efficiency. Finally, we present perspectives on the future development of single-junction organic solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Scharber, M. C., et N. S. Sariciftci. « Efficiency of bulk-heterojunction organic solar cells ». Progress in Polymer Science 38, no 12 (décembre 2013) : 1929–40. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Liu, Yongsheng, et Yongsheng Chen. « Integrated Perovskite/Bulk‐Heterojunction Organic Solar Cells ». Advanced Materials 32, no 3 (18 février 2019) : 1805843. http://dx.doi.org/10.1002/adma.201805843.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Suzuki, Atsushi, Katsuya Yano et Takeo Oku. « Fabrication and Characterization of Fullerene / Dibenzo-Tetrathiafulvalene Solar Cells ». Materials Science Forum 688 (juin 2011) : 80–84. http://dx.doi.org/10.4028/www.scientific.net/msf.688.80.

Texte intégral
Résumé :
Fabrication and characterization of fullerene (C60) / dibenzotetrathiafulvalene (DBTTF) solar cells were carried out. Photovoltaic and optical properties of the organic solar cells were investigated. Transmission electron microscopy, x-ray and electron diffraction confirmed that the bulk heterojunction thin films had microstructure of C60 crystal phase in DBTTF amorphous phase. The photovoltaic performance of the bulk heterojunction solar cell would be originated in the extent of electron diffusion across interface around the microstructure. Photovoltaic mechanism was discussed on the basis of experimental results.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tripathi, S. K., Sheenam Sachdeva, Kriti Sharma et Jagdish Kaur. « Progress in Plasmonic Enhanced Bulk Heterojunction Organic/Polymer Solar Cells ». Solid State Phenomena 222 (novembre 2014) : 117–43. http://dx.doi.org/10.4028/www.scientific.net/ssp.222.117.

Texte intégral
Résumé :
To reduce the cost of solar electricity, there is an enormous potential of thin-film photovoltaic technologies. An approach for lowering the manufacturing costs of solar cells is to use organic (polymer) materials that can be processed under less demanding conditions. Organic/polymer solar cells have many intrinsic advantages, such as their light weight, flexibility, and low material and manufacturing costs. But reduced thickness comes at the expense of performance. However, thin photoactive layers are widely used, but light-trapping strategies, due to the embedding of plasmonic metallic nanoparticles have been shown to be beneficial for a better optical absorption in polymer solar cells. This article reviews the different plasmonic effects occurring due to the incorporation of metallic nanoparticles in the polymer solar cell. It is shown that a careful choice of size, concentration and location of plasmonic metallic nanoparticles in the device result in an enhancement of the power conversion efficiencies, when compared to standard organic solar cell devices.Contents of Paper
Styles APA, Harvard, Vancouver, ISO, etc.
19

Narayan, Monishka Rita, et Jai Singh. « Exciton dissociation and design optimization in P3HT:PCBM bulk-heterojunction organic solar cell ». Canadian Journal of Physics 92, no 7/8 (juillet 2014) : 853–56. http://dx.doi.org/10.1139/cjp-2013-0523.

Texte intégral
Résumé :
The rate of Frenkel exciton dissociation in P3HT:PCBM bulk-heterojunction organic solar cell was calculated using the newly derived interaction operator between charge transfer exciton and molecular vibrational energy. The PCBM LUMO energy levels were tuned to investigate their impact on the rate of dissociation of a Frenkel exciton into free pair of electron and hole. In the latter part of the study, the PCBM LUMO energy level was set to −4.10 eV and design optimization was performed on PET/PEDOT:PSS/TFB/ P3HT:PCBM/Ca bulk-heterojunction organic solar cell using the semiconducting thin film optics simulation software. Each of the layer thicknesses were optimized for maximum photon absorbance in the P3HT:PCBM active layer and a high power conversion efficiency of 7.46% was obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bolognesi, Margherita, Desta Gedefaw, Marco Cavazzini, Marinella Catellani, Mats R. Andersson, Michele Muccini, Erika Kozma et Mirko Seri. « Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances ». New Journal of Chemistry 42, no 23 (2018) : 18633–40. http://dx.doi.org/10.1039/c8nj04810j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Janssen, René A. J., Jan C. Hummelen et N. Serdar Sariciftci. « Polymer–Fullerene Bulk Heterojunction Solar Cells ». MRS Bulletin 30, no 1 (janvier 2005) : 33–36. http://dx.doi.org/10.1557/mrs2005.6.

Texte intégral
Résumé :
AbstractNanostructured phase-separated blends, or bulk heterojunctions, of conjugated polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells. The key feature of these cells is that they combine easy processing from solution on a variety of substrates with good performance. Efficiencies of up to 5% in solar light have been achieved, and lifetimes are increasing to thousands of hours. Further improvements can be expected and some of the promising strategies towards that goal are presented in this article.
Styles APA, Harvard, Vancouver, ISO, etc.
22

An, Qiaoshi, Fujun Zhang, Jian Zhang, Weihua Tang, Zhenbo Deng et Bin Hu. « Versatile ternary organic solar cells : a critical review ». Energy & ; Environmental Science 9, no 2 (2016) : 281–322. http://dx.doi.org/10.1039/c5ee02641e.

Texte intégral
Résumé :
Ternary organic solar cells enjoy both the enhanced light absorption by incorporating multiple organic materials in tandem solar cells and the simplicity of processing conditions that are used in single bulk heterojunction solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Li, Hongfei, Zhenhua Yang, Cheng Pan, Naisheng Jiang, Sushil K. Satija, Di Xu, Dilip Gersappe, Chang-Yong Nam et Miriam H. Rafailovich. « A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase ». Nanoscale 9, no 32 (2017) : 11511–22. http://dx.doi.org/10.1039/c7nr03789a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Islam, A. T. M. Saiful, Mushtaq Ahmed Sobhan et Abu Bakar Md Ismail. « Performance Enhancement of Bulk Heterojunction Hybrid Solar Cell Using Macroporous Silicon ». Rajshahi University Journal of Science and Engineering 43 (31 décembre 2015) : 11–20. http://dx.doi.org/10.3329/rujse.v43i0.26157.

Texte intégral
Résumé :
This article focuses on the work which deals with the effect of introducing macroporous silicon as the cathode of hybrid solar cell. This work shows that the photocurrent of bulk-heterojunction hybrid solar cell can be enhanced by using macroporous silicon (macro-PSi) as the cathode that provided increased effective contact surface area at the interface of organic-inorganic material. The organic compound (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) polymer blend at 1:1 ratio was used to fabricate the solar cell. It was found that the pore-diameter of the porous silicon plays an important role on short-circuit current of the fabricated hybrid solar cell. Huge enhancement of short-circuit current density (~ 73 times) was obtained when the average pore diameter of macro-PSi was comparable to the photogenerated carrier transport length of the photoactive polymer. The annealing of the whole structure further enhanced the overall performance of the fabricated hybrid solar cell.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kim, Dae-Seon, Sooncheol Kwon, Kwanghee Lee et Jae-Hyung Jang. « Efficient bulk heterojunction organic solar cell with antireflective subwavelength structure ». Applied Surface Science 332 (mars 2015) : 716–19. http://dx.doi.org/10.1016/j.apsusc.2015.02.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ueda, Yasuyuki, Yuki Kurokawa, Kei Nishii, Hideyuki Kanematsu, Tadashi Fukumoto et Takehito Kato. « Morphology Control of Monomer–Polymer Hybrid Electron Acceptor for Bulk-Heterojunction Solar Cell Based on P3HT and Ti-Alkoxide with Ladder Polymer ». Materials 15, no 3 (4 février 2022) : 1195. http://dx.doi.org/10.3390/ma15031195.

Texte intégral
Résumé :
We report the morphology control of a nano-phase-separated structure in the photoactive layer (power generation layer) of organic–inorganic hybrid thin-film solar cells to develop highly functional electronic devices for societal applications. Organic and inorganic–organic hybrid bulk heterojunction solar cells offer several advantages, including low manufacturing costs, light weight, mechanical flexibility, and a potential to be recycled because they can be fabricated by coating them on substrates, such as films. In this study, by incorporating the carrier manager ladder polymer BBL as the third component in a conventional two-component power generation layer consisting of P3HT—the conventional polythiophene derivative and titanium alkoxide—we demonstrate that the phase-separated structure of bulk heterojunction solar cells can be controlled. Accordingly, we developed a discontinuous phase-separated structure suitable for charge transport, obtaining an energy conversion efficiency higher than that of the conventional two-component power generation layer. Titanium alkoxide is an electron acceptor and absorbs light with a wavelength lower than 500 nm. It is highly sensitive to LED light sources, including those used in homes and offices. A conversion efficiency of 4.02% under a 1000 lx LED light source was achieved. Hence, high-performance organic–inorganic hybrid bulk heterojunction solar cells with this three-component system can be used in indoor photovoltaic systems.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Fan, Bingbing, Xiaonan Xue, Xiangyi Meng, Xiaobo Sun, Lijun Huo, Wei Ma et Yanming Sun. « High-performance conjugated terpolymer-based organic bulk heterojunction solar cells ». Journal of Materials Chemistry A 4, no 36 (2016) : 13930–37. http://dx.doi.org/10.1039/c6ta05886h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Babenko, S. D., A. A. Balakai, Yu L. Moskvin, G. V. Simbirtseva et P. A. Troshin. « Dynamic characteristics of organic bulk-heterojunction solar cells ». Thermal Engineering 57, no 13 (décembre 2010) : 1119–24. http://dx.doi.org/10.1134/s0040601510130057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zimmermann, B., M. Glatthaar, M. Niggemann, M. Riede et A. Hinsch. « Electroabsorption studies of organic bulk-heterojunction solar cells ». Thin Solid Films 493, no 1-2 (décembre 2005) : 170–74. http://dx.doi.org/10.1016/j.tsf.2005.04.089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kirchartz, Thomas, Kurt Taretto et Uwe Rau. « Efficiency Limits of Organic Bulk Heterojunction Solar Cells ». Journal of Physical Chemistry C 113, no 41 (17 septembre 2009) : 17958–66. http://dx.doi.org/10.1021/jp906292h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Glatthaar, M., N. Mingirulli, B. Zimmermann, T. Ziegler, R. Kern, M. Niggemann, A. Hinsch et A. Gombert. « Impedance spectroscopy on organic bulk-heterojunction solar cells ». physica status solidi (a) 202, no 11 (septembre 2005) : R125—R127. http://dx.doi.org/10.1002/pssa.200521149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Minnaert, Ben, et Marc Burgelman. « Efficiency potential of organic bulk heterojunction solar cells ». Progress in Photovoltaics : Research and Applications 15, no 8 (2007) : 741–48. http://dx.doi.org/10.1002/pip.797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Sasitharan, Kezia, David G. Bossanyi, Naoum Vaenas, Andrew J. Parnell, Jenny Clark, Ahmed Iraqi, David G. Lidzey et Jonathan A. Foster. « Metal–organic framework nanosheets for enhanced performance of organic photovoltaic cells ». Journal of Materials Chemistry A 8, no 12 (2020) : 6067–75. http://dx.doi.org/10.1039/c9ta12313j.

Texte intégral
Résumé :
Metal–organic framework nanosheets (MONs) are incorporated into the active layer of bulk heterojunction polymer–fullerene solar cells for the first time, resulting in an almost doubling of power conversion efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Munshi, Joydeep, TeYu Chien, Wei Chen et Ganesh Balasubramanian. « Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells ». Soft Matter 16, no 29 (2020) : 6743–51. http://dx.doi.org/10.1039/d0sm00849d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Nakata, Yuya, Toshiki Usui, Yuki Nishikawa, Fabien Nekelson, Yo Shimizu, Akihiko Fujii et Masanori Ozaki. « Sandwich-cell-type bulk-heterojunction organic solar cells utilizing liquid crystalline phthalocyanine ». Japanese Journal of Applied Physics 57, no 3S2 (22 décembre 2017) : 03EJ03. http://dx.doi.org/10.7567/jjap.57.03ej03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mbuyise, Xolani G., Elhadi A. A. Arbab et Genene Tessema Mola. « The effect of a trimetallic nanocomposite in the solar absorber layer of organic solar cells ». RSC Advances 9, no 11 (2019) : 6070–76. http://dx.doi.org/10.1039/c8ra08725c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Li, Yawen, et Yuze Lin. « Planar heterojunctions for reduced non-radiative open-circuit voltage loss and enhanced stability of organic solar cells ». Journal of Materials Chemistry C 9, no 35 (2021) : 11715–21. http://dx.doi.org/10.1039/d1tc01536b.

Texte intégral
Résumé :
Planar heterojunction organic solar cells exhibit lower trap density, higher electroluminescence efficiency, smaller non-radiative open-circuit voltage loss and better stability than bulk heterojunction counterparts.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Schulz, Gisela L., Prasenjit Kar, Martin Weidelener, Astrid Vogt, Marta Urdanpilleta, Mika Lindén, Elena Mena-Osteritz, Amaresh Mishra et Peter Bäuerle. « The influence of alkyl side chains on molecular packing and solar cell performance of dithienopyrrole-based oligothiophenes ». Journal of Materials Chemistry A 4, no 27 (2016) : 10514–23. http://dx.doi.org/10.1039/c6ta03453e.

Texte intégral
Résumé :
Dithienopyrrole-based small molecular materials were developed achieving PCEs up to 5.3% in bulk-heterojunction organic solar cells by the tuning of the alkyl substitution pattern and use of a solvent additive.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Fauzia, Vivi, Akrajas Ali Umar, Muhamad Mat Salleh et Muhammad Yahaya. « Study Phase Separation of Donor : Acceptor in Inkjet Printed Thin Films of Bulk Heterojunction Organic Solar Cells Using AFM Phase Imaging ». Advanced Materials Research 364 (octobre 2011) : 465–69. http://dx.doi.org/10.4028/www.scientific.net/amr.364.465.

Texte intégral
Résumé :
This paper reports an application of Atomic Force Microscopy (AFM) phase imaging to observe the phase separation between electron donor and acceptor materials in bulk heterojunction organic solar cells. The solar cells were fabricated using inkjet printed thin films of blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C71 butyric acid methyl ester (PC71BM) as donor and acceptor materials respectively. The content PC71BM in the blended was varying from 25, 50 and 75 wt %. The AFM phase images of the thin film which contains 25 wt % PC71BM indicated that the acceptor molecules, PC71BM, are well distributed in the polymer chain of donor material, P3OT. The solar cell contains this film has the highest generated photocurrent. Hence, the phase separation between electron donor and acceptor materials in bulk heterojunction organic solar cells is one essential aspect that influences generation of photocurrent.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Duan, Chunhui, Fei Huang et Yong Cao. « Solution processed thick film organic solar cells ». Polymer Chemistry 6, no 47 (2015) : 8081–98. http://dx.doi.org/10.1039/c5py01340b.

Texte intégral
Résumé :
In this Review article, significant advances in materials development and processing methods toward efficient solution processed bulk-heterojunction thick film organic solar cells as well as the factors that determine the optimal active layer thickness are summarized.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhu, Lin, Tianjiao Zhao, Kan Li, Wentao Sun et Yingjie Xing. « Bulk heterojunction organic solar cells fabricated by oblique angle deposition ». Physical Chemistry Chemical Physics 17, no 43 (2015) : 28765–69. http://dx.doi.org/10.1039/c5cp03604f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chiew, E. K., Muhammad Yahaya et A. P. Othman. « Investigation of Recombination Process of P3HT : PCBM Organic Solar Cell ». Advanced Materials Research 622-623 (décembre 2012) : 1147–51. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.1147.

Texte intégral
Résumé :
We applied an effective medium model for a computational study and investigated a recombination mechanism in a P3HT:PCBM bulk heterojunction (BHJ) organic solar cells where the main assumption is the p-n nanostructure is treated as one single effective semiconductor layer, and parameters in this configuration are fed into a standard solar cell device simulator, called a Solar Cell Capacitance Simulator (SCAPS). Using SCAPS, the electrical performances of organic solar cells and the intensity-dependent current density -voltage (J-V) were simulated and compared with the actual experimental result. The results show that they are in good agreement with each other and monomolecular recombination mechanism is the dominant mechanism in the BHJ organic solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Giguère, Jean-Benoît, Niyazi Serdar Sariciftci et Jean-François Morin. « Polycyclic anthanthrene small molecules : semiconductors for organic field-effect transistors and solar cells applications ». Journal of Materials Chemistry C 3, no 3 (2015) : 601–6. http://dx.doi.org/10.1039/c4tc02137a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Echeverry, Carlos A., et Edison Castro. « Organic and Organic-Inorganic Solar Cells : From Bulk Heterojunction to Perovskite Solar Cells ». International Journal of Chemistry and Research 1, no 1 (27 novembre 2018) : 1–8. http://dx.doi.org/10.18689/ijcr-1000101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Lv, Menglan, Jacek J. Jasieniak, Jin Zhu et Xiwen Chen. « A hybrid organic–inorganic three-dimensional cathode interfacial material for organic solar cells ». RSC Advances 7, no 45 (2017) : 28513–19. http://dx.doi.org/10.1039/c7ra04044j.

Texte intégral
Résumé :
An alcohol soluble hybrid organic–inorganic three-dimensional material POSS-FN has been synthesized and assessed as a cathode interlayer within organic solar cells consisting of a PBDT-BT:PC61BM bulk heterojunction.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kumar, Sandeep, et Thomas Nann. « First solar cells based on CdTe nanoparticle/MEH-PPV composites ». Journal of Materials Research 19, no 7 (juillet 2004) : 1990–94. http://dx.doi.org/10.1557/jmr.2004.0279.

Texte intégral
Résumé :
Hybrid bulk heterojunction composites are promising material for low-cost organic solar cells. Fundamental measurements with CdTe nanocrystal/MEH-PPV poly [2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] composites and the first realization of a solar cell based on this material are presented. Optical and electrochemical properties are discussed as well as the current voltage characteristic of the resulting cell. It was found, that CdTe nanocrystal/MEH-PPV composites are well suited for an organic solar cell, even though the technological realization needs to be improved.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ali, Muhammad, Ahmed Shuja, Ahsan Baig, Erum Jamil et Muhammad Amjad. « Design, Electrical, and Optical Modelling of Bulk Heterojunction Polymer Solar Cell ». International Journal of Photoenergy 2018 (19 décembre 2018) : 1–6. http://dx.doi.org/10.1155/2018/9465262.

Texte intégral
Résumé :
The energy scenario today is focused on the development and usage of solar cells, especially in the paradigm of clean energy. To readily create electron and hole pairs, solar cells utilize either photoactive or photosensitive components. A bulk heterojunction (BHJ) is a nanolayer consisting of donor and acceptor components with a large interpenetrated acceptor and donor contact area. In this context, a mix of P3HT and PCBM offers novelty for its use as an acceptor as well as a donor. In the work presented here, we address the mechanism of modelling and characterization of a BHJ-based polymer solar cell. Here, a new design of BHJ polymer solar cells have been designed, modelled, using Silvaco TCAD in the Organic Solar module, and matched with an already assembled device having similar features. Using this model, we have been able to estimate key parameters for the modelled devices, such as the short-circuit current density, open-circuit voltage, and fill factor with less than 0.25 error index compared to the fabricated counterpart, paving the way for fabless polymer solar cell design and optimization.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lu, Bing Juan, Nan Hai Sun, Ming Wei Li et Hong Zheng Dong. « Nickle Oxide Based Bulk Heterojunction Flexible Solar Cells ». Advanced Materials Research 512-515 (mai 2012) : 109–12. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.109.

Texte intégral
Résumé :
This paper presents an efficient flexible organic solar cell with room temperarure sputtered and highly conductive nickle oxide (NiO) thin film as hole transporting layer. The strcture of this kind of devices is PET/ITO/NiO/P3HT: PCBM [regioregular of poly (3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester] /Al. On the study of characteristics of Nickle oxide thin film, such as sputtering temperature, thickness, and oxygen proportion, we found that NiO with 10 nm and sputtered at room temperature shows the best photovoltaic properties. The highest power conversion efficiency (PCE) of 3.26% and 2.5% were achieved on glass substrate and flexible substrate individually. The device photovoltaic properties were discussed in terms of the band diagrams and series resistance of the devices. Also the properties of nickle oxide thin film on different conditions were investigated too.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Yassine Doggui, Mohamed, Mohamed Oussama Zouaghi, Gilles Frapper, Frédéric Guegan et Youssef Arfaoui. « Metallo-dithiaporphyrin pigments for bulk-heterojunction solar cell applications : ab initio investigation of structural and optoelectronic properties ». RSC Advances 13, no 48 (2023) : 33943–56. http://dx.doi.org/10.1039/d3ra05063g.

Texte intégral
Résumé :
Metallo-dithiaporphyrin small molecules have been designed by substituting Ru(ii) with various transition metals at the same oxidation state (M = Mn, Fe, Ni, Cu) as donor materials for Bulk Heterojunction organic solar cells (BHJ-OSCs).
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sandoval-Torrientes, Rafael, Alexey Gavrik, Anna Isakova, Abasi Abudulimu, Joaquín Calbo, Juan Aragó, José Santos et al. « Minimizing geminate recombination losses in small-molecule-based organic solar cells ». Journal of Materials Chemistry C 7, no 22 (2019) : 6641–48. http://dx.doi.org/10.1039/c9tc00862d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie