Littérature scientifique sur le sujet « Bosonic insulator »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Bosonic insulator ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Bosonic insulator"

1

He, Cheng, Xiao-Chen Sun, Xiao-Ping Liu, Ming-Hui Lu, Yulin Chen, Liang Feng et Yan-Feng Chen. « Photonic topological insulator with broken time-reversal symmetry ». Proceedings of the National Academy of Sciences 113, no 18 (18 avril 2016) : 4924–28. http://dx.doi.org/10.1073/pnas.1525502113.

Texte intégral
Résumé :
A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Diamantini, M. C., et C. A. Trugenberger. « Bosonic topological insulators at the superconductor-to-superinsulator transition ». Journal of Mathematical Physics 64, no 2 (1 février 2023) : 021101. http://dx.doi.org/10.1063/5.0135522.

Texte intégral
Résumé :
We review the topological gauge theory of the superconductor-to-superinsulator transition. The possible intermediate Bose metal phase intervening between these two states is a bosonic topological insulator. We point out that the correct treatment of a bosonic topological insulator requires a normally neglected, additional dimensionless parameter, which arises because of the non-commutativity between the infinite gap limit and phase space reduction. We show that the bosonic topological insulator is a functional first Landau level. The additional parameter drives two Berezinskii–Kosterlitz–Thouless (BKT) quantum transitions to superconducting and superinsulating phases, respectively. The two BKT correlation scales account for the emergent granularity observed around the transition. Finally, we derive the ground state wave function for a system of charges and vortices in the Bose metal phase.
Styles APA, Harvard, Vancouver, ISO, etc.
3

KOU, SU-PENG, et RONG-HUA LI. « BOSONIC GUTZWILLER PROJECTION APPROACH FOR THE BOSE–HUBBARD MODEL ». International Journal of Modern Physics B 21, no 02 (20 janvier 2007) : 249–64. http://dx.doi.org/10.1142/s0217979207036497.

Texte intégral
Résumé :
In this paper, a new Bosonic Gutzwiller projection approach is proposed to study the strongly correlated bosons in optical lattice. In this method, there exist many variational parameters which make us calculate the physical characters of states, including the double occupation rate and the higher occupation rates. Based on this approach, a quantum phase transition from superfluid state to Mott insulator state is obtained for the homogenous phase at unit filling.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Diamantini, M. C., A. Yu Mironov, S. M. Postolova, X. Liu, Z. Hao, D. M. Silevitch, Ya Kopelevich, P. Kim, C. A. Trugenberger et V. M. Vinokur. « Bosonic topological insulator intermediate state in the superconductor-insulator transition ». Physics Letters A 384, no 23 (août 2020) : 126570. http://dx.doi.org/10.1016/j.physleta.2020.126570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

He, Yan, et Chih-Chun Chien. « Topological classifications of quadratic bosonic excitations in closed and open systems with examples ». Journal of Physics : Condensed Matter 34, no 17 (28 février 2022) : 175403. http://dx.doi.org/10.1088/1361-648x/ac53da.

Texte intégral
Résumé :
Abstract The topological classifications of quadratic bosonic systems according to the symmetries of the dynamic matrices from the equations of motion of closed systems and the effective Hamiltonians from the Lindblad equations of open systems are analyzed. While the non-Hermitian dynamic matrix and effective Hamiltonian both lead to a ten-fold way table, the system-reservoir coupling may cause a system with or without coupling to a reservoir to fall into different classes. A 2D Chern insulator is shown to be insensitive to the different classifications. In contrast, we present a 1D bosonic Su–Schrieffer–Heeger model with chiral symmetry and a 2D bosonic topological insulator with time-reversal symmetry to show the corresponding open systems may fall into different classes if the Lindblad operators break the symmetry.
Styles APA, Harvard, Vancouver, ISO, etc.
6

RANNINGER, JULIUS. « SUPERFLUID TO BOSE METAL TRANSITION IN SYSTEMS WITH RESONANT PAIRING ». International Journal of Modern Physics B 22, no 25n26 (20 octobre 2008) : 4379–85. http://dx.doi.org/10.1142/s0217979208050139.

Texte intégral
Résumé :
Experiments in thin films whose thickness can be modified and by this way induce a superconductor to insulator transition, seem to suggest that in the quantum critical regime of this phase transition there might be a Bose metal, i.e., uncondensed bosonic carriers with a finite dissipation. This poses a fundamental problem as to our understanding of how such a state could be justified. On the basis of a simple Boson-Fermion model, where bosonic and fermionic degrees of freedom are strongly inter-related via a Boson-Fermion pair exchange coupling g, we illustrate how such a bosonic metal phase could possibly come about. We show that, as we approach the quantum critical point at some critical gc from the superfluid side, the superfluid phase locking is sustained only for longer and longer spatial scales. On a finite spatial scale, the boson have a quasi-free itinerant behavior with metallic features. At the quantum critical point the systems exhibits a phase separation which shows a ressemblance to that of a He 3– He 4 mixture. This could be the clue to the apparent dilemma of a Bose metal at zero temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cruz, G. J., R. Franco et J. Silva-Valencia. « Mott insulator and superfluid phases in bosonic superlattices ». Journal of Physics : Conference Series 687 (février 2016) : 012065. http://dx.doi.org/10.1088/1742-6596/687/1/012065.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

HOU, JING-MIN. « QUANTUM PHASES OF ULTRACOLD BOSONIC ATOMS IN A TWO-DIMENSIONAL OPTICAL SUPERLATTICE ». Modern Physics Letters B 23, no 01 (10 janvier 2009) : 25–33. http://dx.doi.org/10.1142/s0217984909017820.

Texte intégral
Résumé :
We study quantum phases of ultracold bosonic atoms in a two-dimensional optical superlattice. The extended Bose–Hubbard model derived from the system of ultracold bosonic atoms in an optical superlattice is solved numerically with the Gutzwiller approach. We find that the modulated superfluid (MS), Mott-insulator (MI) and density-wave (DW) phases appear in some regimes of parameters. The experimental detection of the first-order correlations and the second-order correlations of different quantum phases with time-of-flight and noise-correlation techniques is proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
9

REY, ANA M., ESTEBAN A. CALZETTA et BEI-LOK HU. « BOSE - EINSTEIN CONDENSATE SUPERFLUID - MOTT INSULATOR TRANSITION IN AN OPTICAL LATTICE ». International Journal of Modern Physics B 20, no 30n31 (20 décembre 2006) : 5214–17. http://dx.doi.org/10.1142/s0217979206036284.

Texte intégral
Résumé :
We present in this paper an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1 particle per site) targeting the critical regime of the Bose - Einstein Condensate superfluid - Mott insulator transition.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Yang, Chao, Yi Liu, Yang Wang, Liu Feng, Qianmei He, Jian Sun, Yue Tang et al. « Intermediate bosonic metallic state in the superconductor-insulator transition ». Science 366, no 6472 (14 novembre 2019) : 1505–9. http://dx.doi.org/10.1126/science.aax5798.

Texte intégral
Résumé :
Whether a metallic ground state exists in a two-dimensional system beyond Anderson localization remains an unresolved question. We studied how quantum phase coherence evolves across superconductor–metal–insulator transitions through magnetoconductance quantum oscillations in nanopatterned high-temperature superconducting films. We tuned the degree of phase coherence by varying the etching time of our films. Between the superconducting and insulating regimes, we detected a robust intervening anomalous metallic state characterized by saturating resistance and oscillation amplitude at low temperatures. Our measurements suggest that the anomalous metallic state is bosonic and that the saturation of phase coherence plays a prominent role in its formation.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Bosonic insulator"

1

Wen, Jun doctor of physics. « Interaction effects in topological insulators ». 2012. http://hdl.handle.net/2152/19453.

Texte intégral
Résumé :
In this thesis we employ various mean-field approaches to study the shortrange interaction effects in topological insulators. We start with the Kane-Mele model on the decorated honeycomb lattice and study the stability of topological insulator phase against different perturbations. We establish an adiabatic connection between a noninteracting topological insulator and a strongly interacting spin liquid in its Majorana fermion representation. We use the Hartree-Fock mean-field approach, slave-rotor approach and slave-boson approach to study correlation effects related to topological insulators. With the spontaneous symmetry breaking mechanism, we can have an interaction driven topological insulator with extended Hubbard models on the kagome lattice and decorated honeycomb lattice. For the interplay among spin-orbit coupling, distortion and correlation effect in transition metal oxides, we use the slave-rotor mean-field approach to study its phase transition. We identify regimes where a strong topological Mott insulator and a weak topological insulator reside due to the strong Coulomb interaction and distortion. This is relevant to experiments with the transition metal oxides as they hold promise to realize topological insulators. To study the doping effects and a possible spin liquid in Kane-Mele-Hubbard model on the honeycomb lattice, we employ the slave-boson mean-field approach which is appropriate for the intermediate interaction strength. We compare our results with those obtained from other methods.
text
Styles APA, Harvard, Vancouver, ISO, etc.
2

TANZI, LUCA. « One-dimensional disordered bosons from weak to strong interactions : the Bose glass ». Doctoral thesis, 2014. http://hdl.handle.net/2158/850906.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

ROSI, SARA. « Interacting Bosons in optical lattices : optimal control ground state production, entanglement characterization and 1D systems ». Doctoral thesis, 2015. http://hdl.handle.net/2158/1004929.

Texte intégral
Résumé :
The work presented in this thesis concerns the study of quantum many-body physics by making use Bose-Einstein condensates loaded in optical lattices potentials. The first part describes the development of a new experimental strategy for the production of the degenerate atomic sample, the second part concerns the optimal control ground state production and the entanglement characterization on a systems of interacting Bosons across the superfluid - Mott insulator quantum phase transition, and the third part illustrates the study of the dynamical properties of an array of 1D gases performed via Bragg spectroscopy.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kurdestany, Jamshid Moradi. « Phases, Transitions, Patterns, And Excitations In Generalized Bose-Hubbard Models ». Thesis, 2013. http://hdl.handle.net/2005/2563.

Texte intégral
Résumé :
This thesis covers most of my work in the field of ultracold atoms loaded in optical lattices. This thesis can be divided into five different parts. In Chapter 1, after a brief introduction to the field of optical lattices I review the fundamental aspects pertaining to the physics of systems in periodic potentials and a short overview of the experiments on ultracold atoms in an optical lattice. In Chapter 2 we develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this poten¬tial, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator(MI), density-wave(DW), and supersolid (SS) phases in the plane of the chemical potential and on-site repulsion ; we present phase diagrams for representative values of , the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI ,DW ,and SSphases. We explore the implications of our study for experiments on cold-atom dipolar con¬densates in optical lattices in a confining potential. In Chapter3 we present an extensive study of Mottinsulator( MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with har¬monic traps. For this we develop an inhomogeneous mean-field theory. Our results for the BH model with one type of spinless bosons agrees quantitatively with quan¬tum Monte Carlo(QMC) simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional(3D) systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also generalize our inhomogeneous mean-field theory to study BH models with har¬monic traps and(a) two species of bosons or(b) spin-1bosons. With two species of bosons we obtain rich phase diagrams with a variety of SF and MI phases and as¬sociated shells, when we include a quadratic confining potential. For the spin-1BH model we show, in a representative case, that the system can display alternating shells of polar SF and MI phases; and we make interesting predictions for experi¬ments in such systems. . In Chapter 4 we carry out an extensive study of the phase diagrams of the ex-tended Bose Hubbard model, with a mean filling of one boson per site, in one dimension by using the density matrix renormalization group and show that it contains Superfluid (SF), Mott-insulator (MI), density-wave (DW) and Haldane ¬insulator(HI) phases. We show that the critical exponents and central charge for the HI-DW,MI-HI and SF-MI transitions are consistent with those for models in the two-dimensional Ising, Gaussian, and Berezinskii-Kosterlitz-Thouless (BKT) uni¬versality classes, respectively; and we suggest that the SF-HI transition may be more exotic than a simple BKT transition. We show explicitly that different bound¬ary conditions lead to different phase diagrams.. In Chapter 5 we obtain the excitation spectra of the following three generalized of Bose-Hubbard(BH) models:(1) a two-species generalization of the spinless BH model, (2) a single-species, spin-1 BH model, and (3) the extended Bose-Hubbard model (EBH) for spinless interacting bosons of one species. In all the phases of these models we show how to obtain excitation spectra by using the random phase approximation (RPA). We compare the results of our work with earlier studies of related models and discuss implications for experiments.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Bosonic insulator"

1

Savchenko, A. K. « Metal-Insulator Transition in Dilute 2D Electron and Hole Gases ». Dans Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 219–39. Dordrecht : Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Frésard, Raymond, et Klaus Doll. « Metal to Insulator Transition in the 2-D Hubbard Model : A Slave-Boson Approach ». Dans NATO ASI Series, 385–92. Boston, MA : Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1042-4_43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

« Bose metals, a.k.a. bosonic topological insulators ». Dans Superinsulators, Bose Metals and High-Tc Superconductors, 81–102. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811250965_0010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sethna, James P. « Quantum statistical mechanics ». Dans Statistical Mechanics : Entropy, Order Parameters, and Complexity, 179–216. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198865247.003.0007.

Texte intégral
Résumé :
Quantum statistical mechanics governs metals, semiconductors, and neutron stars. Statistical mechanics spawned Planck’s invention of the quantum, and explains Bose condensation, superfluids, and superconductors. This chapter briefly describes these systems using mixed states, or more formally density matrices, and introducing the properties of bosons and fermions. We discuss in unusual detail how useful descriptions of metals and superfluids can be derived by ignoring the seemingly important interactions between their constituent electrons and atoms. Exercises explore how gregarious bosons lead to superfluids and lasers, how unsociable fermions explain transitions between white dwarfs, neutron stars, and black holes, how one calculates materials properties in semiconductors, insulators, and metals, and how statistical mechanics can explain the collapse of the quantum wavefunction during measurement.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sutton, Adrian P. « Quantum behaviour ». Dans Concepts of Materials Science, 65–80. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846839.003.0006.

Texte intégral
Résumé :
The identity and size of atoms is explicable only in quantum physics. The double slit experiment illustrates the wave-particle duality of light and of matter. To describe quantum interference the concept of a complex probability is introduced, the squared amplitude of which is the probability of a particle being at a particular location. The uncertainty relation requires atomic motion in solids even at absolute zero. The symmetry of exchanging indistinguishable particles leads to the classification of particles as fermions or bosons. The exclusion principle applies to electrons and rationalises the Periodic Table and much more. Electrons in solids exist in bands of energy. Band theory explains why some materials are electrical conductors, others are insulators or semiconductors. Chemical bonding involves quantum tunnelling of electrons. Hydrogen may diffuse in solids by quantum tunnelling. The temperature dependence of the specific heat of a solid is explicable only in quantum physics.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Bosonic insulator"

1

Van Mechelen, Todd, et Zubin Jacob. « Dirac-Maxwell correspondence : Spin-1 bosonic topological insulator ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.ftu3e.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fisher, Matthew P. A. « Boson localization and the superfluid-insulator transition ». Dans Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Guarrera, V., L. Fallani, J. E. Lye, C. Fort et M. Inguscio. « Insulating phases of ultracold bosons in a disordered optical lattice : from a Mott Insulator to a Bose Glass ». Dans ATOMIC PHYSICS 20 : XX International Conference on Atomic Physics - ICAP 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400653.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie