Littérature scientifique sur le sujet « Boolean valued models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Boolean valued models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Boolean valued models"
Wu, Xinhe. « Boolean-Valued Models and Their Applications ». Bulletin of Symbolic Logic 28, no 4 (décembre 2022) : 533. http://dx.doi.org/10.1017/bsl.2022.34.
Texte intégralDahn, Bernd I. « Boolean valued models and incomplete specifications ». Journal of Logic Programming 12, no 3 (février 1992) : 225–36. http://dx.doi.org/10.1016/0743-1066(92)90025-x.
Texte intégralOZAWA, MASANAO. « ORTHOMODULAR-VALUED MODELS FOR QUANTUM SET THEORY ». Review of Symbolic Logic 10, no 4 (5 juin 2017) : 782–807. http://dx.doi.org/10.1017/s1755020317000120.
Texte intégralHansen, Lars. « On an algebra of lattice-valued logic ». Journal of Symbolic Logic 70, no 1 (mars 2005) : 282–318. http://dx.doi.org/10.2178/jsl/1107298521.
Texte intégralHernandez, E. G. « Boolean-Valued Models of Set Theory with Automorphisms ». Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32, no 7-9 (1986) : 117–30. http://dx.doi.org/10.1002/malq.19860320704.
Texte intégralDobrić, Vladimir, Pavle Milošević, Aleksandar Rakićević, Bratislav Petrović et Ana Poledica. « Interpolative Boolean Networks ». Complexity 2017 (2017) : 1–15. http://dx.doi.org/10.1155/2017/2647164.
Texte intégralButz, C., et I. Moerdijk. « An elementary definability theorem for first order logic ». Journal of Symbolic Logic 64, no 3 (septembre 1999) : 1028–36. http://dx.doi.org/10.2307/2586617.
Texte intégralMolchanov, I. S. « Set-Valued Estimators for Mean Bodies Related to Boolean Models ». Statistics 28, no 1 (janvier 1996) : 43–56. http://dx.doi.org/10.1080/02331889708802547.
Texte intégralTrinh, Van-Giang, Belaid Benhamou, Thomas Henzinger et Samuel Pastva. « Trap spaces of multi-valued networks : definition, computation, and applications ». Bioinformatics 39, Supplement_1 (1 juin 2023) : i513—i522. http://dx.doi.org/10.1093/bioinformatics/btad262.
Texte intégralPantle, Ursa, Volker Schmidt et Evgueni Spodarev. « Central limit theorems for functionals of stationary germ-grain models ». Advances in Applied Probability 38, no 1 (mars 2006) : 76–94. http://dx.doi.org/10.1239/aap/1143936141.
Texte intégralThèses sur le sujet "Boolean valued models"
Santiago, Suárez Juan Manuel. « Infinitary logics and forcing ». Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP7024.
Texte intégralThe main results of this thesis are related to forcing, but our presentation benefits from relating them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the basic framework of first-order model theory had been established, Carol Karp, followed by Makkai, Keisler and Mansfield among others, developed the area of logic known as "infinitary logics". One key idea from our work, which was more or less implicit in the research of many, is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order logic. Specifically, much alike compactness is the key tool to produce models of first-order theories, forcing can be the key tool to produce the interesting models of infinitary theories. The first part of this thesis explores the relationship between infinitary logics and Boolean valued models. Leveraging on the translation of forcing in the Boolean valued models terminology, this part lays the foundations connecting infinitary logics to forcing. A consistency property is a family of sets of non-contradictory sentences closed under certain natural logical operations. Consistency properties are the standard tools to produce models of non-contradictory infinitary sentences. The first major result we establish in the thesis is the Boolean Model Existence Theorem, asserting that any sentence which belongs to some set which is in some consistency property has a Boolean valued model with the mixing property, and strengthens Mansfield's original result. The Boolean Model Existence Theorem allows us to prove three additional results in the model theory of Boolean valued models for the semantics induced by Boolean valued models with the mixing property: a completeness theorem, an interpolation theorem, and an omitting types theorem. These can be shown to be generalizations of the corresponding results for first order logic in view of the fact that a first order sentence has a Tarski model if and only if it has a Boolean valued model. However we believe that the central result of this part of the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order compactness for infinitary logics, we introduce the concepts of conservative strengthening and of finite conservativity. We argue that the appropriate generalization of finite consistency (relative to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given by Boolean valued models). The Conservative Compactness Theorem states that any finitely conservative family of sentences admits a Boolean valued model with the mixing property. In our opinion these results support the claim: Boolean-valued models with the mixing property provide a natural semantics for infinitary logics. In the second part of the thesis we leverage on the results of the first part to address the following question: For what family of infinitary formulae can we force the existence of a Tarski model for them without destroying stationary sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking result of Asperò and Schindler. We define the ASK property -a variant of AS-goodness- which we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula with the ASK-property, one can force the existence of a Tarski model in a stationary set preserving way. The proof of this result builds on the model theoretic perspective of forcing presented in the first part of the thesis, and does so introducing a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined with the Conservative Compactness Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics) and (compactness, first-order logic)
Livres sur le sujet "Boolean valued models"
L, Bell J. Set theory : Boolean-valued models and independence proofs. 3e éd. Oxford [Oxfordshire] : Clarendon Press, 2011.
Trouver le texte intégralBell, J. L. Boolean-valued models and independence proofs in set theory. 2e éd. Oxford : Clarendon, 1985.
Trouver le texte intégralMakkai, Mihály. Models, logics, and higher-dimensional categories : A tribute to the work of Mihaly Makkai. Providence, R.I : American Mathematical Society, 2011.
Trouver le texte intégralButton, Tim, et Sean Walsh. Boolean-valued structures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0013.
Texte intégralBell, John L. Set Theory : Boolean-Valued Models and Independence Proofs. Oxford University Press, 2005.
Trouver le texte intégralBell, John L. Set Theory : Boolean-Valued Models and Independence Proofs. Ebsco Publishing, 2005.
Trouver le texte intégralBoolean-valued models and independence proofs in set theory. 2e éd. Oxford [Oxfordshire] : Oxford University Press, 1985.
Trouver le texte intégralSimplified Independence Proofs : Boolean Valued Models of Set Theory. Elsevier Science & Technology Books, 2011.
Trouver le texte intégralBell, John L. Set Theory : Boolean-Valued Models and Independence Proofs (Oxford Logic Guides). Oxford University Press, USA, 2005.
Trouver le texte intégralGeometric Set Theory. American Mathematical Society, 2020.
Trouver le texte intégralChapitres de livres sur le sujet "Boolean valued models"
Viale, Matteo. « Boolean Valued Models ». Dans UNITEXT, 81–105. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71660-7_6.
Texte intégralDahn, Bernd I. « Boolean valued models and incomplete specifications ». Dans Algebraic and Logic Programming, 119–26. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-50667-5_63.
Texte intégralPierobon, Moreno, et Matteo Viale. « Boolean Valued Models, Sheafifications, and Boolean Ultrapowers of Tychonoff Spaces ». Dans Chapman Mathematical Notes, 355–90. Cham : Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-68934-5_14.
Texte intégralda Costa, N. C. A., et F. A. Doria. « Structures, Suppes Predicates, and Boolean-Valued Models in Physics ». Dans Philosophical Logic and Logical Philosophy, 91–118. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8678-8_7.
Texte intégralEckert, Daniel, et Frederik Herzberg. « The Problem of Judgment Aggregation in the Framework of Boolean-Valued Models ». Dans Lecture Notes in Computer Science, 138–47. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09764-0_9.
Texte intégralYang, Jiong, et Kuldeep S. Meel. « Rounding Meets Approximate Model Counting ». Dans Computer Aided Verification, 132–62. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37703-7_7.
Texte intégralTan, Jianping, Kunpeng Han, Yao Liu, Xiaoxuan Huang et Erte Lin. « Optimization of Damping Groove Parameters of Swashplate Plunger Pump Based on CATIA Secondary Development ». Dans Lecture Notes in Mechanical Engineering, 925–39. Singapore : Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7887-4_81.
Texte intégralDamonte, Alessia. « Testing Joint Sufficiency Twice : Explanatory Qualitative Comparative Analysis ». Dans Texts in Quantitative Political Analysis, 153–86. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12982-7_7.
Texte intégral« Forcing and Boolean-valued models ». Dans Multiple Forcing, 2–6. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511721168.002.
Texte intégralDahn, Bernd I. « BOOLEAN VALUED MODELS AND INCOMPLETE SPECIFICATIONS ». Dans Algebraic and Logic Programming, 119–26. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112620267-012.
Texte intégralActes de conférences sur le sujet "Boolean valued models"
Figallo-Orellano, Aldo, et Juan Sebastián Slagter. « Models for da Costa’s paraconsistent set theory ». Dans Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wbl.2020.11456.
Texte intégralShcherba, E. V. « Boolean-valued models of telecommunication systems in some problems of network security ». Dans 2015 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2015. http://dx.doi.org/10.1109/sibcon.2015.7147292.
Texte intégralLiu, Han, Xiangnan He, Fuli Feng, Liqiang Nie, Rui Liu et Hanwang Zhang. « Discrete Factorization Machines for Fast Feature-based Recommendation ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/479.
Texte intégralKolb, Samuel, Martin Mladenov, Scott Sanner, Vaishak Belle et Kristian Kersting. « Efficient Symbolic Integration for Probabilistic Inference ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/698.
Texte intégralBouskela, Daniel, Lena Buffoni, Audrey Jardin, Vince Molnair, Adrian Pop et Armin Zavada. « The Common Requirement Modeling Language ». Dans 15th International Modelica Conference 2023, Aachen, October 9-11. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp204497.
Texte intégralde Colnet, Alexis, et Stefan Mengel. « A Compilation of Succinctness Results for Arithmetic Circuits ». Dans 18th International Conference on Principles of Knowledge Representation and Reasoning {KR-2021}. California : International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/kr.2021/20.
Texte intégralShcherba, E. V., et M. V. Shcherba. « Finding the Optimal Paths in a Boolean-Valued Network ». Dans 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2019. http://dx.doi.org/10.1109/fareastcon.2019.8934413.
Texte intégralHarder, Hans, Simon Jantsch, Christel Baier et Clemens Dubslaff. « A Unifying Formal Approach to Importance Values in Boolean Functions ». Dans Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California : International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/304.
Texte intégralYakhyaeva, Gulnara. « Application of Boolean Valued and Fuzzy Model Theory for Knowledge Base Development ». Dans 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2019. http://dx.doi.org/10.1109/sibircon48586.2019.8958245.
Texte intégralPerhac, Jan, et Zuzana Bilanova. « Categorical Model of Functional Language with Natural Numbers and Boolean Values ». Dans 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). IEEE, 2020. http://dx.doi.org/10.1109/csit49958.2020.9322039.
Texte intégral