Littérature scientifique sur le sujet « Bronnikov »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Bronnikov ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Bronnikov"
Yusupova, Rosaliya M., Ramis Kh Karimov, Ramil N. Izmailov et Kamal K. Nandi. « Accretion Flow onto Ellis–Bronnikov Wormhole ». Universe 7, no 6 (2 juin 2021) : 177. http://dx.doi.org/10.3390/universe7060177.
Texte intégralAlencar, G., V. B. Bezerra, C. R. Muniz et H. S. Vieira. « Ellis–Bronnikov Wormholes in Asymptotically Safe Gravity ». Universe 7, no 7 (10 juillet 2021) : 238. http://dx.doi.org/10.3390/universe7070238.
Texte intégralDe Witte, Yoni, Matthieu Boone, Jelle Vlassenbroeck, Manuel Dierick et Luc Van Hoorebeke. « Bronnikov-aided correction for x-ray computed tomography ». Journal of the Optical Society of America A 26, no 4 (19 mars 2009) : 890. http://dx.doi.org/10.1364/josaa.26.000890.
Texte intégralBoone, M., Y. De Witte, M. Dierick, J. Van den Bulcke, J. Vlassenbroeck et L. Van Hoorebeke. « Practical use of the modified Bronnikov algorithm in micro-CT ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 267, no 7 (avril 2009) : 1182–86. http://dx.doi.org/10.1016/j.nimb.2009.01.129.
Texte intégralNovikov, I. D., et A. A. Shatskiy. « Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure ». Journal of Experimental and Theoretical Physics 114, no 5 (mai 2012) : 801–4. http://dx.doi.org/10.1134/s1063776112040127.
Texte intégralBaskina (Malikova), M. E. « I Take You Back to the Perished Generations : «The Bronnikov Case» ». Russkaya Literatura 4 (2019) : 234–38. http://dx.doi.org/10.31860/0131-6095-2019-4-234-238.
Texte intégralBhattacharya, Amrita, et Alexander A. Potapov. « On strong field deflection angle by the massless Ellis–Bronnikov wormhole ». Modern Physics Letters A 34, no 05 (20 février 2019) : 1950040. http://dx.doi.org/10.1142/s0217732319500408.
Texte intégralSharif, M., et Rabia Saleem. « Cardy-Verlinde Formula and Its Self-Gravitational Corrections for Regular Black Holes ». Advances in High Energy Physics 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/926589.
Texte intégralKruglov, Sergey. « On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics ». Universe 4, no 5 (19 mai 2018) : 66. http://dx.doi.org/10.3390/universe4050066.
Texte intégralArsenadze, G., et Z. Osmanov. « Particles on the rotating channels in the wormhole metrics ». International Journal of Modern Physics D 26, no 13 (22 octobre 2017) : 1750153. http://dx.doi.org/10.1142/s021827181750153x.
Texte intégralThèses sur le sujet "Bronnikov"
CREMONA, FRANCESCO. « ON THE LINEAR INSTABILITY OF HIGHER DIMENSIONAL WORMHOLES SUPPORTED BY SELF-INTERACTING PHANTOM SCALAR FIELDS ». Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/820071.
Texte intégralIn this thesis I deal with the linear stability analysis of static, spherically symmetric wormholes supported by phantom self-interacting scalar fields, in the framework of General Relativity with arbitrary spacetime dimension. In the previous literature, a gauge-invariant stability analysis of wormhole configurations often succeeds in decoupling the linearized field equations, yielding a wave-type master equation which, however, is typically singular where the radial coefficient of the metric has a critical point, that is, at the wormhole throat. In order to overcome this problem a regularization method has been proposed in previous works, which transforms the singular wave equation to a regular one; this method is usually referred to as “S-deformation” (and sometimes requires a partly numerical implementation, especially, in the case of scalar fields with nontrivial self-interaction). The first result of my work is the reduction of the linearized field equations to a completely regular, constrained wave system for two suitably defined gauge-invariant functions of the perturbations in the metric coefficients and in the scalar field; the second result is a strategy for decoupling this system, obtaining a single wave-type master equation for another gauge-invariant quantity. No step of this construction causes the appearing of singularities at the wormhole throat or elsewhere (provided that the unperturbed scalar field has no critical points, which occurs in many examples); therefore, it is not necessary to regularize a posteriori the master equation via the S-deformation method. This gauge-invariant and singularity-free formalism, which generalizes to arbitrary spacetime dimensions the approach of my paper [1], is then applied to some known static wormhole solutions (most, but not all of them considered in [1]). The most relevant application is a certain Anti-de Sitter (AdS) wormhole, whose linear stability analysis does not seem to have been performed previously by other authors; by using the present method, it is possible to derive a completely regular master equation describing the perturbations of the AdS wormhole and prove that the latter is actually linearly unstable, after providing a detailed analysis of the spectral properties of the Schrödinger type operator appearing in the master equation. A partial instability result is derived along the same lines for the analogous de Sitter (dS) wormhole, a technically more subtle case due to the presence of horizons. As a further application, I rederive in a singularity-free fashion the master equations for the perturbed Ellis-Bronnikov and Torii-Shinkai wormholes. As a supplement, the linear instability results for the AdS and for the Torii-Shinkai wormholes are also recovered using an alternative, singularity free but gauge-dependent method: in this case a regular master equation is derived for the perturbed radial coordinate, and the gauge-independence of the instability result is tested a posteriori. This alternative, gauge-dependent approach generalizes that introduced in my paper [2] for the reflection symmetric Ellis-Bronnikov wormhole. Let me also cite [3], from which I report some facts about the previously mentioned wormholes in absence of perturbations. BIBLIOGRAPHY: [1] F. Cremona, L. Pizzocchero, and O. Sarbach. Gauge-invariant spherical linear perturbations of wormholes in einstein gravity minimally coupled to a self-interacting phantom scalar field. Physical Review D, 101, 05 2020. [2] F. Cremona, F. Pirotta, and L. Pizzocchero. On the linear instability of the Ellis-Bronnikov-Morris-Thorne wormhole. Gen. Relativ. Gravitat., 51:19, 2019. [3] F. Cremona. Geodesic structure and linear instability of some wormholes. Proceeding for the conference: Domoschool 2019 (submitted).
Livres sur le sujet "Bronnikov"
Schiavina, Emanuela, et Vyacheslav Bronnikov. Livello 1 - Ecologia Dello Sprito : Sistema Bronnikov-Fekleron. Independently Published, 2017.
Trouver le texte intégralChapitres de livres sur le sujet "Bronnikov"
Zhou, Yu, Tie Zhou et Ming Jiang. « An alternative derivation for Bronnikov’s reconstruction formula in x-ray phase contrast tomography ». Dans IFMBE Proceedings, 1038–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_272.
Texte intégral