Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Bloch-Kato conjecture.

Articles de revues sur le sujet « Bloch-Kato conjecture »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 46 meilleurs articles de revues pour votre recherche sur le sujet « Bloch-Kato conjecture ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Huber, Annette, et Guido Kings. « A cohomological Tamagawa number formula ». Nagoya Mathematical Journal 202 (juin 2011) : 45–75. http://dx.doi.org/10.1215/00277630-1260441.

Texte intégral
Résumé :
AbstractFor smooth linear group schemes over ℤ, we give a cohomological interpretation of the local Tamagawa measures as cohomological periods. This is in the spirit of the Tamagawa measures for motives defined by Bloch and Kato. We show that in the case of tori, the cohomological and the motivic Tamagawa measures coincide, which proves again the Bloch-Kato conjecture for motives associated to tori.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Huber, Annette, et Guido Kings. « A cohomological Tamagawa number formula ». Nagoya Mathematical Journal 202 (juin 2011) : 45–75. http://dx.doi.org/10.1017/s0027763000010242.

Texte intégral
Résumé :
AbstractFor smooth linear group schemes over ℤ, we give a cohomological interpretation of the local Tamagawa measures as cohomological periods. This is in the spirit of the Tamagawa measures for motives defined by Bloch and Kato. We show that in the case of tori, the cohomological and the motivic Tamagawa measures coincide, which proves again the Bloch-Kato conjecture for motives associated to tori.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Swinnerton-Dyer, Sir Peter. « Diagonal hypersurfaces and the Bloch-Kato conjecture, I ». Journal of the London Mathematical Society 90, no 3 (20 octobre 2014) : 845–60. http://dx.doi.org/10.1112/jlms/jdu055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Guo, Li. « On the Bloch–Kato Conjecture for HeckeL-Functions ». Journal of Number Theory 57, no 2 (avril 1996) : 340–65. http://dx.doi.org/10.1006/jnth.1996.0053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Asok, Aravind. « Rationality problems and conjectures of Milnor and Bloch–Kato ». Compositio Mathematica 149, no 8 (3 juin 2013) : 1312–26. http://dx.doi.org/10.1112/s0010437x13007021.

Texte intégral
Résumé :
AbstractWe show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tamiozzo, Matteo. « On the Bloch–Kato conjecture for Hilbert modular forms ». Mathematische Zeitschrift 299, no 1-2 (30 janvier 2021) : 427–58. http://dx.doi.org/10.1007/s00209-020-02689-0.

Texte intégral
Résumé :
AbstractThe aim of this paper is to prove inequalities towards instances of the Bloch–Kato conjecture for Hilbert modular forms of parallel weight two, when the order of vanishing of the L-function at the central point is zero or one. We achieve this implementing an inductive Euler system argument which relies on explicit reciprocity laws for cohomology classes constructed using congruences of automorphic forms and special points on several Shimura curves.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Voevodsky, Vladimir. « Motives over simplicial schemes ». Journal of K-Theory 5, no 1 (février 2010) : 1–38. http://dx.doi.org/10.1017/is010001030jkt107.

Texte intégral
Résumé :
AbstractThis paper was written as a part of [8] and is intended primarily to provide the definitions and results concerning motives over simplicial schemes, which are used in the proof of the Bloch-Kato conjecture.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kings, Guido, et Annette Huber. « Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet characters ». Duke Mathematical Journal 119, no 3 (septembre 2003) : 393–464. http://dx.doi.org/10.1215/s0012-7094-03-11931-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

DUMMIGAN, NEIL. « RATIONAL TORSION ON OPTIMAL CURVES ». International Journal of Number Theory 01, no 04 (décembre 2005) : 513–31. http://dx.doi.org/10.1142/s1793042105000340.

Texte intégral
Résumé :
Vatsal has proved recently a result which has consequences for the existence of rational points of odd prime order ℓ on optimal elliptic curves over ℚ. When the conductor N is squarefree, ℓ ∤ N and the local root number wp= -1 for at least one prime p | N, we offer a somewhat different proof, starting from an explicit cuspidal divisor on X0(N). We also prove some results linking the vanishing of L(E,1) with the divisibility by ℓ of the modular parametrization degree, fitting well with the Bloch–Kato conjecture for L( Sym2E,2), and with an earlier construction of elements in Shafarevich–Tate groups. Finally (following Faltings and Jordan) we prove an analogue of the result on ℓ-torsion for cuspidal Hecke eigenforms of level one (and higher weight), thereby strengthening some existing evidence for another case of the Bloch–Kato conjecture.
Styles APA, Harvard, Vancouver, ISO, etc.
10

DUMMIGAN, NEIL. « SYMMETRIC SQUARE L-FUNCTIONS AND SHAFAREVICH–TATE GROUPS, II ». International Journal of Number Theory 05, no 07 (novembre 2009) : 1321–45. http://dx.doi.org/10.1142/s1793042109002699.

Texte intégral
Résumé :
We re-examine some critical values of symmetric square L-functions for cusp forms of level one. We construct some more of the elements of large prime order in Shafarevich–Tate groups, demanded by the Bloch–Kato conjecture. For this, we use the Galois interpretation of Kurokawa-style congruences between vector-valued Siegel modular forms of genus two (cusp forms and Klingen–Eisenstein series), making further use of a construction due to Urban. We must assume that certain 4-dimensional Galois representations are symplectic. Our calculations with Fourier expansions use the Eholzer–Ibukiyama generalization of the Rankin–Cohen brackets. We also construct some elements of global torsion which should, according to the Bloch–Kato conjecture, contribute a factor to the denominator of the rightmost critical value of the standard L-function of the Siegel cusp form. Then we prove, under certain conditions, that the factor does occur.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Liu, Yifeng, Yichao Tian, Liang Xiao, Wei Zhang et Xinwen Zhu. « On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives ». Inventiones mathematicae 228, no 1 (21 janvier 2022) : 107–375. http://dx.doi.org/10.1007/s00222-021-01088-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Brown, Jim. « Saito–Kurokawa lifts and applications to the Bloch–Kato conjecture ». Compositio Mathematica 143, no 02 (mars 2007) : 290–322. http://dx.doi.org/10.1112/s0010437x06002466.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Spiess, Michael, et Takao Yamazaki. « A counterexample to generalizations of the Milnor-Bloch-Kato conjecture ». Journal of K-Theory 4, no 1 (août 2009) : 77–90. http://dx.doi.org/10.1017/is008008014jkt066.

Texte intégral
Résumé :
AbstractWe construct an example of a torus T over a field K for which the Galois symbol K(K;T,T)/nK(K;T,T) → H2(K,T[n] ⊗ T[n]) is not injective for some n. Here K(K;T,T) is the Milnor K-group attached to T introduced by Somekawa. We show also that the motive M(T × T) gives a counterexample to another generalization of the Milnor-Bloch-Kato conjecture (proposed by Beilinson).
Styles APA, Harvard, Vancouver, ISO, etc.
14

Diamond, Fred, Matthias Flach et Li Guo. « The Bloch-Kato conjecture for adjoint motives of modular forms ». Mathematical Research Letters 8, no 4 (2001) : 437–42. http://dx.doi.org/10.4310/mrl.2001.v8.n4.a4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Burns, David. « On Artin formalism for the conjecture of Bloch and Kato ». Mathematical Research Letters 19, no 5 (2012) : 1155–69. http://dx.doi.org/10.4310/mrl.2012.v19.n5.a16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kim, Byoung Du, Riad Masri et Tong Hai Yang. « Nonvanishing of Hecke L-functions and the Bloch–Kato conjecture ». Mathematische Annalen 349, no 2 (1 mai 2010) : 301–43. http://dx.doi.org/10.1007/s00208-010-0521-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

de Jeu, Rob, et James D. Lewis. « Beilinson's Hodge Conjecture for Smooth Varieties ». Journal of K-Theory 11, no 2 (6 mars 2013) : 243–82. http://dx.doi.org/10.1017/is013001030jkt212.

Texte intégral
Résumé :
AbstractLet U/ℂ be a smooth quasi-projective variety of dimension d, CHr (U,m) Bloch's higher Chow group, andclr,m: CHr (U,m) ⊗ ℚ → homMHS (ℚ(0), H2r−m (U, ℚ(r)))the cycle class map. Beilinson once conjectured clr,m to be surjective [Be]; however, Jannsen was the first to find a counterexample in the case m = 1 [Ja1]. In this paper we study the image of clr,m in more detail (as well as at the “generic point” of U) in terms of kernels of Abel-Jacobi mappings. When r = m, we deduce from the Bloch-Kato conjecture (now a theorem) various results, in particular that the cokernel of clm,m at the generic point is the same for integral or rational coefficients.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Koya, Yoshihiro. « The Bloch–Kato Conjecture for Good Reduction Curves over Local Fields ». K-Theory 18, no 1 (septembre 1999) : 19–32. http://dx.doi.org/10.1023/a:1007834128416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

DUMMIGAN, NEIL. « CONGRUENCES OF SAITO–KUROKAWA LIFTS AND DENOMINATORS OF CENTRAL SPINOR L-VALUES ». Glasgow Mathematical Journal 64, no 2 (14 octobre 2021) : 504–25. http://dx.doi.org/10.1017/s0017089521000331.

Texte intégral
Résumé :
AbstractFollowing Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.
Styles APA, Harvard, Vancouver, ISO, etc.
20

DUMMIGAN, NEIL. « CONGRUENCES OF SAITO–KUROKAWA LIFTS AND DENOMINATORS OF CENTRAL SPINOR L-VALUES ». Glasgow Mathematical Journal 64, no 2 (14 octobre 2021) : 504–25. http://dx.doi.org/10.1017/s0017089521000331.

Texte intégral
Résumé :
AbstractFollowing Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Voineagu, Mircea. « Cylindrical homomorphisms and Lawson homology ». Journal of K-Theory 8, no 1 (8 juin 2010) : 135–68. http://dx.doi.org/10.1017/is010004024jkt108.

Texte intégral
Résumé :
AbstractWe use the cylindrical homomorphism and a geometric construction introduced by J. Lewis to study the Lawson homology groups of certain hypersurfaces X ⊂ ℙn + 1 of degree d ℙ n + 1. As an application, we compute the rational semi-topological K-theory of generic cubics of dimensions 5, 6 and 8 and, using the Bloch-Kato conjecture, we prove Suslin's conjecture for these varieties. Using generic cubic sevenfolds, we show that there are smooth projective varieties such that the lowest nontrivial step in their s-filtration is infinitely generated and undetected by the Abel-Jacobi map.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Sivatski, A. S. « Applications of the Bloch–Kato conjecture to cohomological invariants and symbol length ». Mathematische Zeitschrift 299, no 1-2 (3 février 2021) : 459–72. http://dx.doi.org/10.1007/s00209-020-02678-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Agarwal, Mahesh, et Krzysztof Klosin. « Yoshida lifts and the Bloch–Kato conjecture for the convolution L -function ». Journal of Number Theory 133, no 8 (août 2013) : 2496–537. http://dx.doi.org/10.1016/j.jnt.2013.01.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Klosin, Krzysztof. « Congruences among modular forms on U(2,2) and the Bloch-Kato conjecture ». Annales de l’institut Fourier 59, no 1 (2009) : 81–166. http://dx.doi.org/10.5802/aif.2427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hernandez, Valentin. « Families of Picard modular forms and an application to the Bloch–Kato conjecture ». Compositio Mathematica 155, no 7 (25 juin 2019) : 1327–401. http://dx.doi.org/10.1112/s0010437x1900736x.

Texte intégral
Résumé :
In this article we construct a p-adic three-dimensional eigenvariety for the group $U$(2,1)($E$), where $E$ is a quadratic imaginary field and $p$ is inert in $E$. The eigenvariety parametrizes Hecke eigensystems on the space of overconvergent, locally analytic, cuspidal Picard modular forms of finite slope. The method generalized the one developed in Andreatta, Iovita and Stevens [$p$-adic families of Siegel modular cuspforms Ann. of Math. (2) 181, (2015), 623–697] by interpolating the coherent automorphic sheaves when the ordinary locus is empty. As an application of this construction, we reprove a particular case of the Bloch–Kato conjecture for some Galois characters of $E$, extending the results of Bellaiche and Chenevier to the case of a positive sign.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Agarwal, Mahesh, et Jim Brown. « On the Bloch–Kato conjecture for elliptic modular forms of square-free level ». Mathematische Zeitschrift 276, no 3-4 (1 novembre 2013) : 889–924. http://dx.doi.org/10.1007/s00209-013-1226-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

BROWN, JIM. « SPECIAL VALUES OF L-FUNCTIONS ON GSp4 × GL2 AND THE NON-VANISHING OF SELMER GROUPS ». International Journal of Number Theory 06, no 08 (décembre 2010) : 1901–26. http://dx.doi.org/10.1142/s1793042110003769.

Texte intégral
Résumé :
In this paper, we show how one can use an inner product formula of Heim giving the inner product of the pullback of an Eisenstein series from Sp10 to Sp 2 × Sp 4 × Sp 4 with a new-form on GL2 and a Saito–Kurokawa lift to produce congruences between Saito–Kurokawa lifts and non-CAP forms. This congruence is in part controlled by the L-function on GSp 4 × GL 2. The congruence is then used to produce nontrivial torsion elements in an appropriate Selmer group, providing evidence for the Bloch–Kato conjecture.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kings, Guido. « The Bloch-Kato conjecture on special values of $L$-functions. A survey of known results ». Journal de Théorie des Nombres de Bordeaux 15, no 1 (2003) : 179–98. http://dx.doi.org/10.5802/jtnb.396.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Berger, Tobias. « On the Eisenstein ideal for imaginary quadratic fields ». Compositio Mathematica 145, no 03 (15 avril 2009) : 603–32. http://dx.doi.org/10.1112/s0010437x09003984.

Texte intégral
Résumé :
AbstractFor certain algebraic Hecke charactersχof an imaginary quadratic fieldFwe define an Eisenstein ideal in ap-adic Hecke algebra acting on cuspidal automorphic forms of GL2/F. By finding congruences between Eisenstein cohomology classes (in the sense of G. Harder) and cuspidal classes we prove a lower bound for the index of the Eisenstein ideal in the Hecke algebra in terms of the specialL-valueL(0,χ). We further prove that its index is bounded from above by thep-valuation of the order of the Selmer group of thep-adic Galois character associated toχ−1. This uses the work of R. Tayloret al. on attaching Galois representations to cuspforms of GL2/F. Together these results imply a lower bound for the size of the Selmer group in terms ofL(0,χ), coinciding with the value given by the Bloch–Kato conjecture.
Styles APA, Harvard, Vancouver, ISO, etc.
30

BENOIS, D., et T. NGUYENQUANGDO. « Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien ». Annales Scientifiques de l’École Normale Supérieure 35, no 5 (septembre 2002) : 641–72. http://dx.doi.org/10.1016/s0012-9593(02)01104-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

KLOSIN, Krzysztof. « The Maass space for $U(2,2)$ and the Bloch–Kato conjecture for the symmetric square motive of a modular form ». Journal of the Mathematical Society of Japan 67, no 2 (avril 2015) : 797–860. http://dx.doi.org/10.2969/jmsj/06720797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sorensen, Claus M. « Level-raising for Saito–Kurokawa forms ». Compositio Mathematica 145, no 4 (juillet 2009) : 915–53. http://dx.doi.org/10.1112/s0010437x09004084.

Texte intégral
Résumé :
AbstractThis paper provides congruences between unstable and stable automorphic forms for the symplectic similitude group GSp(4). More precisely, we raise the level of certain CAP representations Π arising from classical modular forms. We first transfer Π to π on a suitable inner form G; this is achieved by θ-lifting. For π, we prove a precise level-raising result that is inspired by the work of Bellaiche and Clozel and which relies on computations of Schmidt. We thus obtain a $\tilde {\pi }$ congruent to π, with a local component that is irreducibly induced from an unramified twist of the Steinberg representation of the Klingen parabolic. To transfer $\tilde {\pi }$ back to GSp(4), we use Arthur’s stable trace formula. Since $\tilde {\pi }$ has a local component of the above type, all endoscopic error terms vanish. Indeed, by results due to Weissauer, we only need to show that such a component does not participate in the θ-correspondence with any GO(4); this is an exercise in using Kudla’s filtration of the Jacquet modules of the Weil representation. We therefore obtain a cuspidal automorphic representation $\tilde {\Pi }$ of GSp(4), congruent to Π, which is neither CAP nor endoscopic. It is crucial for our application that we can arrange for $\tilde {\Pi }$ to have vectors fixed by the non-special maximal compact subgroups at all primes dividing N. Since G is necessarily ramified at some prime r, we have to show a non-special analogue of the fundamental lemma at r. Finally, we give an application of our main result to the Bloch–Kato conjecture, assuming a conjecture of Skinner and Urban on the rank of the monodromy operators at the primes dividing N.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Seveso, Marco Adamo. « p-adic L-functions and the Rationality of Darmon Cycles ». Canadian Journal of Mathematics 64, no 5 (1 octobre 2012) : 1122–81. http://dx.doi.org/10.4153/cjm-2011-076-8.

Texte intégral
Résumé :
Abstract Darmon cycles are a higher weight analogue of Stark–Heegner points. They yield local cohomology classes in the Deligne representation associated with a cuspidal form on Γ0(N) of even weight k0 ≥ 2. They are conjectured to be the restriction of global cohomology classes in the Bloch–Kato Selmer group defined over narrow ring class fields attached to a real quadratic field. We show that suitable linear combinations of them obtained by genus characters satisfy these conjectures. We also prove p-adic Gross–Zagier type formulas, relating the derivatives of p-adic L-functions of the weight variable attached to imaginary (resp. real) quadratic fields to Heegner cycles (resp. Darmon cycles). Finally we express the second derivative of the Mazur– Kitagawa p-adic L-function of the weight variable in terms of a global cycle defined over a quadratic extension of ℚ.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Otsubo, N. « Note on conjectures of Beilinson-Bloch-Kato¶for cycle classes ». manuscripta mathematica 101, no 1 (1 janvier 2000) : 115–24. http://dx.doi.org/10.1007/s002290050007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

BELLAICHE, J., et G. CHENEVIER. « Formes non temp�r�es pour et conjectures de Bloch?Kato ». Annales Scientifiques de l?tcole Normale Sup�rieure 37, no 4 (août 2004) : 611–62. http://dx.doi.org/10.1016/j.ansens.2004.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Pirutka, Alena. « Invariants birationnels dans la suite spectrale de Bloch-Ogus ». Journal of K-theory 10, no 3 (7 juin 2012) : 565–82. http://dx.doi.org/10.1017/is012004021jkt191.

Texte intégral
Résumé :
AbstractFor a field k of cohomological dimension d we prove that the groups , (l, car.k) = 1, are birational invariants of smooth projective geometrically integral varieties over k of dimension n. Using the Kato conjecture, which has been recently established by Kerz and Saito [18], we obtain a similar result over a finite field for the groups . We relate one of these invariants with the cokernel of the l-adic cycle class map , which gives an analogue of a result of Colliot-Thélène and Voisin [5] 3.11 over ℂ for varieties over a finite field.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Berrick, A. J., M. Karoubi et P. A. Østvær. « Periodicity of hermitianK-groups ». Journal of K-theory 7, no 3 (16 mai 2011) : 429–93. http://dx.doi.org/10.1017/is011004009jkt151.

Texte intégral
Résumé :
AbstractBott periodicity for the unitary and symplectic groups is fundamental to topologicalK-theory. Analogous to unitary topologicalK-theory, for algebraicK-groups with finite coefficients, similar results are consequences of the Milnor and Bloch-Kato conjectures, affirmed by Voevodsky, Rost and others. More generally, we prove that periodicity of the algebraicK-groups for any ring implies periodicity for the hermitianK-groups, analogous to orthogonal and symplectic topologicalK-theory.The proofs use in an essential way higherKSC-theories, extending those of Anderson and Green. They also provide an upper bound for the higher hermitianK-groups in terms of higher algebraicK-groups.We also relate periodicity to étale hermitianK-groups by proving a hermitian version of Thomason's étale descent theorem. The results are illustrated in detail for local fields, rings of integers in number fields, smooth complex algebraic varieties, rings of continuous functions on compact spaces, and group rings.
Styles APA, Harvard, Vancouver, ISO, etc.
38

LEI, ANTONIO, DAVID LOEFFLER et SARAH LIVIA ZERBES. « EULER SYSTEMS FOR HILBERT MODULAR SURFACES ». Forum of Mathematics, Sigma 6 (2018). http://dx.doi.org/10.1017/fms.2018.23.

Texte intégral
Résumé :
We construct an Euler system—a compatible family of global cohomology classes—for the Galois representations appearing in the geometry of Hilbert modular surfaces. If a conjecture of Bloch and Kato on injectivity of regulator maps holds, this Euler system is nontrivial, and we deduce bounds towards the Iwasawa main conjecture for these Galois representations.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Loeffler, David, et Sarah Livia Zerbes. « On the Bloch–Kato conjecture for the symmetric cube ». Journal of the European Mathematical Society, 12 juillet 2022. http://dx.doi.org/10.4171/jems/1256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Geisser, T., et M. Levine. « The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky ». Journal für die reine und angewandte Mathematik (Crelles Journal) 2001, no 530 (12 janvier 2001). http://dx.doi.org/10.1515/crll.2001.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Dummigan, Neil. « Twisted adjoint L-values, dihedral congruence primes and the Bloch–Kato conjecture ». Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 29 octobre 2020. http://dx.doi.org/10.1007/s12188-020-00224-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

BROWN, JIM, et HUIXI LI. « CONGRUENCE PRIMES FOR SIEGEL MODULAR FORMS OF PARAMODULAR LEVEL AND APPLICATIONS TO THE BLOCH–KATO CONJECTURE ». Glasgow Mathematical Journal, 29 septembre 2020, 1–22. http://dx.doi.org/10.1017/s0017089520000439.

Texte intégral
Résumé :
Abstract It has been well established that congruences between automorphic forms have far-reaching applications in arithmetic. In this paper, we construct congruences for Siegel–Hilbert modular forms defined over a totally real field of class number 1. As an application of this general congruence, we produce congruences between paramodular Saito–Kurokawa lifts and non-lifted Siegel modular forms. These congruences are used to produce evidence for the Bloch–Kato conjecture for elliptic newforms of square-free level and odd functional equation.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lüders, Morten, et Matthew Morrow. « Milnor K-theory of p-adic rings ». Journal für die reine und angewandte Mathematik (Crelles Journal), 9 décembre 2022. http://dx.doi.org/10.1515/crelle-2022-0079.

Texte intégral
Résumé :
Abstract We study the mod p r {p^{r}} Milnor K-groups of p-adically complete and p-henselian rings, establishing in particular a Nesterenko–Suslin-style description in terms of the Milnor range of syntomic cohomology. In the case of smooth schemes over complete discrete valuation rings we prove the mod p r {p^{r}} Gersten conjecture for Milnor K-theory locally in the Nisnevich topology. In characteristic p we show that the Bloch–Kato–Gabber theorem remains true for valuation rings, and for regular formal schemes in a pro sense.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wake, Preston. « The Eisenstein ideal for weight k and a Bloch–Kato conjecture for tame families ». Journal of the European Mathematical Society, 24 juin 2022. http://dx.doi.org/10.4171/jems/1251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Brown, J. « On the Cuspidality of Pullbacks of Siegel Eisenstein Series and Applications to the Bloch-Kato Conjecture ». International Mathematics Research Notices, 8 juillet 2010. http://dx.doi.org/10.1093/imrn/rnq135.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

JOHANSSON, CHRISTIAN, et JAMES NEWTON. « PARALLEL WEIGHT 2 POINTS ON HILBERT MODULAR EIGENVARIETIES AND THE PARITY CONJECTURE ». Forum of Mathematics, Sigma 7 (2019). http://dx.doi.org/10.1017/fms.2019.23.

Texte intégral
Résumé :
Let $F$ be a totally real field and let $p$ be an odd prime which is totally split in $F$ . We define and study one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over $F$ with weight varying only at a single place $v$ above $p$ . For these eigenvarieties, we show that methods developed by Liu, Wan and Xiao apply and deduce that, over a boundary annulus in weight space of sufficiently small radius, the partial eigenvarieties decompose as a disjoint union of components which are finite over weight space. We apply this result to prove the parity version of the Bloch–Kato conjecture for finite slope Hilbert modular forms with trivial central character (with a technical assumption if $[F:\mathbb{Q}]$ is odd), by reducing to the case of parallel weight $2$ . As another consequence of our results on partial eigenvarieties, we show, still under the assumption that $p$ is totally split in $F$ , that the ‘full’ (dimension $1+[F:\mathbb{Q}]$ ) cuspidal Hilbert modular eigenvariety has the property that many (all, if $[F:\mathbb{Q}]$ is even) irreducible components contain a classical point with noncritical slopes and parallel weight $2$ (with some character at $p$ whose conductor can be explicitly bounded), or any other algebraic weight.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie