Articles de revues sur le sujet « Boundary Layer Wind Tunnel (BLWT) »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Boundary Layer Wind Tunnel (BLWT).

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Boundary Layer Wind Tunnel (BLWT) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Hubová, Oľga, Lenka Konecna et Peter Lobotka. « Influence of Walls and Ceiling on a Wind Flow in BLWT Tunnel ». Applied Mechanics and Materials 617 (août 2014) : 257–62. http://dx.doi.org/10.4028/www.scientific.net/amm.617.257.

Texte intégral
Résumé :
This paper deals with determination of the parameters of simulated boundary layer in newly built Boundary Layer Wind Tunnel (BLWT). Short description of tunnel, measuring devices and possibilities of using of tunnel are mentioned here. All measurements, which were necessary for basic analysis of simulated natural wind, are shortly mentioned. The main part of this paper is devoted to additional measurements, which were necessary for detection of influences of boundary effects in part of the cross-section of tunnel where the calibration of Hot-wire anemometer is usually done. These boundary effects evoke deceleration of the wind velocity in given area. Description of additional measurements and obtained results are presented at the end of this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Magát, Marek, Ivana Olekšáková et Juraj Žilinský. « Development of the Boundary Layer in the Rear Section in BLWT STU - Trnavka ». Advanced Materials Research 855 (décembre 2013) : 141–44. http://dx.doi.org/10.4028/www.scientific.net/amr.855.141.

Texte intégral
Résumé :
This paper deals with the basic simulation of boundary layer in the wind tunnel in STU Bratislava and boundary layer given in the Slovak Technical Standard STN EN 1991-1-4 in Bratislava for category of terrain no. IV. The wind tunnel mainly allows experiments to determine the realistic reproduction of the static and dynamic response of a scale models of the buildings and structures immersed in a turbulent flow which simulates the natural wind in various categories of terrain. We have to deal with similarity criteria of modeling the objects, measuring the pressure and the velocity of flow in the tunnel by using the whole range of devices such as Pitot static probe, Constant Temperature Anemometry, Particle Image Velocimetry etc. all under the control in the program Labview developed by National Instruments .Than we are able to measure the pressure coefficients or any other parameters needed for design of buildings and structures of any shape and size, allowed by tunnel dimensions, placed on a different types of terrain roughness. The most recent research in new BLWT was calibration and simulation of boundary layer in the rear space of the tunnel.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hubová, Oľga, et Peter Lobotka. « The Multipurpose New Wind Tunnel STU ». Civil and Environmental Engineering 10, no 1 (1 mai 2014) : 1–9. http://dx.doi.org/10.2478/cee-2014-0001.

Texte intégral
Résumé :
Abstract BLWT STU tunnel, which is currently in test mode, will in its two measuring sections allow to prepare measurements with laminar and turbulent wind flow. The front section will fulfill technical parameters of steady flow for testing sectional models and dynamically similar models. In the rear operating section it is necessary to reproduce correctly the roughness of the earth surface covering different terrain categories and to prepare boundary layer suitable for experimental testing. Article deals with the brief description of the preparation and testing laminar flow and boundary layer for the urban terrain, which was simulated with rough elements and barriers of different heights. The attention is focused in getting get at least 1 meter height of boundary layer, which allows to optimize scale similarity of model.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Magát, Marek, Ivana Olekšáková et Juraj Žilinský. « Development of Boundary Layer in CRIACIV in Florence (Prato) and Comparison with CFD ». Applied Mechanics and Materials 820 (janvier 2016) : 359–64. http://dx.doi.org/10.4028/www.scientific.net/amm.820.359.

Texte intégral
Résumé :
In this article are described the results from testing profile of atmospheric boundary layer in BLWT (Boundary layer wind tunnel) in Florence (Prato), Italy with emphasis on comparison of the results with simulations in CFD (Computational fluid dynamics) software OpenFoam. The values are compared with calculated values from EuroCode.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Medvecká, Soňa, Ol’ga Ivánková, Marek Macák et Vladimíra Michalcová. « Determination of Pressure Coefficient for a High-Rise Building with Atypical Ground Plan ». Civil and Environmental Engineering 14, no 2 (1 décembre 2018) : 138–45. http://dx.doi.org/10.2478/cee-2018-0018.

Texte intégral
Résumé :
Abstract In this article, the results of pressure coefficient on the atypical object obtained by experimental measurements in a boundary layer wind tunnel (BLWT) of Slovak University of Technology in Bratislava (STU) and computational fluid dynamics simulation (CFD) are presented. The pressure coefficient is one of the most important parameters expressing the wind pressure distribution on the structure. The loading by wind can only be acquired by execution of detailed tests and numerical analyses [1].
Styles APA, Harvard, Vancouver, ISO, etc.
6

Veghova, Ivana, et Olga Hubova. « Influence of the near standing hall for wind flowing around group of circular cylinders ». MATEC Web of Conferences 310 (2020) : 00013. http://dx.doi.org/10.1051/matecconf/202031000013.

Texte intégral
Résumé :
This article deals with experimental investigation of air flow around in – line standing circular cylinders and influence of nearby standing hall on external wind pressure distribution. The wind pressure distribution on the structures is an important parameter in terms of wind load calculation. For vertical circular cylinders in a row arrangement only wind force coefficient is possible find in Eurocode. 1991-1-4. External wind pressure coefficient depends on wind direction and the ratio of distance and diameter b. Influence of nearby standing structure is not possible find in Eurocode. The series of parametric wind tunnel studies was carried out in Boundary Layer Wind Tunnel (BLWT) STU to investigate the external wind pressure coefficient in turbulent wind flow. Experimental measurements were performed in BLWT for 2 reference wind speeds, which fulfilled flow similarity of prototype and model. We have compared the results of free in - line standing 3 circular cylinder and influence of hall on distribution of wind pressure at 3 height levels in turbulent wind flow and these results were compared with values in EN 1991-1-4.
Styles APA, Harvard, Vancouver, ISO, etc.
7

De Queiroz, Matheus, Guilherme Loyola França De Vasconcellos, Cristiana Brasil Maia, Julien Weiss et Sérgio De Morais Hanriot. « Investigation of the Predictive Ability of Two Advection Schemes on the Formation of a Turbulent Separation Bubble in a Boundary Layer Wind Tunnel ». Applied Mechanics and Materials 477-478 (décembre 2013) : 181–85. http://dx.doi.org/10.4028/www.scientific.net/amm.477-478.181.

Texte intégral
Résumé :
This paper presents a study that correlates the capacity of two advection schemes in foreseeing flow separation inside a boundary layer wind tunnel (BLWT herein after). The geometry of the BLWT forces the generation of a turbulent separation bubble. Numerical simulations were carried out with the commercial Computational Fluid Dynamics software ANSYS-CFX®. The high-resolution advection scheme is shown to be more appropriate than the upwind scheme in predicting flows where properties are subject to strong gradients, such as pressure and velocity.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hubová, Oľga, Michal Franek et Marek Macák. « Numerical and experimental determination of wind load on photovoltaic panel assemblies ». Gradjevinski materijali i konstrukcije 63, no 4 (2020) : 49–63. http://dx.doi.org/10.5937/grmk2004049h.

Texte intégral
Résumé :
The article presents the aerodynamic study of solar panel assemblies and determination of wind load. In the first part, the task is solved by computer simulation of the wind flow around the proposed rectangular assembly in the scale of 1:1 using the FLUENT ANSYS program; realization of experimental measurements in the wind tunnel with a boundary layer (BLWT) in Bratislava is presented subsequently. The aim of the solution was to determine the maximum pressure and suction wind load on top and bottom surfaces of panels. The resulting net pressure coefficient represents the maximum local pressure in each panel row as maximum values from all wind directions. The experimentally obtained net pressure coefficient values were compared with computer simulation and the procedures mentioned in standard STN EN 1991-1-4. It can be seen that the inner panels are loaded considerably less than the standard defines. The panels placed on the side of the assembly or on the edge of the aisle are loaded significantly more than the standard defines. Frontal panels are also less wind stressed than in the standard defines.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Franek, Michal, et Marek Macák. « Effects of Interference on Local Peak Pressures Between Two Buildings with an Elliptical Cross-Section ». Slovak Journal of Civil Engineering 29, no 1 (1 mars 2021) : 35–41. http://dx.doi.org/10.2478/sjce-2021-0006.

Texte intégral
Résumé :
Abstract The interference effects on the distribution of external wind pressure coefficient between two high-rise buildings with an elliptical cross section were studied experimentally at the Boundary Layer Wind Tunnel (BLWT) at the Faculty of Civil Engineering STU in Bratislava, Slovakia. Various arrangements of models, which were derived from the breadth ratio, were investigated. The peak value of the external wind pressure coefficient for a stand-alone model was measured and compared with the peak value in the case of interference. The measurements showed that the wind loads on buildings in a close vicinity are considerably different from those on a stand-alone building. The interference effects significantly affect negative pressure zones. The optimal and critical arrangements of buildings were evaluated. The elimination of peak negative external wind pressure coefficients can be reduced by half. On the other hand, the interference effects had a strong impact on increasing the peak value of the negative external wind pressure coefficient, which can be more than roughly double compared to an isolated building.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jiménez-Portaz, María, María Clavero et Miguel Ángel Losada. « A New Methodology for Assessing the Interaction between the Mediterranean Olive Agro-Forest and the Atmospheric Surface Boundary Layer ». Atmosphere 12, no 6 (21 mai 2021) : 658. http://dx.doi.org/10.3390/atmos12060658.

Texte intégral
Résumé :
Historically, the olive grove has been one of the most emblematic ecosystems in Mediterranean countries. Currently, in Andalusia, Spain, the land under olive grove cultivation exceeds 1.5 million hectares, approximately 17% of the regional surface. Its exploitation has traditionally been based on the use of the available land and heterogeneous plantations, with different species adapted to southern Mediterranean climatic conditions, and to the management of the traditional olive cultivation culture. The objective of this work is to characterize the mechanical behavior of the atmospheric surface boundary layer (SBL) (under neutral stability) interacting with different olive grove configurations. Experimental tests were carried out in the Boundary Layer Wind Tunnel (BLWT) of the Andalusian Institute for Earth System Research (IISTA), University of Granada. Three representative configurations of olive groves under neutral atmospheric conditions were tested. The wind flow time series were recorded at several distances and heights downwind the olive plantation models with a cross hot wire anemometry system. Herein, this paper shows the airflow streamwise, including the mean flow and the turbulent characteristics. The spatial variability of these two mechanical magnitudes depends on, among others, the size, the agro-forest length, the layout of the tree rows, the porosity, the tree height, the crown shape and the surface vegetation cover. The aerodynamic diameter and Reynolds number for each agro-forest management unit are proposed as representative variables of the system response, as these could be related to olive grove management. The plantation, in turn, conforms to a windbreak, which affects the microclimate and benefits the elements of the ecosystem. Detailed knowledge of these variables and the interaction between the ecosystem and the atmosphere is relevant to optimize the resources management, land use and sustainability of the overall crop. Thus, this paper presents preliminary work to relate atmospheric variables to environmental variables, some of which could be humidity, erosion, evapotranspiration or pollen dispersion.
Styles APA, Harvard, Vancouver, ISO, etc.
11

TAKEDA, Katsuaki, et Mitsuyuki HASHIMOTO. « NKK Boundary Layer Wind Tunnel Facilities ». Wind Engineers, JAWE 1988, no 34 (1988) : 71–78. http://dx.doi.org/10.5359/jawe.1988.71.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

TAKAKURA, Shuichi, Yoshimi SUYAMA, Taimei AOKI, Naoki YOSHIMURA et Shoji TAKAHASHI. « Introduction of Boundary-layer Wind Tunnel ». Wind Engineers, JAWE 1993, no 54 (1993) : 31–38. http://dx.doi.org/10.5359/jawe.1993.31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Roach, P. E. « A new boundary layer wind tunnel ». Aeronautical Journal 92, no 916 (juillet 1988) : 224–29. http://dx.doi.org/10.1017/s000192400001616x.

Texte intégral
Résumé :
Summary The procedures employed for the design of a closed-circuit, boundary layer wind tunnel are described. The tunnel was designed for the generation of relatively large-scale, two-dimensional boundary layers with Reynolds numbers, pressure gradients and free-stream turbulence levels typical of the turbomachinery environment. The results of a series of tests to evaluate the tunnel performance are also described. The flow in the test section is shown to be highly uniform and steady, with very low (natural) free-stream turbulence intensities. Measured boundary layer mean and fluctuating velocity profiles were found to be in good agreement with classical correlations. Test-section free-stream turbulence intensities are presented for grid-generated turbulence: agreement with expectation is again found to be good. Immediate applications to the tunnel include friction drag reduction and boundary layer transition studies, with future possibilities including flow separation and other complex flows typical of those found in gas turbines.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Walker, George R. « Wind engineering beyond the boundary layer wind tunnel ». Journal of Wind Engineering and Industrial Aerodynamics 41, no 1-3 (octobre 1992) : 93–104. http://dx.doi.org/10.1016/0167-6105(92)90397-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Maruyama, T. « Numerical simulation of boundary layer wind tunnel ». Journal of Wind Engineering and Industrial Aerodynamics 44, no 1-3 (octobre 1992) : 2827–38. http://dx.doi.org/10.1016/0167-6105(92)90077-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kala, Sudeesh, T. Stathopoulos et K. Suresh Kumar. « Wind loads on rainscreen walls : Boundary-layer wind tunnel experiments ». Journal of Wind Engineering and Industrial Aerodynamics 96, no 6-7 (juin 2008) : 1058–73. http://dx.doi.org/10.1016/j.jweia.2007.06.028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Cheng, XX, X. Chen, YJ Ge, H. Jiang et L. Zhao. « A new atmospheric boundary layer wind tunnel simulation methodology for wind effects on large cooling towers considering wind environment variations ». Advances in Structural Engineering 22, no 5 (4 novembre 2018) : 1194–210. http://dx.doi.org/10.1177/1369433218809899.

Texte intégral
Résumé :
The traditional atmospheric boundary layer wind tunnel model test practice employs wind fields, the flow characteristics of which are in accordance with the empirical formulae of the atmospheric turbulence presented in Codes of Practice and monographs. However, the empirical formulae presented in Codes of Practice and monographs cannot truthfully reflect the high variations of the realistic atmospheric turbulence which sometimes aggravates wind effects on structures. Based on model tests conducted in a multiple-fan actively controlled wind tunnel, it is found that most wind effects on large cooling towers change monotonically with the increase in free-stream turbulence, and the model test results are more unfavorable for a flow field of low turbulence intensity than for a flow field of high turbulence intensity with respect to the measured coherences. Thus, a new atmospheric boundary layer wind tunnel simulation methodology for wind effects on circular cylindrical structures is proposed to overcome the deficiency of the traditional atmospheric boundary layer wind tunnel model tests. The new simulation methodology includes the simulation of two realistic atmospheric boundary layer flow fields with the highest and the lowest turbulence intensities in the wind tunnel and the envelopment of model test results obtained in the two flow fields (e.g. the mean and fluctuating wind pressure distributions, the power spectral density, the coherence function, and the correlation coefficient). The superiority of the new atmospheric boundary layer wind tunnel simulation methodology over the traditional model test practice is demonstrated by comparing the model test results with the full-scale measurement data.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tesar, Alexander. « Turbulences in Boundary Layer of Flat Plates ». Selected Scientific Papers - Journal of Civil Engineering 9, no 1 (1 juin 2014) : 59–68. http://dx.doi.org/10.2478/sspjce-2014-0007.

Texte intégral
Résumé :
Abstract The aeroelastic assessment of turbulences appearing in boundary layer of flat plates tested in the wind tunnel is treated in present paper. The approach suggested takes into account multiple functions in the analysis of flat plates subjected to laminar and turbulent wind forcing. Analysis and experimental assessments in the aerodynamic tunnel are presented. Some results obtained are discussed
Styles APA, Harvard, Vancouver, ISO, etc.
19

MARUYAMA, Takashi. « NUMERICAL SIMULATION OF TURBULENT BOUNDARY LAYER WIND TUNNEL ». Journal of Structural and Construction Engineering (Transactions of AIJ) 437 (1992) : 135–41. http://dx.doi.org/10.3130/aijsx.437.0_135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Barbosa, P. H. A., M. Cataldi et A. P. S. Freire. « Wind tunnel simulation of atmospheric boundary layer flows ». Journal of the Brazilian Society of Mechanical Sciences 24, no 3 (juillet 2002) : 177–85. http://dx.doi.org/10.1590/s0100-73862002000300005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

YOSHIDA, Masaaki, Osamu NAKAMURA, Keiji YOKOTANI et Junji KATAGIRI. « A boundary layer wind tunnel for architectural experiment ». Wind Engineers, JAWE 1987, no 33 (1987) : 45–50. http://dx.doi.org/10.5359/jawe.1987.33_45.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kornilov, V. I., et A. V. Boiko. « Wind-tunnel simulation of thick turbulent boundary layer ». Thermophysics and Aeromechanics 19, no 2 (juin 2012) : 247–58. http://dx.doi.org/10.1134/s0869864312020084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

SADA, Kouichi. « Wind Tunnel Experiment of Convective Planetary Boundary Layer. » Transactions of the Japan Society of Mechanical Engineers Series B 58, no 556 (1992) : 3677–84. http://dx.doi.org/10.1299/kikaib.58.3677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Parkinson, G. V., et N. J. Cook. « Blockage tolerance of a boundary-layer wind tunnel ». Journal of Wind Engineering and Industrial Aerodynamics 42, no 1-3 (octobre 1992) : 873–84. http://dx.doi.org/10.1016/0167-6105(92)90094-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Vikneshvaran, Vikneshvaran, Sheikh Ahmad Zaki, Nurizzatul Atikha Rahmat, Mohamed Sukri Mat Ali et Fitri Yakub. « Evaluation of Atmospheric Boundary Layer in Open-Loop Boundary Layer Wind Tunnel Experiment ». Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 72, no 2 (30 juin 2020) : 79–92. http://dx.doi.org/10.37934/arfmts.72.2.7992.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

SIVARAMAKRISHNAN, S. « Wind and turbulence profiles in a simulated wind tunnel boundary layer ». MAUSAM 43, no 3 (30 décembre 2021) : 283–90. http://dx.doi.org/10.54302/mausam.v43i3.3456.

Texte intégral
Résumé :
A system of Honeycomb Flat Plate (HFP) grid and cylindrical rods has been developed to accelerate the growth of a thick (32 cm) turbulent boundary layer, artificially, over rough floor of a low speed short test-section (0.61 m x 0.61 m) wind tunnel. Simulated profiles of wind velocity, longitudinal turbulence intensity and Reynolds stress are shown to have similarity to those of a neutral atmospheric boundary layer over a typical rural terrain. Longitudinal spectrum of turbulence measured at 10,30 and 100 mm above tunnel floor is shown to compare well with atmospheric spectrum and agree closely with the Kolmogoroff's -2/3 law in the inertial sub-range of the spectrum. Based on the length scale of longitudinal turbulence estimated from the spectrum, a scale of 1 :900 has been proposed for laboratory modeling of environmental problems wherein the transport of mass in a neutral atmospheric surface layer IS solely due to eddies of mechanical origin.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Horstmann, K. H., A. Quast et G. Redeker. « Flight and wind-tunnel investigations on boundary-layer transition ». Journal of Aircraft 27, no 2 (février 1990) : 146–50. http://dx.doi.org/10.2514/3.45910.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

AOTA, Noritaka, Yasuaki KOHAMA, Bahri Faycal, Shouhei TAKAGI et Akira NISHIZAWA. « 102 Boundary-Layer Transition in a Wind Tunnel Contraction ». Proceedings of Conference of Tohoku Branch 2000.35 (2000) : 6–7. http://dx.doi.org/10.1299/jsmeth.2000.35.6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Witcher, T. R. « Force of Nature : The Boundary Layer Wind Tunnel Laboratory ». Civil Engineering Magazine Archive 89, no 9 (octobre 2019) : 42–45. http://dx.doi.org/10.1061/ciegag.0001425.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Shojaee, S. M. N., O. Uzol et Ö. Kurç. « Atmospheric boundary layer simulation in a short wind tunnel ». International Journal of Environmental Science and Technology 11, no 1 (28 novembre 2013) : 59–68. http://dx.doi.org/10.1007/s13762-013-0371-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hlevca, Dan, et Mircea Degeratu. « Atmospheric boundary layer modeling in a short wind tunnel ». European Journal of Mechanics - B/Fluids 79 (janvier 2020) : 367–75. http://dx.doi.org/10.1016/j.euromechflu.2019.10.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Tse, K. T., A. U. Weerasuriya et K. C. S. Kwok. « Simulation of twisted wind flows in a boundary layer wind tunnel for pedestrian-level wind tunnel tests ». Journal of Wind Engineering and Industrial Aerodynamics 159 (décembre 2016) : 99–109. http://dx.doi.org/10.1016/j.jweia.2016.10.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kozmar, Hrvoje. « Characteristics of natural wind simulations in the TUM boundary layer wind tunnel ». Theoretical and Applied Climatology 106, no 1-2 (4 mars 2011) : 95–104. http://dx.doi.org/10.1007/s00704-011-0417-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chamorro, Leonardo P., et Fernando Porté-Agel. « A Wind-Tunnel Investigation of Wind-Turbine Wakes : Boundary-Layer Turbulence Effects ». Boundary-Layer Meteorology 132, no 1 (23 avril 2009) : 129–49. http://dx.doi.org/10.1007/s10546-009-9380-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zhang, Wei, Corey D. Markfort et Fernando Porté-Agel. « Wind-Turbine Wakes in a Convective Boundary Layer : A Wind-Tunnel Study ». Boundary-Layer Meteorology 146, no 2 (15 juillet 2012) : 161–79. http://dx.doi.org/10.1007/s10546-012-9751-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Migliore, Paul, et Stefan Oerlemans. « Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines* ». Journal of Solar Energy Engineering 126, no 4 (1 novembre 2004) : 974–85. http://dx.doi.org/10.1115/1.1790535.

Texte intégral
Résumé :
Aeroacoustic tests of seven airfoils were performed in an open jet anechoic wind tunnel. Six of the airfoils are candidates for use on small wind turbines operating at low Reynolds numbers. One airfoil was tested for comparison to benchmark data. Tests were conducted with and without boundary layer tripping. In some cases, a turbulence grid was placed upstream in the test section to investigate inflow turbulence noise. An array of 48 microphones was used to locate noise sources and separate airfoil noise from extraneous tunnel noise. Trailing-edge noise was dominant for all airfoils in clean tunnel flow. With the boundary layer untripped, several airfoils exhibited pure tones that disappeared after proper tripping was applied. In the presence of inflow turbulence, leading-edge noise was dominant for all airfoils.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Xie, Dong, Peilin Xiao, Ninghua Cai, Lixin Sang, Xiumin Dou et Hanqing Wang. « Field and Wind Tunnel Experiments of Wind Field Simulation in the Neutral Atmospheric Boundary Layer ». Atmosphere 13, no 12 (8 décembre 2022) : 2065. http://dx.doi.org/10.3390/atmos13122065.

Texte intégral
Résumé :
To investigate the pollutant dispersion of a nuclear power plant, a field tracing experiment was carried out in neutral stratification weather with the main wind direction SSW. On this basis, a wind speed profile and turbulence intensity profile consistent with the site were created in the wind tunnel. Meanwhile, how to generate a wind field of neutral stratification in a wind tunnel was studied in detail. Finally, a 1:1000 nuclear power area model was made to conduct tracing experiments in the wind tunnel. The results show that when the horizontal and vertical distances of the spire are 300 mm and 500 mm, and the horizontal and vertical distances of the rough element are 250 mm and 500 mm. A wind speed profile with a wind profile index of 0.321 was generated in the wind tunnel (0.334 in the field test), and the wind tunnel tracer experiment had the same diffusion trend as the field, which verified the accuracy of the flow field.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Čeheľová, Dagmara, Michal Franek et Boris Bielek. « Atmospheric Boundary Layer Wind Tunnel of Slovak University of Technology in Bratislava ». Applied Mechanics and Materials 887 (janvier 2019) : 419–27. http://dx.doi.org/10.4028/www.scientific.net/amm.887.419.

Texte intégral
Résumé :
Aerodynamics is a relatively young scientific discipline, which started developing in the 50´s of last century. There are known several methods for calculating and measuring of the aerodynamic variables – in-situ measurements, wind tunnel measurements, CFD simulations and calculations according to national standards. Each method has its advantages and disadvantages. Nowadays a large focus is on experimental verifying the findings achieved with calculations help and CFD simulations. One of the verification possibilities are measurements in wind tunnels. The submitted paper deals with construction and using of the wind tunnel by the Slovak University of Technology in Bratislava. This device was put into operation after experimental verification in 2012, so this wind tunnel is one of the newest of its kind in Europe. The concept of the construction of individual structural elements and the wind tunnel parts has been designed in collaboration with the Aeronautical Research and Test Institute (Czech Republic) and was based on previous made analysis of aerodynamic tunnels. Its structure was designed and realized by Konštrukta Industry (Slovak Republic). We could it characterized as atmospheric boundary layer wind tunnel with open test section. It is unique with two test sections – front and back measuring space, where the front measuring space is used for uniform flow and the back measuring space is used for turbulent flow. That is why it is not only usable in the civil engineering sector (buildings, bridges, chimneys etc.), but also in city urbanism (pedestrian wind comfort and wind safety, dispersion of air pollutants), aircraft and automotive industries.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Liu, Guang Yuan, Rui Bo Wang, Chang Rong Zhang, Feng Chen, Jiang Yu Xie et Shang Ma. « Numerical Investigation on Boundary Layer Flow Control with Vortex Generators ». Applied Mechanics and Materials 432 (septembre 2013) : 351–57. http://dx.doi.org/10.4028/www.scientific.net/amm.432.351.

Texte intégral
Résumé :
The numerical simulation method was adopted to analyze the effect on boundary layer thickness reduction of various vortex generator parameters. Results show that vortex generators are capable of reducing boundary layer thickness for about 66 percent, and the influence on centerline Mach number distributions is neglectable. Practicable vortex generators for 2.4m transonic wind tunnel half-model test section side wall are founded. Research results can be used for further applications of vortex generator in wind tunnel tests.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bastankhah, Majid, Nicholas Hamilton et Raúl Bayoán Cal. « Wind tunnel research, dynamics, and scaling for wind energy ». Journal of Renewable and Sustainable Energy 14, no 6 (novembre 2022) : 060402. http://dx.doi.org/10.1063/5.0133993.

Texte intégral
Résumé :
The interaction of wind turbines with turbulent atmospheric boundary layer (ABL) flows represents a complex multi-scale problem that spans several orders of magnitudes of spatial and temporal scales. These scales range from the interactions of large wind farms with the ABL (on the order of tens of kilometers) to the small length scale of the wind turbine blade boundary layer (order of a millimeter). Detailed studies of multi-scale wind energy aerodynamics are timely and vital to maximize the efficiency of current and future wind energy projects, be they onshore, bottom-fixed offshore, or floating offshore. Among different research modalities, wind tunnel experiments have been at the forefront of research efforts in the wind energy community over the last few decades. They provide valuable insight about the aerodynamics of wind turbines and wind farms, which are important in relation to optimized performance of these machines. The major advantage of wind tunnel research is that wind turbines can be experimentally studied under fully controlled and repeatable conditions allowing for systematic research on the wind turbine interactions that extract energy from the incoming atmospheric flow. Detailed experimental data collected in the wind tunnel are also invaluable for validating and calibrating numerical models.
Styles APA, Harvard, Vancouver, ISO, etc.
41

NAGAO, Fumiaki, et Kichiro KIMURA. « The Boundary Layer Wind Tunnel Laboratory Faculty of Engineering Science ». Wind Engineers, JAWE 1992, no 53 (1992) : 69–73. http://dx.doi.org/10.5359/jawe.1992.53_69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Azzazy, M., D. Modarress et R. M. Hall. « Optical boundary-layer transition detection in a transonic wind tunnel ». AIAA Journal 27, no 4 (avril 1989) : 405–10. http://dx.doi.org/10.2514/3.10127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

McKenna Neuman, Cheryl, et Marianne Maljaars. « Wind tunnel measurement of boundary-layer response to sediment transport ». Boundary-Layer Meteorology 84, no 1 (juillet 1997) : 67–83. http://dx.doi.org/10.1023/a:1000349116747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

De Bortoli, M. E., B. Natalini, M. J. Paluch et M. B. Natalini. « Part-depth wind tunnel simulations of the atmospheric boundary layer ». Journal of Wind Engineering and Industrial Aerodynamics 90, no 4-5 (mai 2002) : 281–91. http://dx.doi.org/10.1016/s0167-6105(01)00204-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Miyata, T., H. Yamata, K. Yokoyama, T. Kanazaki et T. Iijima. « Construction of boundary layer wind tunnel for long-span bridges ». Journal of Wind Engineering and Industrial Aerodynamics 42, no 1-3 (octobre 1992) : 885–96. http://dx.doi.org/10.1016/0167-6105(92)90095-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Schatzmann, M., J. Donat, S. Hendel et G. Krishan. « Design of a low-cost stratified boundary-layer wind tunnel ». Journal of Wind Engineering and Industrial Aerodynamics 54-55 (février 1995) : 483–91. http://dx.doi.org/10.1016/0167-6105(94)00061-h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

KAWADA, Koji, Takanori UCHIDA et Yuji OHYA. « Wind Tunnel Experiment and Numerical Simulation of Convective Boundary Layer ». Proceedings of the Thermal Engineering Conference 2003 (2003) : 45–46. http://dx.doi.org/10.1299/jsmeted.2003.45.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

SEKISHITA, Nobumasa, Hideharu MAKITA, Masayuki ICHIGO et Tadasuke FUJITA. « Simulation of Atmospheric Turbulent Boundary Layer in a Wind Tunnel. » Transactions of the Japan Society of Mechanical Engineers Series B 68, no 665 (2002) : 55–62. http://dx.doi.org/10.1299/kikaib.68.55.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hancock, Philip E., et Paul Hayden. « Wind-Tunnel Simulation of Approximately Horizontally Homogeneous Stable Atmospheric Boundary Layers ». Boundary-Layer Meteorology 180, no 1 (21 avril 2021) : 5–26. http://dx.doi.org/10.1007/s10546-021-00611-7.

Texte intégral
Résumé :
AbstractTwo cases of an overlying inversion imposed on a stable boundary layer are investigated, extending the work of Hancock and Hayden (Boundary-Layer Meteorol 168:29–57, 2018; 175:93–112, 2020). Vertical profiles of Reynolds stresses and heat flux show closely horizontally homogeneous behaviour over a streamwise fetch of more than eight boundary-layer heights. However, profiles of mean temperature and velocity show closely horizontally homogeneous behaviour only in the top two-thirds of the boundary layer. In the lower one-third the temperature decreases with fetch, directly as a consequence of heat transfer to the surface. A weaker effect is seen in the mean velocity profiles, curiously, such that the gradient Richardson number is invariant with fetch, while various other quantities are not. Stability leads to a ‘blocking’ of vertical influence. Inferred aerodynamic and thermal roughness lengths increase with fetch, while the former is constant in the neutral case, as expected. Favourable validation comparisons are made against two sets of local-scaling systems over the full depth of the boundary layer. Close concurrence is seen for all stable cases for z/L < 0.2, where z and L are the vertical height and local Obukhov length, respectively, and over most of the layer for some quantities.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Jelínek, Tomáš. « Experimental Investigation of the Boundary Layer Transition on a Laminar Airfoil Using Infrared Thermography ». EPJ Web of Conferences 180 (2018) : 02040. http://dx.doi.org/10.1051/epjconf/201818002040.

Texte intégral
Résumé :
The transition in the boundary layer is investigated using infrared thermography (IRT). The study is carried out on a laminar airfoil in the transonic intermittent in-draft wind tunnel. The transition in the boundary layer is evocated using transition-generator strips of different thicknesses at two Mach numbers: 0.4 and 0.8. The tested transition-generators thickness to boundary layer displacement thickness ratio was from 0.42 to 1.25. The Reynolds number respect to the airfoil chord is: Re = 1.0 – 1.4·106. The six cases for different transition-generators thickness ratios were compared. The behaviours of laminar and turbulent boundary layers are discussed. The use of IRT has been proven to be an appropriate tool for detecting the transition of the boundary layer in high-speed wind tunnel testing.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie