Littérature scientifique sur le sujet « Blood lipoproteins Oxidation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Blood lipoproteins Oxidation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Blood lipoproteins Oxidation"
Hlozhyk, I. Z. « Biochemical Markers of Free Radical Oxidation and Lipid Exchange in Rats with Obesity, Iodine Defficiency and Obesity in Combination with Iodine Defficiency ». Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 6, no 4 (20 septembre 2021) : 166–71. http://dx.doi.org/10.26693/jmbs06.04.166.
Texte intégralValiyaveettil, Manojkumar, Niladri Kar, Mohammad Z. Ashraf, Tatiana V. Byzova, Maria Febbraio et Eugene A. Podrez. « Oxidized high-density lipoprotein inhibits platelet activation and aggregation via scavenger receptor BI ». Blood 111, no 4 (15 février 2008) : 1962–71. http://dx.doi.org/10.1182/blood-2007-08-107813.
Texte intégralRüfer, Corinna E., Sabine E. Kulling, Jutta Möseneder, Peter Winterhalter et Achim Bub. « Role of plasma lipoproteins in the transport of the soyabean isoflavones daidzein and daidzein-7-O-β-d-glucoside ». British Journal of Nutrition 102, no 6 (31 mars 2009) : 793–96. http://dx.doi.org/10.1017/s0007114509297224.
Texte intégralLankin, Vadim Z., Alla K. Tikhaze et Valeria Ya Kosach. « Comparative Susceptibility to Oxidation of Different Classes of Blood Plasma Lipoproteins ». Biochemistry (Moscow) 87, no 11 (novembre 2022) : 1335–41. http://dx.doi.org/10.1134/s0006297922110128.
Texte intégralGorshunskaya., M. Yu. « Paraoxonase activity and lipid peroxidation in female patients with type 2 diabetes mellitus and without coronary heart disease ». Problems of Endocrinology 49, no 1 (15 février 2003) : 17–20. http://dx.doi.org/10.14341/probl11394.
Texte intégralPethő, Dávid, Tamás Gáll, Zoltán Hendrik, Annamária Nagy, Lívia Beke, Attila Péter Gergely, Gábor Méhes et al. « Ferryl Hemoglobin and Heme Induce Α1-Microglobulin in Hemorrhaged Atherosclerotic Lesions with Inhibitory Function against Hemoglobin and Lipid Oxidation ». International Journal of Molecular Sciences 22, no 13 (22 juin 2021) : 6668. http://dx.doi.org/10.3390/ijms22136668.
Texte intégralShrestha, Rojeet, Zhen Chen, Yusuke Miura, Yusuke Yamamoto, Toshihiro Sakurai, Hitoshi Chiba et Shu-Ping Hui. « Identification of molecular species of phosphatidylcholine hydroperoxides in native and copper-oxidized triglyceride-rich lipoproteins in humans ». Annals of Clinical Biochemistry : International Journal of Laboratory Medicine 57, no 1 (8 octobre 2019) : 95–98. http://dx.doi.org/10.1177/0004563219880932.
Texte intégralFrei, B., T. M. Forte, B. N. Ames et C. E. Cross. « Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid ». Biochemical Journal 277, no 1 (1 juillet 1991) : 133–38. http://dx.doi.org/10.1042/bj2770133.
Texte intégralHenein, Michael Y., Sergio Vancheri, Giovanni Longo et Federico Vancheri. « The Role of Inflammation in Cardiovascular Disease ». International Journal of Molecular Sciences 23, no 21 (26 octobre 2022) : 12906. http://dx.doi.org/10.3390/ijms232112906.
Texte intégralGiglio, Rosaria Vincenza, Angelo Maria Patti, Arrigo F. G. Cicero, Giuseppe Lippi, Manfredi Rizzo, Peter P. Toth et Maciej Banach. « Polyphenols : Potential Use in the Prevention and Treatment of Cardiovascular Diseases ». Current Pharmaceutical Design 24, no 2 (5 avril 2018) : 239–58. http://dx.doi.org/10.2174/1381612824666180130112652.
Texte intégralThèses sur le sujet "Blood lipoproteins Oxidation"
Owen, Alice. « The effects of estrogens and phytoestrogens on the metabolism and oxidation of plasma lipoproteins / ». Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09pho968.pdf.
Texte intégralHuang, Min, et 黃民. « Modulation of low density lipoprotein oxidation and its effects on vascular function ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B3123706X.
Texte intégralHuang, Min. « Modulation of low density lipoprotein oxidation and its effects on vascular function / ». Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19905038.
Texte intégralOwen, Alice 1972. « The effects of estrogens and phytoestrogens on the metabolism and oxidation of plasma lipoproteins ». 1999. http://web4.library.adelaide.edu.au/theses/09PH/09pho968.pdf.
Texte intégralOwen, Alice 1972. « The effects of estrogens and phytoestrogens on the metabolism and oxidation of plasma lipoproteins / Alice Jane Owen ». Thesis, 1999. http://hdl.handle.net/2440/19821.
Texte intégralviii, 217 leaves : ill. ; 30 cm.
Examines the effects of estrogens and phytoestrogens on plasma lipoprotein levels and other risk factors for cardiovascular disease, including the oxidisability of low density lipoprotein
Thesis (Ph.D.)--University of Adelaide, Dept. of Physiology, 1999
« Effect of oxidized LDL and oxidized cholesterol on cardiovascular system ». 2005. http://library.cuhk.edu.hk/record=b5892329.
Texte intégralThesis (M.Phil.)--Chinese University of Hong Kong, 2005.
Includes bibliographical references (leaves 147-160).
Abstracts in English and Chinese.
ACKNOWLEDGMENTS --- p.I
ABSTRACT --- p.II
LIST OF ABBREVIATIONS --- p.VII
TABLE OF CONTENTS --- p.IX
Chapter CHAPTER 1 --- GENERAL INTRODUCTION
Chapter 1.1 --- Introduction of Low-density lipoprotein --- p.1
Chapter 1.1.1 --- What are lipids? --- p.1
Chapter 1.1.2 --- Function and structure of cholesterol --- p.1
Chapter 1.1.3 --- Function and classification of lipoprotein --- p.1
Chapter 1.2 --- Functions of low-density lipoprotein --- p.2
Chapter 1.3 --- Basic structure of low-density lipoprotein --- p.4
Chapter 1.4 --- Principle on isolation and purification of low-density lipoprotein --- p.4
Chapter 1.5 --- Cholesterol transport system --- p.7
Chapter 1.5.1 --- Exogenous pathway of cholesterol metabolism --- p.7
Chapter 1.5.2 --- Endogenous pathway of cholesterol metabolism --- p.7
Chapter 1.5.3 --- Reverse transport of Cholesterol --- p.8
Chapter 1.6 --- Oxidation of LDL --- p.10
Chapter 1.6.1 --- Agents that causes oxidation --- p.10
Chapter 1.6.1.1 --- Lipoxygenases --- p.10
Chapter 1.6.1.2 --- Myeloperoxidase --- p.10
Chapter 1.6.1.3 --- Reactive nitrogen species --- p.11
Chapter 1.6.1.4 --- Reactive oxygen species --- p.11
Chapter 1.6.2 --- Factors that affect the susceptibility of LDL oxidation --- p.13
Chapter 1.7 --- Hyperlipidaemia 一 chance to increase LDL oxidation --- p.13
Chapter 1.7.1 --- Definition of hyperlipidemia and hypercholesterolemia --- p.13
Chapter 1.7.2 --- Risk factors of hyperlipidaemia --- p.13
Chapter 1.7.2.1 --- High fat low fibre diets: --- p.13
Chapter 1.7.2.2 --- Obesity --- p.14
Chapter 1.7.2.3 --- Type II diabetes --- p.14
Chapter 1.7.2.4 --- Genetic factors (Familial hyperlipidemias) --- p.14
Chapter 1.8 --- Diseases related to oxidized LDL --- p.15
Chapter 1.8.1 --- Cardiovascular diseases --- p.15
Chapter 1.8.1.1 --- Atherosclerosis and ischemic heart attack --- p.15
Chapter 1.8.1.2 --- Factors that affect incidence of atherosclerosis --- p.16
Chapter 1.8.1.2.1 --- Triglyceride-rich lipoprotein --- p.16
Chapter 1.8.1.2.2 --- Small and dense LDL --- p.16
Chapter 1.8.1.3 --- Stroke --- p.17
Chapter 1.8.2 --- Common ways to reduce plasma cholesterol level --- p.17
Chapter 1.8.2.1 --- Diet control --- p.17
Chapter 1.8.2.2 --- Physical activity --- p.17
Chapter 1.8.2.3 --- Drug therapy --- p.18
Chapter CHAPTER 2 --- IMPAIRMENT OF OXIDIZED LDL ON ENDOTHELIUM-DEPENDENT RELAXATION
Chapter 2.1 --- Introduction --- p.19
Chapter 2.1.1 --- Properties and function of phenylephrine hydrochloride --- p.22
Chapter 2.1.2 --- Properties and function of acetylcholine --- p.22
Chapter 2.2 --- Objectives --- p.23
Chapter 2.3 --- Materials and methods --- p.24
Chapter 2.3.1 --- Preparation of drugs --- p.24
Chapter 2.3.2 --- Preparation of human native LDL --- p.25
Chapter 2.3.3 --- Preparation of oxidized LDL --- p.27
Chapter 2.3.4 --- Preparation of aorta --- p.27
Chapter 2.3.5 --- Measurement of Isometric Force in vitro --- p.30
Chapter 2.3.5.1 --- Protocol 1- Dose effect of oxidized LDL on acetylcholine-induced vasorelaxation --- p.30
Chapter 2.3.5.2 --- Protocol 2 - Time effect of oxidized LDL on acetylcholine-induced vasorelaxation --- p.30
Chapter 2.3.5.3 --- Protocol 3 - Effect of co-incubation of LDL and copper(ll) sulphate on acetylcholine-induced vasorelaxation --- p.31
Chapter 2.3.5.4 --- Protocol 4 - Effect of oxidized LDL on selected vasodilators --- p.32
Chapter 2.3.5.5 --- Protocol 5 - Effect of pretreatment of L-arginine on oxidized LDL impaired -endothelium-induced relaxation --- p.32
Chapter 2.3.5.6 --- Protocol 6 - Effect of a -tocopherol on oxidized LDL-damaged acetylcholine- induced vasorelaxation --- p.33
Chapter 2.3.5.7 --- Protocol 7 - Effect of a -tocopherol on LDL and copper(ll) sulphate- induced endothelial dysfunction --- p.33
Chapter 2.3.6 --- Western blot analysis of endothelial nitric oxide synthase (eNOS) protein --- p.34
Chapter 2.3.7 --- Statistics --- p.35
Chapter 2.4 --- Results --- p.36
Chapter 2.4.1 --- Dose effect of oxidized LDL on acetylcholine-induced vasorelaxation --- p.36
Chapter 2.4.2 --- Time effect of oxidized LDL on acetylcholine-induced vasorelaxation --- p.36
Chapter 2.4.3 --- Effect of co-incubation of LDL and copper(II) sulphate on acetylcholine- induced vasorelaxation --- p.39
Chapter 2.4.4 --- Effect of oxidized LDL on selected vasodilators --- p.41
Chapter 2.4.5 --- Effect of pretreatment of L-arginine on oxidized LDL impaired- acetylcholine-induced relaxation --- p.41
Chapter 2.4.6 --- Effect of a-tocopherol on oxidized LDL-damaged acetylcholine- induced vasorelaxation --- p.48
Chapter 2.4.7 --- Effect of a-tocopherol on LDL and copper(II) sulphate-induced endothelial dysfunction --- p.50
Chapter 2.4.8 --- eNOS Protein expression --- p.50
Chapter 2.5 --- Discussion --- p.53
Chapter CHAPTER 3 --- EFFECTS OF LDL INJECTION ON THE ENDOTHELIAL FUNCTION OF RATS
Chapter 3.1 --- Introduction --- p.58
Chapter 3.2 --- Objective --- p.60
Chapter 3.3 --- Methods and Materials --- p.61
Chapter 3.3.1 --- Preparation of Drugs --- p.61
Chapter 3.3.2 --- Preparation of LDL --- p.61
Chapter 3.3.3 --- Animal Treatment --- p.61
Chapter 3.3.4 --- Serum lipid and lipoprotein determinations --- p.62
Chapter 3.3.5 --- Measurement of serum MDA level by TBARS assay --- p.62
Chapter 3.3.6 --- Preparation of aorta --- p.62
Chapter 3.3.7 --- Organ bath experiment --- p.63
Chapter 3.3.8 --- Statistics --- p.64
Chapter 3.4 --- Result --- p.65
Chapter 3.4.1 --- Growth and food intake --- p.65
Chapter 3.4.2 --- "Effect of LDL injection on serum TC, TG and HDL-C" --- p.65
Chapter 3.4.3 --- Effect of LDL injection on non-HDL-C and ratio of non-HDL-C to HDL-C --- p.65
Chapter 3.4.4 --- Serum MDA level --- p.68
Chapter 3.4.5 --- Phenylephrine-induced contraction --- p.70
Chapter 3.4.6 --- Endothelium-dependent and -independent relaxation --- p.75
Chapter 3.5 --- Discussion --- p.79
Chapter CHAPTER 4 --- EFFECTS OF INDIVIDUAL COMPONENT OF OXIDIZED LDL ON ENDOTHELIUM-DEPENDENT RELAXATION
Chapter 4.1 --- Introduction --- p.83
Chapter 4.2 --- Objectives --- p.85
Chapter 4.3 --- Materials and methods --- p.86
Chapter 4.3.1 --- Preparation of drugs --- p.86
Chapter 4.3.2 --- Preparation of human native LDL and oxidized LDL --- p.86
Chapter 4.3.3 --- GC analysis of fatty acid composition in LDL --- p.86
Chapter 4.3.4 --- TBARS assay analysis of MDA content in LDL --- p.87
Chapter 4.3.5 --- GC analysis of cholesterol oxidation products in LDL --- p.89
Chapter 4.3.6 --- Thin-layer chromatography analysis of LPC in LDL --- p.91
Chapter 4.3.7 --- Preparation of aorta --- p.92
Chapter 4.3.8 --- Measurement of Isometric Force in vitro --- p.92
Chapter 4.3.8.1 --- Protocol 1- effect of LPC on acetylcholine-induced vasorelaxation --- p.92
Chapter 4.3.8.2 --- Protocol 2- effect of cholesterol oxidation products on acetylcholine-induced vasorelaxation --- p.92
Chapter 4.3.8.3 --- Protocol 3- effect of oxidized fatty acids on acetylcholine-induced vasorelaxation --- p.93
Chapter 4.3.9 --- Statistics --- p.93
Chapter 4.4 --- Results --- p.94
Chapter 4.4.1 --- Compositional differences between native LDL and oxidized LDL.… --- p.94
Chapter 4.4.2 --- Effect of LPC on endothelium-dependent relaxation --- p.98
Chapter 4.4.3 --- Effect of COPs on endothelium-dependent relaxation --- p.98
Chapter 4.4.4 --- Effect of oxidized fatty acids on endothelium-dependent relaxation --- p.101
Chapter 4.5 --- Discussion --- p.103
Chapter CHAPTER 5 --- EFFECTS OF DIETARY OXIDIZED CHOLESTEROL ON BLOOD CHOLESTEROL LEVEL IN HAMSTERS
Chapter 5.1 --- Introduction --- p.107
Chapter 5.2 --- Objectives --- p.111
Chapter 5.3 --- Materials and Methods --- p.112
Chapter 5.3.1 --- Preparation of Oxidized Cholesterol --- p.112
Chapter 5.3.2 --- Diet preparation --- p.112
Chapter 5.3.3 --- Animals --- p.113
Chapter 5.3.4 --- Serum lipid and lipoprotein determinations --- p.116
Chapter 5.3.5 --- GC analysis of cholesterol and cholesterol oxidation products on organs --- p.116
Chapter 5.3.6 --- Extraction of neutral and acidic sterols from fecal samples --- p.117
Chapter 5.3.6.1 --- Determination of neutral sterols --- p.117
Chapter 5.3.6.2 --- Determination of acidic sterols --- p.117
Chapter 5.3.6.3 --- GLC analysis of neutral and acidic sterols --- p.118
Chapter 5.3.7 --- Organ bath experiment --- p.121
Chapter 5.3.7.1 --- Preparation of aorta --- p.121
Chapter 5.3.7.2 --- Aortic relaxation --- p.121
Chapter 5.3.8 --- Analysis of the total area of atherosclerotic plaque on aorta --- p.122
Chapter 5.3.9 --- Statistics --- p.122
Chapter 5.4 --- Results --- p.123
Chapter 5.4.1 --- GC of oxidized cholesterol --- p.123
Chapter 5.4.2 --- Growth and food intake --- p.123
Chapter 5.4.3 --- "Effect of non-oxidized and oxidized cholesterol on serum TC, TG and HDL-C" --- p.123
Chapter 5.4.4 --- Effect of non-oxidized and oxidized cholesterol on non-HDL-C and ratio of non-HDL-C to HDL-C --- p.124
Chapter 5.4.5 --- Effect ofnon-oxidized and oxidized cholesterol on concentration of hepatic cholesterol --- p.128
Chapter 5.4.6 --- Effect of non-oxidized and oxidized cholesterol on concentration of cholesterol oxidation products accumulated in liver --- p.128
Chapter 5.4.7 --- Effect of non-oxidized and oxidized cholesterol on concentration of brain and aortic cholesterol --- p.128
Chapter 5.4.8 --- Effect of non-oxidized and oxidized cholesterol on fecal neutral and acidic sterols --- p.129
Chapter 5.4.9 --- Effect of non-oxidized and oxidized cholesterol on aortic relaxation --- p.135
Chapter 5.4.10 --- Effect of non-oxidzied and oxidized cholesterol on area of atherosclerotic plaque --- p.137
Chapter 5.5 --- Discussion --- p.139
Chapter CHAPTER 6 --- CONCLUSION --- p.143
REFERENCES --- p.146
Livres sur le sujet "Blood lipoproteins Oxidation"
F, Keaney John, dir. Oxidative stress and vascular disease. Boston : Kluwer Academic Publishers, 1999.
Trouver le texte intégralKeaneyjr, John F. Oxidative Stress and Vascular Disease. Springer, 2012.
Trouver le texte intégralJr, John F. Keaney. Oxidative Stress and Vascular Disease (Developments in Cardiovascular Medicine). Springer, 2000.
Trouver le texte intégralChapitres de livres sur le sujet "Blood lipoproteins Oxidation"
Vladimirov, Yu A. « EFFECT OF LIPID PEROXIDATION ON BIOMEMBRANES AND BLOOD LIPOPROTEINS ». Dans Oxidative Damage & ; Repair, 784–90. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-08-041749-3.50141-8.
Texte intégralBrook, Robert D., David Newby et Sanjay Rajagopalan. « Pathophysiology of air pollution-mediated cardiovascular events ». Dans ESC CardioMed, sous la direction de Thomas Münzel, 3103–5. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0750.
Texte intégralBecker, Richard C., et Frederick A. Spencer. « Aspirin ». Dans Fibrinolytic and Antithrombotic Therapy. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195155648.003.0012.
Texte intégral