Articles de revues sur le sujet « Blind decorrelation »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Blind decorrelation.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 30 meilleurs articles de revues pour votre recherche sur le sujet « Blind decorrelation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Tuzlukov, V. P. « Two approaches to multiuser detection over fading channels ». Doklady BGUIR 19, no 1 (23 février 2021) : 11–20. http://dx.doi.org/10.35596/1729-7648-2021-19-1-11-20.

Texte intégral
Résumé :
In this paper, two different receiver structures to multiuser detection that are appropriate for the code-division multiple-access systems with antenna arrays in fading channels are investigated and compared. We analyze and compare the performance of the two different multiuser detection structures for uplink or downlink channels. The number of elements of receiving antenna array may be limited in the downlink channel due to the small size of receivers. We assume a synchronous system, but it can be easily extended to an asynchronous system. The first approach is based on the distributed decorrelator where the signal decorrelation is performed by each receiving antenna element independently and decorrelated outputs are combined according to the maximum ratio. The second approach is the central decorrelator where the signal decorrelation is performed once collectively on the outputs from all elements of receiving antenna array. Both decorrelators provide the same performance in the additive white Gaussian noise channels. The distributed decorrelator provides the better performance in flat fading channels. We employ the decorrelator to demonstrate our results. The results discussed in the present paper can be extended to other configurations such as the blind adaptive space-time multiuser detection.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lapini, Alessandro, Tiziano Bianchi, Fabrizio Argenti et Luciano Alparone. « Blind Speckle Decorrelation for SAR Image Despeckling ». IEEE Transactions on Geoscience and Remote Sensing 52, no 2 (février 2014) : 1044–58. http://dx.doi.org/10.1109/tgrs.2013.2246838.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Douglas, S. C., et A. Cichocki. « Neural networks for blind decorrelation of signals ». IEEE Transactions on Signal Processing 45, no 11 (1997) : 2829–42. http://dx.doi.org/10.1109/78.650109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mei, Tiemin, et Fuliang Yin. « Blind separation of convolutive mixtures by decorrelation ». Signal Processing 84, no 12 (décembre 2004) : 2297–313. http://dx.doi.org/10.1016/j.sigpro.2004.07.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rui Wang, Jing Lu et Yue He. « Variable Step Size Algorithm for Adaptive Blind Decorrelation ». International Journal of Digital Content Technology and its Applications 7, no 6 (31 mars 2013) : 1209–16. http://dx.doi.org/10.4156/jdcta.vol7.issue6.138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yin, Fuliang, Tiemin Mei et Jun Wang. « Blind-Source Separation Based on Decorrelation and Nonstationarity ». IEEE Transactions on Circuits and Systems I : Regular Papers 54, no 5 (mai 2007) : 1150–58. http://dx.doi.org/10.1109/tcsi.2007.895510.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Guo Jun, et Han Ying Hu. « New Blind Adaptive Channel Estimation Schemes Based on OFDM Systems ». Advanced Materials Research 709 (juin 2013) : 370–73. http://dx.doi.org/10.4028/www.scientific.net/amr.709.370.

Texte intégral
Résumé :
Two new blind estimation schemes based on decorrelation LMS(DLMS)and time-domain orthogonal LMS(TDO-LMS) algorithms are proposed to solve the problem of convergence in the estimation scheme based on LMS algorithm in wireless mobile communication OFDM systems. These schemes are improved on the traditional LMS algorithm.The factor of TDO-LMS algorithm changes along with the power of signal ,and the decorrelation LMS removes the correlation of the signal.Two methods can get faster convergence and better estimation performance combining with alterable step in the channel estimation of OFDM systems.Simulation shows that the convergence of the schemes proposed is better than that in the channel estimation based on the traditional LMS algorithm obviously.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schobben, D. W. E., et P. W. Sommen. « A frequency domain blind signal separation method based on decorrelation ». IEEE Transactions on Signal Processing 50, no 8 (août 2002) : 1855–65. http://dx.doi.org/10.1109/tsp.2002.800417.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Krstić, Vladimir R. « The blind decision feedback equalizer with the entropic : Leaky decorrelation algorithm ». Tehnika 70, no 1 (2015) : 105–11. http://dx.doi.org/10.5937/tehnika1501105k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Jiahui. « The Study of Blind Source Separation Based on Sparsity and Decorrelation ». IOP Conference Series : Materials Science and Engineering 394 (7 août 2018) : 052019. http://dx.doi.org/10.1088/1757-899x/394/5/052019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schiessl, I., M. Stetter, J. E. W. Mayhew, N. McLoughlin, J. S. Lund et K. Obermayer. « Blind signal separation from optical imaging recordings with extended spatial decorrelation ». IEEE Transactions on Biomedical Engineering 47, no 5 (mai 2000) : 573–77. http://dx.doi.org/10.1109/10.841327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ha Quang Minh et Laurenz Wiskott. « Multivariate Slow Feature Analysis and Decorrelation Filtering for Blind Source Separation ». IEEE Transactions on Image Processing 22, no 7 (juillet 2013) : 2737–50. http://dx.doi.org/10.1109/tip.2013.2257808.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Anemüller, Jörn, et Birger Kollmeier. « Convolutive blind source separation of speech signals based on amplitude modulation decorrelation ». Journal of the Acoustical Society of America 108, no 5 (novembre 2000) : 2630. http://dx.doi.org/10.1121/1.4743792.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Jun’an, Yang, He Xuefan et Tan Ying. « An improved fast blind deconvolution algorithm based on decorrelation and block matrix1 ». Journal of Electronics (China) 25, no 5 (septembre 2008) : 577–82. http://dx.doi.org/10.1007/s11767-007-0081-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kocinski, Jedrzej, Pawel Libiszewski et Aleksander Sek. « Spatial efficiency of blind source separation based on decorrelation – subjective and objective assessment ». Speech Communication 53, no 3 (mars 2011) : 390–402. http://dx.doi.org/10.1016/j.specom.2010.11.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Liu, Jie. « A Time Domain Blind Decorrelation Method of Convolutive Mixtures Based on an IIR Model ». Journal of Computational Mathematics 28, no 3 (juin 2010) : 371–85. http://dx.doi.org/10.4208/jcm.2009.10-m2900.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Harmeling, Stefan, Andreas Ziehe, Motoaki Kawanabe et Klaus-Robert Müller. « Kernel-Based Nonlinear Blind Source Separation ». Neural Computation 15, no 5 (1 mai 2003) : 1089–124. http://dx.doi.org/10.1162/089976603765202677.

Texte intégral
Résumé :
We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Abrudan, Traian Emanuel, et Visa Koivunen. « Blind equalization in spatial multiplexing MIMO-OFDM systems based on vector CMA and decorrelation criteria ». Wireless Personal Communications 43, no 4 (29 juin 2007) : 1151–72. http://dx.doi.org/10.1007/s11277-007-9291-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang, Yunpu, Ganlin Shan, Rui Zhang et Xiusheng Duan. « Multisensor Management Method for Ground Moving Target Tracking Based on Doppler Blind Zone Information ». Journal of Sensors 2022 (3 février 2022) : 1–17. http://dx.doi.org/10.1155/2022/8555692.

Texte intégral
Résumé :
Tracking ground moving target with sensors proves to be a challenge due to the uncertainty of target motion area, the existence of Doppler blind zone (DBZ), and the complex terrain. In this paper, a multisensor management method based on DBZ information is presented, in which the available sensors are selected to obtain the best operational revenues for ground moving target tracking. First, the ground target motion model is established considering the off-road/on-road state based on road topology information. Second, the sensor measurement model is given combined with the DBZ information, and a decorrelation method of measurement noise is proposed. Third, a target state estimation algorithm is derived using particle filter, in which the DBZ information is regarded as prior information. Then, combined with the variable structure interacting multiple model method, an estimation algorithm for tracking maneuvering target is proposed. Furthermore, an optimization model of nonmyopic sensor management is constructed to obtain the best sensor management scheme. Finally, the advancement and effectiveness of the proposed management method are verified in the simulations.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wong, K. T., et S. K. Cheung. « “Fractional Self-Decorrelation” to Enhance Single-User-Type DS-CDMA Detectors' Output SINR in Blind Space-Time RAKE Receivers ». IEEE Communications Letters 8, no 6 (juin 2004) : 336–38. http://dx.doi.org/10.1109/lcomm.2004.827424.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Girolami, Mark, et Colin Fyfe. « Stochastic ICA Contrast Maximisation Using Oja's Nonlinear PCA Algorithm ». International Journal of Neural Systems 08, no 05n06 (octobre 1997) : 661–78. http://dx.doi.org/10.1142/s0129065797000586.

Texte intégral
Résumé :
Independent Component Analysis (ICA) is an important extension of linear Principal Component Analysis (PCA). PCA performs a data transformation to provide independence to second order, that is, decorrelation. ICA transforms data to provide approximate independence up to and beyond second order yielding transformed data with fully factorable probability densities. The linear ICA transformation has been applied to the classical statistical signal-processing problem of Blind Separation of Sources (BSS), that is, separating unknown original source signals from a mixture whose mode of mixing is undetermined. In this paper it is shown that Oja's Nonlinear PCA algorithm performs a general stochastic online adaptive ICA. This analysis is corroborated with three simulations. The first separates unknown mixtures of original natural images, which have sub-Gaussian densities, the second separates linear mixtures of natural speech whose densities are super-Gaussian. Finally unknown mixtures of original images, which have both sub- and super-Gaussian densities are separated.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lang Tong, A. van der Veen, P. Dewilde et Youngchul Sung. « Blind decorrelating rake receivers for long-code WCDMA ». IEEE Transactions on Signal Processing 51, no 6 (juin 2003) : 1642–55. http://dx.doi.org/10.1109/tsp.2003.811230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ulukus, S., et R. D. Yates. « A blind adaptive decorrelating detector for CDMA systems ». IEEE Journal on Selected Areas in Communications 16, no 8 (1998) : 1530–41. http://dx.doi.org/10.1109/49.730459.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Yingbo Hua, Senjian An et Yong Xiang. « Blind identification of FIR MIMO channels by decorrelating subchannels ». IEEE Transactions on Signal Processing 51, no 5 (mai 2003) : 1143–55. http://dx.doi.org/10.1109/tsp.2003.810295.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhang, Gaonan, Guoan Bi et Qian Yu. « Blind intersymbol decorrelating detector for asynchronous multicarrier CDMA system ». Signal Processing 85, no 8 (août 2005) : 1511–22. http://dx.doi.org/10.1016/j.sigpro.2005.02.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

KIMURA, Y., K. SHIBATA, T. SAKAI et A. NAKAGAKI. « A Blind Adaptive Decorrelating Detector Using Spatial Signature Estimation ». IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, no 10 (1 octobre 2006) : 2686–89. http://dx.doi.org/10.1093/ietfec/e89-a.10.2686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kim, Hyeong Jeong, et Hwang Soo Lee. « Blind adaptive decorrelating detector for DS-CDMA systems : auxiliary-vector detector ». Electronics Letters 35, no 20 (1999) : 1701. http://dx.doi.org/10.1049/el:19991165.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Po-Rong Chang, Chih-Chien Lee et Chin-Feng Lin. « Blind adaptive energy estimation for decorrelating decision-feedback CDMA multiuser detection using learning-type stochastic approximations ». IEEE Transactions on Vehicular Technology 48, no 2 (mars 1999) : 542–52. http://dx.doi.org/10.1109/25.752579.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Djendi, Mohamed, et Abdelhak Cheffi. « New symmetric decorrelating set-membership NLMS adaptive algorithms for blind speech intelligibility enhancement ». SN Applied Sciences 1, no 12 (9 novembre 2019). http://dx.doi.org/10.1007/s42452-019-1641-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jayaweera, Sudharman K., et H. Vincent Poor. « Blind Adaptive Decorrelating RAKE (DRAKE) Downlink Receiver for Space-Time Block Coded Multipath CDMA ». EURASIP Journal on Advances in Signal Processing 2002, no 12 (2 janvier 2003). http://dx.doi.org/10.1155/s111086570221001x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie