Littérature scientifique sur le sujet « Biosensing tool »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Biosensing tool ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Biosensing tool"

1

Sharma, Diksha, et Neeraj Tripathi. « Microcantilever : An Efficient Tool for Biosensing Applications ». International Journal of Intelligent Systems and Applications 9, no 10 (8 octobre 2017) : 63–74. http://dx.doi.org/10.5815/ijisa.2017.10.08.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Huang, Tianci, Qi Yu, Shujuan Liu, Wei Huang et Qiang Zhao. « Phosphorescent iridium(iii) complexes : a versatile tool for biosensing and photodynamic therapy ». Dalton Transactions 47, no 23 (2018) : 7628–33. http://dx.doi.org/10.1039/c8dt00887f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Huang, Qiong, et Ling Dang. « Graphene-labeled synthetic antigen as a novel probe for enhancing sensitivity and simplicity in lateral flow immunoassay ». Analytical Methods 14, no 11 (2022) : 1155–62. http://dx.doi.org/10.1039/d1ay02158c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

González-Pedro, Victoria, Mauricio E. Calvo, Hernán Míguez et Ángel Maquieira. « Nanoparticle Bragg reflectors : A smart analytical tool for biosensing ». Biosensors and Bioelectronics : X 1 (juin 2019) : 100012. http://dx.doi.org/10.1016/j.biosx.2019.100012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Graves, Jennifer S., et Xavier Montalban. « Biosensors to monitor MS activity ». Multiple Sclerosis Journal 26, no 5 (22 janvier 2020) : 605–8. http://dx.doi.org/10.1177/1352458519888178.

Texte intégral
Résumé :
Advances in wearable and wireless biosensing technology pave the way for a brave new world of novel multiple sclerosis (MS) outcome measures. Our current tools for examining patients date back to the 19th century and while invaluable to the neurologist invite accompaniment from these new technologies and artificial intelligence (AI) analytical methods. While the most common biosensor tool used in MS publications to date is the accelerometer, the landscape is changing quickly with multi-sensor applications, electrodermal sensors, and wireless radiofrequency waves. Some caution is warranted to ensure novel outcomes have clear clinical relevance and stand-up to the rigors of reliability, reproducibility, and precision, but the ultimate implementation of biosensing in the MS clinical setting is inevitable.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Alcanzare, Maria Michiko, Mikko Karttunen et Tapio Ala-Nissila. « Propulsion and controlled steering of magnetic nanohelices ». Soft Matter 15, no 7 (2019) : 1684–91. http://dx.doi.org/10.1039/c8sm00037a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Aguedo, Juvissan, Lenka Lorencova, Marek Barath, Pavol Farkas et Jan Tkac. « Electrochemical Impedance Spectroscopy on 2D Nanomaterial MXene Modified Interfaces : Application as a Characterization and Transducing Tool ». Chemosensors 8, no 4 (7 décembre 2020) : 127. http://dx.doi.org/10.3390/chemosensors8040127.

Texte intégral
Résumé :
This review presents the basic characteristics of MXene, a novel 2D nanomaterial with many outstanding properties applicable to electrochemical sensing and biosensing. The second part deals with electrochemical impedance spectroscopy (EIS) and its beneficial features applicable to ultrasensitive electrochemical sensing and label-free biosensing. The main part of the review presents recent advances in the integration of MXene to design electrochemical interfaces. EIS was used to evaluate the effect of anodic potential on MXene and the effect of the MXene preparation route and for characterization of MXene grafted with polymers. It also included the application of EIS as the main transducing tool for antibody- and aptamer-based biosensors or biosensors integrating molecularly imprinted polymers.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rodríguez-Sevilla, P., L. Labrador-Páez, D. Jaque et P. Haro-González. « Optical trapping for biosensing : materials and applications ». Journal of Materials Chemistry B 5, no 46 (2017) : 9085–101. http://dx.doi.org/10.1039/c7tb01921a.

Texte intégral
Résumé :
Optical trapping has been evidence as a very powerful tool for the manipulation and study of biological entities. This review explains the main concepts regarding the use of optical trapping for biosensing, focusing its attention to those applications involving the manipulation of particles which are used as handles, force transducers and sensors.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Das, Gour Mohan, Stefano Managò, Maria Mangini et Anna Chiara De Luca. « Biosensing Using SERS Active Gold Nanostructures ». Nanomaterials 11, no 10 (12 octobre 2021) : 2679. http://dx.doi.org/10.3390/nano11102679.

Texte intégral
Résumé :
Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool for biosensing applications owing to its fingerprint recognition, high sensitivity, multiplex detection, and biocompatibility. This review provides an overview of the most significant aspects of SERS for biomedical and biosensing applications. We first introduced the mechanisms at the basis of the SERS amplifications: electromagnetic and chemical enhancement. We then illustrated several types of substrates and fabrication methods, with a focus on gold-based nanostructures. We further analyzed the relevant factors for the characterization of the SERS sensor performances, including sensitivity, reproducibility, stability, sensor configuration (direct or indirect), and nanotoxicity. Finally, a representative selection of applications in the biomedical field is provided.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Singh, Suchita, Aksha Dhawan, Sonali Karhana, Madhusudan Bhat et Amit Kumar Dinda. « Quantum Dots : An Emerging Tool for Point-of-Care Testing ». Micromachines 11, no 12 (29 novembre 2020) : 1058. http://dx.doi.org/10.3390/mi11121058.

Texte intégral
Résumé :
Quantum dots (QDs) are semiconductor crystals in the nanodimension having unique optical and electronic properties that differ from bulk material due to quantum mechanics. The QDs have a narrow emission peak, size-dependent emission wavelength, and broad excitation range which can be utilized for diverse biomedical applications such as molecular imaging, biosensing, and diagnostic systems. This article reviews the current developments of biomedical applications of QDs with special reference to point-of-care testing.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Biosensing tool"

1

Gaiotto, Tiziano. « Engineering of coiled-coil protein scaffolds as innovative tools for biosensing applications ». Doctoral thesis, Università degli studi di Trieste, 2009. http://hdl.handle.net/10077/3095.

Texte intégral
Résumé :
2007/2008
A new generation of protein scaffolds is becoming a valid alternative tool to recombinant antibodies of biotechnological, medical and pharmaceutical applications, where strong affinity and specificity are required. They share with antibodies important features (target affinity and specificity), but they have also some improvements (smaller size of molecule, tolerance to modification of the framework and the recognition site restricted to few residues), that can be exploited for biosensing application in nanotechnological platforms. Nanotechnology has been played an increasingly important role in the development of biosensors, improving the intrinsic features of biodevices. In this thesis work, we analyzed the coiled-coil domain, a widely spread dimerization domain shared by several protein scaffolds, and involved in protein-protein interaction in both eukaryotic and prokaryotic cells. The analysis of the coiled-coil structure allows a de novo design of new peptides, namely E and K, that can dimerize as a E/K coiled-coil system: the dimerization feature and the stability of the interaction makes this system an ideal platform to build up functional and customizable biosensors. A characterization of the E/K interaction was performed by using the protein complementation assay (PCA), a useful biological method to investigate the interaction between protein partners. With this in vivo method, we corroborate the interaction features determinate with circular dichroism, and we demonstrated that E and K coils effectively represent a protein scaffold, able to tolerate amino acid substitutions without altering its main structure. In addition, we create two libraries of K mutant coils, randomizing the peptide sequence, and with PCA we selected new K binders (Kran 5.17 and Krd F8) that showed a comparable interaction activity with the E-coil in preliminary in vitro tests. In the last part of this work, we generate a library of a new scaffold molecule (the single chain E-K) capable to bind small molecules as a single protein product containing both domains. Using the phage display selection system, we isolated scsE-K that can bind our analyte (the caffeine) with high specificity. This new molecules can be a powerful tool for analytical and biomedical applications.
XXI Ciclo
1980
Styles APA, Harvard, Vancouver, ISO, etc.
2

Raut, Nilesh G. « BIOSENSING SYSTEMS FOR THE DETECTION OF BACTERIAL QUORUM SENSING MOLECULES : A TOOL FOR INVESTIGATING BACTERIA-RELATED DISORDERS AND FOOD SPOILAGE PREVENTION ». UKnowledge, 2012. http://uknowledge.uky.edu/chemistry_etds/13.

Texte intégral
Résumé :
Quorum sensing enables bacteria to communicate with bacteria of the same or different species, and to modulate their behavior in a cell-density dependent manner. Communication occurs by means of small quorum sensing signaling molecules (QSMs) whose concentration is proportional to the population size. When a QSM threshold concentration is reached, certain genes are expressed, thus allowing control of several processes, such as, virulence factor production, antibiotic production, and biofilm formation. Not only many pathogenic bacteria are known to produce QSMs, but also QSMs have been identified in some bacteria-related disorders. Therefore, quantitative detection of QSMs present in clinical samples may be a useful tool in the investigation and monitoring of bacteria-related diseases, thus prompting the use of QSMs as biomarkers of disease. Herein, we have developed and utilized whole-cell biosensing systems and protein based biosensing systems to detect QSMs in clinical samples, such as, saliva, stool, and bowel secretions. Additionally, since bacteria are responsible for food spoilage, we employed the developed biosensing systems to detect QSMs in food samples and demonstrated their applicability for early identification of food contamination. Furthermore, we have utilized these biosensing systems to screen antibacterial compounds employed for food preservation, namely, generally regarded as safe (GRAS) compounds, for their effect on quorum sensing.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Marzocchi, Marco <1987&gt. « Conducting Polymers as Novel Tools for Biosensing and Tissue Engineering ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7268/1/marzocchi_marco_tesi.pdf.

Texte intégral
Résumé :
The field of Bioelectronics deals with the integration of electronics and biology, and possesses a tremendous potential regarding the improvement of the quality of life of millions of people. Thanks to their favorable properties, conjugated polymers have proven to be very suitable materials for the bridging of such diverse worlds. In particular, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), or PEDOT:PSS, is nowadays considered a benchmark material for bioelectronics applications. The aim of the present work is to give a detailed characterization of the physical and electrochemical properties of PEDOT:PSS thin films, and to prove the potentialities of this material both for the sensing of bioanalytes, through the development of innovative electrochemical sensors, and for tissue engineering applications, through the development of redox-active substrates that can control the replication of living cells. In this work, the development of all PEDOT:PSS-based organic electrochemical transistors (OECTs) is presented. The sensing efficiency of these devices was optimized in terms of sensitivity and limit of detection (LOD) through the investigation of the effect of device geometry, thickness, and operating voltages. An electrochemical characterization of these devices was carried out as well, in order to clarify the processes involved in the device operation. Furthermore, the operation of these devices as electrochemical sensors was tested on several analytes, obtaining in most cases a performance suitable for real applications. The development and characterization of a different kind of devices realized using the same material, redox-active substrates for applications in tissue engineering, is then presented. The effect of a change in the redox state of these PEDOT:PSS films on cell growth is assessed using two cell lines, human dermal fibroblasts (hDF) and human tumoral glioblastoma multiforme cells (T98G), finding that the cell proliferation rate has a clear dependence on the electrochemical state of its substrate.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Marzocchi, Marco <1987&gt. « Conducting Polymers as Novel Tools for Biosensing and Tissue Engineering ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7268/.

Texte intégral
Résumé :
The field of Bioelectronics deals with the integration of electronics and biology, and possesses a tremendous potential regarding the improvement of the quality of life of millions of people. Thanks to their favorable properties, conjugated polymers have proven to be very suitable materials for the bridging of such diverse worlds. In particular, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), or PEDOT:PSS, is nowadays considered a benchmark material for bioelectronics applications. The aim of the present work is to give a detailed characterization of the physical and electrochemical properties of PEDOT:PSS thin films, and to prove the potentialities of this material both for the sensing of bioanalytes, through the development of innovative electrochemical sensors, and for tissue engineering applications, through the development of redox-active substrates that can control the replication of living cells. In this work, the development of all PEDOT:PSS-based organic electrochemical transistors (OECTs) is presented. The sensing efficiency of these devices was optimized in terms of sensitivity and limit of detection (LOD) through the investigation of the effect of device geometry, thickness, and operating voltages. An electrochemical characterization of these devices was carried out as well, in order to clarify the processes involved in the device operation. Furthermore, the operation of these devices as electrochemical sensors was tested on several analytes, obtaining in most cases a performance suitable for real applications. The development and characterization of a different kind of devices realized using the same material, redox-active substrates for applications in tissue engineering, is then presented. The effect of a change in the redox state of these PEDOT:PSS films on cell growth is assessed using two cell lines, human dermal fibroblasts (hDF) and human tumoral glioblastoma multiforme cells (T98G), finding that the cell proliferation rate has a clear dependence on the electrochemical state of its substrate.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Delépine, Baudoin. « Computer-aided design (CAD) tools for bioproduction and biosensing pathway engineering ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLE032/document.

Texte intégral
Résumé :
Les récentes avancées en biologie des systèmes et en biologie synthétique contribuent déjà au fleurissement d'applications en ingénierie métabolique visant une bioproduction renouvelable de composés chimiques. Nous pouvons entrevoir un futur où des microbes serait conçus à la carte afin de valoriser n'importe quelle source de carbone en n'importe quel composé d'intérêt. Si la route est longue avant l'accomplissement d'un tel objectif, son parcours devrait en être grandement facilité par l'exploitation de méthodes d'ingénierie déjà éprouvées dans d'autres disciplines. On s'attend entre autre à ce que l'utilisation de logiciels de Conception Assistée par Ordinateur (CAO) diminue le temps et l’expertise nécessaires à la construction de voies métaboliques n'existant pas dans la nature. La première partie de cette thèse est dédiée à notre méthode de prédiction de voies métaboliques et à ses implémentations. Nous décrivons tout particulièrement RetroPath2.0, un outil de prédiction de réseaux de réactions mettant l'accent sur les applications de rétrosynthèse, et qui est construit pour être facilement extensible par la communauté. Dans la seconde partie, nous détaillons l'intérêt des biosenseurs intracellulaires pour l'ingénierie métabolique et introduisons SensiPath; une application web qui exploite un outil de prédiction de réactions pour concevoir des circuits métaboliques permettant la biodétection de composés pour lesquels aucun biosenseur direct n'est connu. Dans l'ensemble, cette thèse propose que les outils de bioCAO devraient permettre de révéler la créativité de leurs utilisateurs et encourager l'exploration de nouvelles applications
Advances in systems and synthetic biology are fueling our ability to develop successful metabolic engineering applications for the sustainable production of bio-based chemicals. We can envision a future in which designer cells could be engineered to transform any carbon source into any target compound. This daunting task will be achieved by leveraging methods that proved themselves in other engineering disciplines. Among those, the use of Computer Aided Design(CAD) softwares is expected to reduce the amount of time and expert knowledge needed to design de novo metabolic pathways. The first part of this thesis is dedicated to our pathway prediction algorithm and its CAD implementations. Most notably, we will present RetroPath2.0, a versatile reaction network prediction framework focused on retrosynthesis that is built to be easily extensible by the community. In the second part, we will highlight the interest of intracellular biosensors for metabolic engineering and introduce SensiPath, a web application that uses a reaction prediction engine to design biosensing circuits for compounds for which no direct biosensors are known. Altogether, this thesis proposes that bioCAD tools should focus on empowering users’ creativity and encourage them to explore original applications
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bailey, Thomas. « Development of Tools for Understanding Biological Sulfur Chemistry ». Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20444.

Texte intégral
Résumé :
Hydrogen sulfide (H2S) is an important biomolecule for its role in mediating redox homeostasis and signaling biological processes. The study of biological sulfide is currently impeded by a lack of tools available that adequately address the questions currently facing the field. The most pressing of these questions are: how does H2S signal biological processes. To produce tools for studying H2S, chemiluminescent scaffolds were designed to study both H2S producing enzymes and directly measure free H2S. Additionally, small molecule organic persulfides were synthesized and characterized in order to study the properties and reactivity of H2S signaling species. By creating methods to directly measure biological H2S and creating model systems to investigate the active signaling species, the biological reactivity of H2S can be better understood. The luminescent methods for detecting H2S were developed in order to avoid photodecomposition inherent with fluorescent methods while still providing a spectroscopic readout for performing measurements in cells. D-cysteine concentrations can be measured using luciferin bioluminescence, and utilized to back out the H2S producing activity of DAO. Free H2S was measured using luminol derived chemiluminescence. The luminol scaffolds were studied in depth to determine what makes an H2S probe selective for H2S in order to inform the design of future H2S probes. Sulfide signaling processes were investigated using organic persulfide model systems. We found that under reducing conditions persulfides liberate free H2S, and that under basic conditions they decompose. The decomposition pathway is governed by substitution at the -carbon, which dictates the steric accessibility of the inner sulfur atom to act as an electrophile. Persulifdes do not react with acids, and are easily tagged by electrophiles to form disulfides. Persulfides are sufficiently reducing to generate NO from nitrite, facilitating cross-talk between multiple signaling species. This cross talk is mediated by formation of perthionitrite, which may function as an independent signaling species.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Montón, i. Domingo Helena. « Development of quantum dot-based tools for in vitro and biosensing applications ». Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/319702.

Texte intégral
Résumé :
Aquesta tesi descriu l’ús de quantum dots (QDs) en el desenvolupament de noves eines per aplicacions biològiques. S’han utilitzat QDs comercials d’estructura core/shell de CdSe/ZnS amb propietats òptiques i electroquímiques úniques gràcies a les quals s’han desenvolupat diversos sensors òptics i electroquímics per detectar proteïnes, cèl·lules i ADN. Primerament es va descriure un protocol utilitzant QDs en immunocitoquímiques per visualitzar proteïnes intracel·lulars com la β-tubulina (proteïna de microtúbuls), la GM130 (proteïna de l’aparell de Golgi o la EEA1 (proteïna d’endosomes). L’ús de QDs va aportar una considerable estabilitat i robustesa a la tècnica, demostrant que podien ser usats rutinàriament com a marcadors òptics en immunocitoquímiques. Posteriorment es van utilitzar com a marcadors duals òptics/electroquímics per detectar cèl·lules apoptòtiques. Els QDs es van conjugar amb Annexina-V (AnnV), proteïna de reconeixement de la fosfatidilserina, que es transloca a la superfície externa de la membrana cel·lular en cèl·lules apoptòtiques. El marcador resultant va permetre l’adquisició d’imatges qualitatives utilitzant microscòpia confocal, l’obtenció d’imatges d’alta resolució utilitzant microscòpia electrònica de rastreig i la mesura quantitativa de cèl·lules apoptòtiques utilitzant citometria de flux. A més, la voltametria d’ona quadrada es va aplicar per desenvolupar un innovador biosensor electroquímic que permetia detectar cèl·lules apoptòtiques de manera ràpida, semiquantitativa i econòmica. Aquest treball va provar la versatilitat dels QDs, convertint-los en una eina única per fer estudis complets d’un estat biològic específic en cèl·lules vives, com ara l’apoptosi. Després, l’enfoc es va posar cap al desenvolupament d’un dispositiu per testar fàrmacs basat en l’ús de QDs i microfluídica utilitzant la mateixa estratègia de marcatge (QD-AnnV). Una sèrie de microcanals interconnectats es van dissenyar amb diferents geometries per dur a terme diverses funcions: el primer per preparar diferents concentracions de camptotecina (fàrmac pro-apoptòtic model), el segon per conjugar els QDs amb l’AnnV i, l’últim, per cultivar les cèl·lules i detectar l’efecte de la camptotecina en aquestes. L’ús de la microfluidica no només va fer els experiments més robustos, donat que tots els passos eren gairebé automatitzats, sinó que va fer el procés més econòmic, ja que la despesa de reactius era menor. L’exitosa detecció en chip de cèl·lules apoptòtiques va demostrar que la combinació d’eines innovadores, com els QDs i la microfluídica, pot donar lloc a una nova generació de plataformes de “punt de cura” (point of care) per testar fàrmacs. Finalment, els QDs es van utilitzar, conjugats amb estructures d’ADN en forma de forquilla anomenades Molecular beacons (MBs), per detectar àcids nucleics. Els MBs estaven modificats amb una molècula extintora de manera que, quan els QDs es conjugaven amb els MBs, la seva fluorescència s’apagava. Aquesta estratègia es va utilitzar per detectar seqüències d’ADN que, quan hibridaven amb els QD-MBs, feien obrir l’estructura de forquilla, fent recuperar la fluorescència dels QDs. A més, aquest procés es va integrar en un canal microfluídic transparent que permetia seguir en temps real tots els esdeveniments: la immobilització dels QDs al canal, la conjugació dels QDs amb els MBs i la hibridació amb l’analit a detectar. Per tant es pot concloure que, els QDs, a més de poder reemplaçar els fluoròfors orgànics, poden ser combinats amb mètodes electroquímics i altres tecnologies com la microfluídica, generant un ventall de biosensors i dispositius versàtils i alternatius.
This PhD thesis describes the use of quantum dots (QDs) in the development of new tools for biological applications. Commercial CdSe/ZnS core/shell QDs with unique optical and electrochemical properties have been used to develop a variety of optical and electrochemical sensors for the detection of proteins, cells and DNA. An optimized protocol to use QDs in immunocytochemistries is described to visualize intracellular proteins such as β-tubulin (microtubules protein), GM130 (golgi apparatus protein) and EEA1 (endosomes protein). The use of QDs provided a considerable stability and robustness to the technique, proving that they can be routinely used as optical labels in immunocytochemistry. In addition, QDs have been successfully used as dual optical/electrochemical labels to detect apoptotic cells. QDs were conjugated with Annexin-V (AnnV), a protein specific to phosphatidilserine, which is translocated to the outer surface of the plasma membrane in apopototic cells. The resulting label (QD-AnnV) provided excellent fluorescence images using confocal microscopy, high resolution images using scanning electron microscopy and a quantitative measurement of apoptotic cells using flow cytometry. Furthermore square wave voltammetry was applied to develop a novel electrochemical biosensor for a fast, semiquantitative and cheap detection of apoptotic cells. This work has proved the versatility of the QDs, making them a unique tool to be used for a complete study of a biological state of cells, such as apoptosis. Later on efforts were put towards the development of a device based on the use of QDs and microfluidics for drug screening using the same labeling strategy (QD-AnnV) and detecting apoptosis as well. Interconnected microchannels were designed with different geometries to perform specific tasks: the first one to prepare different concentrations of camptothecin (the pro-apoptotic drug used as model for drug screening), the second to carry out the conjugation of QDs with AnnV, and the last to culture the cells and detect the effect of the drug on them. The use of microfluidics did not only made the experiments more robust, since all the steps were mostly automated, but also more economic as less amount of reagents were required.. The successful fluorescence detection of apoptotic cells in the chip demonstrated that the combination of novel tools, such as QDs and microfluidics, allows for a new generation of point of care platforms for drug screening. Finally, QDs were also used for the detection of nucleic acids. QDs were conjugated with specific hairpin structures of DNA so called molecular beacons (MBs). MBs were modified with a quencher so, when QDs were conjugated to them, their fluorescence was turned off. This strategy was used to detect specific DNA targets which, while hybridized with the QDs-MBs hybrids, opened the hairpin structure making the fluorescence of QDs recovery from their quenching state. Furthermore, we integrate all this process in a transparent microfluidic channel, which let us monitor in real time all the steps, from the immobilization of QDs on the channel surface, followed by the conjugation with MBs and up to the hybridization of the target analyte. Thus, QDs are not only able to replace organic dyes as fluorescent labels, but they can also be combined with electrochemical methods and microfluidics, generating whole new alternatives in biosensing and drug screening.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Biosensing tool"

1

Kumar, Challa S. S. R., dir. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56333-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

service), ScienceDirect (Online, dir. Single molecule tools : Super-resolution, particle tracking, multiparameter and force based methods. San Diego, CA : Academic Press/Elsevier, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Challa S.S.R. Kumar. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Challa S.S.R. Kumar. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Challa S.S.R. Kumar. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Springer, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lu, Yiqing, Gerard Marriott et Klaus Suhling, dir. Modern Tools for Time-Resolved Luminescence Biosensing and Imaging. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-252-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Biosensing tool"

1

Taib, Hasnanizan, et Syazana Abdullah Lim. « Utilizing Big Data as Analytical Tool for Food Safety Applications ». Dans Biosensing and Micro-Nano Devices, 317–40. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8333-6_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Banerjee, U., R. Iqbal, S. Hazra, N. Satpathi et A. K. Sen. « Droplet Microfluidics—A Tool for Biosensing and Bioengineering Applications ». Dans Advanced Micro- and Nano-manufacturing Technologies, 145–71. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3645-5_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tejpal, Ruchi, Vandana Bhalla et Manoj Kumar. « Aggregation-Induced Emission (AIE) : A Versatile Tool for Chemo/Biosensing ». Dans Principles and Applications of Aggregation-Induced Emission, 351–89. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99037-8_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shamsi, Mohtashim Hassan, et Heinz-Bernhard Kraatz. « Scanning Electrochemical Microscopy : A Multiplexing Tool for Electrochemical DNA Biosensing ». Dans Handbook of Nanoelectrochemistry, 1–18. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15207-3_35-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shamsi, Mohtashim Hassan, et Heinz-Bernhard Kraatz. « Scanning Electrochemical Microscopy : A Multiplexing Tool for Electrochemical DNA Biosensing ». Dans Handbook of Nanoelectrochemistry, 1073–94. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15266-0_35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Castronovo, Matteo, et Denis Scaini. « The Atomic Force Microscopy as a Lithographic Tool : Nanografting of DNA Nanostructures for Biosensing Applications ». Dans DNA Nanotechnology, 209–21. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-142-0_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Basak, Mitali, Shirsendu Mitra et Dipankar Bandyopadhyay. « Advances in Materials, Methods, and Principles of Modern Biosensing Tools ». Dans BioSensing, Theranostics, and Medical Devices, 33–57. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2782-8_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Peng, Xiaolei, Bharath Bangalore Rajeeva, Daniel Teal et Yuebing Zheng. « Plasmofluidics for Biosensing and Medical Diagnostics ». Dans Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis, 213–47. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56333-5_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lu, Ying, Jianbing Ma et Ming Li. « Single-Molecule Biosensing by Fluorescence Resonance Energy Transfer ». Dans Single-Molecule Tools for Bioanalysis, 79–120. Boca Raton : Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003189138-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kim, Jeesu, et Chulhong Kim. « Photoacoustic Imaging Tools for Nanomedicine ». Dans Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis, 459–508. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56333-5_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Biosensing tool"

1

Chiavaioli, Francesco, Francesco Baldini et Ambra Giannetti. « Biosensing Using Optical Fibers : Perspectives and Challenges ». Dans Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C. : Optica Publishing Group, 2022. http://dx.doi.org/10.1364/bgppm.2022.bth1a.1.

Texte intégral
Résumé :
Fiber optics as a special class of guided-wave optics represents a promising, effective and high-performance tool to develop a biosensor with high sensitivity and low limit of detection in the measurement of refractive index changes.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fischer, Bernd M., Morten Franz et Derek Abbott. « T-ray biosensing : a versatile tool for studying low-frequency intermolecular vibrations ». Dans Smart Materials, Nano- and Micro-Smart Systems, sous la direction de Dan V. Nicolau. SPIE, 2006. http://dx.doi.org/10.1117/12.695726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

van der Sneppen, L., G. Ritchie, G. Hancock, F. Ariese, C. Gooijer, W. Ubachs, R. Haselberg, G. W. Somsen et G. J. de Jong. « Evanescent-Wave Cavity Enhanced Spectroscopy as a Tool in Label-Free Biosensing ». Dans Conference on Lasers and Electro-Optics : Applications. Washington, D.C. : OSA, 2010. http://dx.doi.org/10.1364/cleo_apps.2010.amc2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Malabi, Rudzani, Sello Manoto, Saturnin Ombinda-Lemboumba, Malik Maaza et Patience Mthunzi-Kufa. « Surface Plasmon Resonance as a biosensing technique for possible development of a point of care diagnostic tool ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw4a.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schartner, E. P., D. Jin, H. Ebendorff-Heidepriem, J. A. Piper et T. M. Monro. « Lanthanide upconversion nanocrystals within microstructured optical fibres ; a sensitive platform for biosensing and a new tool for nanocrystal characterisation ». Dans Asia Pacific Optical Sensors Conference, sous la direction de John Canning et Gangding Peng. SPIE, 2012. http://dx.doi.org/10.1117/12.915968.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Malabi, Rudzani, Sello L. Manoto, Saturnin Ombinda-Lemboumba, Malik Maaza et Patience Mthunzi-Kufa. « Detection of biological analytes using surface plasmon resonance as a biosensing technique for possible development of a point of care diagnostic tool ». Dans Plasmonics in Biology and Medicine XVI, sous la direction de Tuan Vo-Dinh, Ho-Pui A. Ho et Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2509850.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kasambe, P. V., K. S. Bhole et D. V. Bhoir. « Design and Simulation of High SNR Varying Thickness Embedded Strain Sensing Polymer Microcantilever for Biosensing Applications ». Dans ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85731.

Texte intégral
Résumé :
To convert induced surface stress of a bio-functionalized microcantilever into an electrical signal; U shaped piezoresistive detection technique is mostly preferred over other techniques due to its several advantages. But the inherent disadvantage of this technique is thermal stress sensitivity as a source of noise which reduces its signal to noise ratio [SNR]. Polymer microcantilever has larger stress sensitivity due to its low youngs modulus of elasticity. Varying thickness cantilever satisfy this desired criteria as compared to other configurations of cantilever and has high resonance frequency. Taking all these aspects into consideration, the objectives of proposed study is to design and simulate multilayer varying thickness microcantilever. The numerical analysis is performed using CoventorWare a commercial MEMS design and FEM Multiphysics tool. It is observed that the SNR of the varying thickness microcantilevers design is improved by more than 70%, over normal rectangular design.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Buiculescu, Raluca, et Nikos A. Chaniotakis. « Semiconductor quantum dots as highly effective biosensing tools ». Dans 2012 International Semiconductor Conference (CAS 2012). IEEE, 2012. http://dx.doi.org/10.1109/smicnd.2012.6400690.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Xin, Yingxin Li, Yulong Zhang, Zuhui Chen, Shi Liu, Richard D. Nelson et John C. LaRue. « Design of Microcontroller Based Test Bench for a Multichannel Integrated Biosensor Chip ». Dans ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206841.

Texte intégral
Résumé :
The planar microelectrode array (pMEA) is an important tool for non-invasive recording in the fields of neuroscience and biosensing. It can be used for extra-cellular measurement of the induced voltage on an electrode underneath a cell upon the occurrence of an action potential. With the principle of capacitive coupling, the sensed electrode signal amplitudes typically range between 100 μV and 1 mV, depending on the cell type. Due to the small amplitude of original neural signals, signal conditioning and processing microelectronics units are necessary to integrate with the pMEA sensor for achievement of best measurement performance. Introducing fully customized ASIC into the microelectrode array substrate provides an efficient solution, which establishes the possibility of creating the biosensor system on chip (SoC) with a large number of sensing-sites for simultaneous measurement without introducing significant noise from the signal conditioning and processing circuitry [1]. In this research work, we have developed a fully customized biosensor chip for sensing the propagation of action potentials. With the paralleled multiple sub-circuits, this prototype multi-site planar microelectrode array biosensor integrates 24 (4 × 6) microelectrode array sensing sites, 24 parallel analog neural signal buffers and a shared OTA based high gain amplifier on the same substrate. Figure 1 depicts the biosensor chip architecture and the functional blocks of the biosensor system setup. The prototyped biosensor chip was fabricated by MOSIS using AMI C5 0.5μm, double poly, triple metal layer CMOS technology. The electroless gold plating process post-CMOS processing and packaging techniques were applied to the biosensor chip to promote the biocompatibility and stability in the aqueous cell culture environment. To interface the biosensor chip with PC, a microcontroller based electronic system is necessary to implement the functions of A/D conversion, biosensor chip control signal generation, digital signal processing and data/command communication between biosensor chip and GUI software running on PC. In this research work, a Motorola ColdFire MCF5307 microcontroller based electronic system was setup to serve as the interface between the biosensor chip and PC, which realized the full functions listed above. The firmware running on MCF5307 microcontroller was implemented with ColdFire assembly language where on the PC client Matlab platform was chosen to simply the software design work.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hastanin, Jurij, Cédric Lenaerts, Karl Fleury-Frenette, Aline Roobroeck, Sylvain Desprez et A. Hastanin. « Sensitivity-enhanced localized surface plasmon resonance biosensing format dedicated for point-of-care testing tools ». Dans Smart Biomedical and Physiological Sensor Technology XVIII, sous la direction de Brian M. Cullum, Eric S. McLamore et Douglas Kiehl. SPIE, 2021. http://dx.doi.org/10.1117/12.2585299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie