Articles de revues sur le sujet « Biosensing platform »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Biosensing platform.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Biosensing platform ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kanaya, Haruichi. « Battery-less biosensing platform ». Impact 2019, no 10 (30 décembre 2019) : 87–89. http://dx.doi.org/10.21820/23987073.2019.10.87.

Texte intégral
Résumé :
As fossil fuel levels are exhausted, building a more sustainable world is an issue that is coming to the fore as a crucial consideration in the development of new technology. The energy needs of the planet's population are immense, and an environmentally friendly source of energy is desperately needed. Energy harvesting from renewable sources is not a new concept - windmills have been around since the first century - but the desire to harness renewable energy has intensified. Energy harvesting technology is the term given to technology used for collecting unused energy from the surrounding environment and converting it into electrical power. Solar, wind and hydroelectric power are perhaps the best-known of these technologies. However, there are many other forms of energy that are under developed and hold much potential for powering the future. These include vibration, pressure, heat and temperature difference. While large-scale power generation cannot be realised using these sources due to their low levels, devices with low power demands may be able to harness such energy sources, potentially eliminating the need for an external power source. Dr Haruichi Kanaya at Kyushu University is leading a team investigating wireless technology.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Shah, Sahil, Joseph Smith, John Stowell et Jennifer Blain Christen. « Biosensing platform on a flexible substrate ». Sensors and Actuators B : Chemical 210 (avril 2015) : 197–203. http://dx.doi.org/10.1016/j.snb.2014.12.075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mondal, Jagannath, Jeong Man An, Sachin S. Surwase, Kushal Chakraborty, Sabuj Chandra Sutradhar, Joon Hwang, Jaewook Lee et Yong-Kyu Lee. « Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform ». Biosensors 12, no 9 (6 septembre 2022) : 731. http://dx.doi.org/10.3390/bios12090731.

Texte intégral
Résumé :
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lin, Gungun, Denys Makarov et Oliver G. Schmidt. « Magnetic sensing platform technologies for biomedical applications ». Lab on a Chip 17, no 11 (2017) : 1884–912. http://dx.doi.org/10.1039/c7lc00026j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Donaldson, Laurie. « New biosensing platform for Covid-19 detection ». Materials Today 44 (avril 2021) : 1. http://dx.doi.org/10.1016/j.mattod.2021.01.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gai, Panpan, Xinke Kong, Li Pu, Mengli Zhang, Dangqiang Zhu et Feng Li. « Biofuel Cell-Driven Robust Electrochemiluminescence Biosensing Platform ». Analytical Chemistry 93, no 34 (18 août 2021) : 11745–50. http://dx.doi.org/10.1021/acs.analchem.1c01979.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Navarro, Jesús, Javier Galbán et Susana de Marcos. « A label-free platform for dopamine biosensing ». Bioanalysis 10, no 1 (janvier 2018) : 11–21. http://dx.doi.org/10.4155/bio-2017-0161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ashiba, Hiroki. « V-Trench Biosensor : Microfluidic Plasmonic Biosensing Platform ». International Journal of Automation Technology 12, no 1 (5 janvier 2018) : 73–78. http://dx.doi.org/10.20965/ijat.2018.p0073.

Texte intégral
Résumé :
A V-trench biosensor is a sensitive biosensing platform utilizing fluorescence enhancement induced by surface plasmon resonance (SPR). Instruments for the SPR-assisted fluorescence assays, which were complicated and bulky, are drastically simplified and miniaturized by employing sensor chips equipped with prism-integrated microfluidic channels. In this review, the working principle, sensor design, and examples of virus detection of the V-trench biosensor are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Morales-Narváez, Eden, et Arben Merkoçi. « Graphene Oxide as an Optical Biosensing Platform ». Advanced Materials 24, no 25 (25 mai 2012) : 3298–308. http://dx.doi.org/10.1002/adma.201200373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hsiao, Shu-Wei, Yu-Jen Chen et Jung-Tang Huang. « Portable self-flowing platform for filtration separation of samples ». Analytical Methods 13, no 32 (2021) : 3605–13. http://dx.doi.org/10.1039/d1ay00716e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Parvez Arnob, Md Masud, et Wei-Chuan Shih. « 3D plasmonic nanoarchitecture as an emerging biosensing platform ». Nanomedicine 12, no 21 (novembre 2017) : 2577–80. http://dx.doi.org/10.2217/nnm-2017-0258.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Lee, Taeha, Changheon Kim, Jiyeon Kim, Jung Bae Seong, Youngjeon Lee, Seokbeom Roh, Da Yeon Cheong et al. « Colorimetric Nanoparticle-Embedded Hydrogels for a Biosensing Platform ». Nanomaterials 12, no 7 (30 mars 2022) : 1150. http://dx.doi.org/10.3390/nano12071150.

Texte intégral
Résumé :
Hydrogels containing colorimetric nanoparticles have been used for ion sensing, glucose detection, and microbial metabolite analyses. In particular, the rapid chemical reaction owing to both the hydrogel form of water retention and the sensitive color change of nanoparticles enables the rapid detection of target substances. Despite this advantage, the poor dispersibility of nanoparticles and the mechanical strength of nanoparticle–hydrogel complexes have limited their application. In this study, we demonstrate a milliliter agarose gel containing homogeneously synthesized polyaniline nanoparticles (PAni-NPs), referred to as PAni-NP–hydrogel complexes (PNHCs). To fabricate the optimal PNHC, we tested various pH solvents based on distilled water and phosphate-buffered saline and studied the colorimetric response of the PNHC with thickness. The colorimetric response of the prepared PNHC to the changes in the pH of the solution demonstrated excellent linearity, suggesting the possibility of using PNHC as a pH sensor. In addition, it was verified that the PNHC could detect minute pH changes caused by the cancer cell metabolites without cytotoxicity. Furthermore, the PNHC can be stably maintained outside water for approximately 12 h without deformation, indicating that it can be used as a disposable patch-type wearable biosensing platform.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Sreekanth, Kandammathe Valiyaveedu, Yunus Alapan, Mohamed ElKabbash, Efe Ilker, Michael Hinczewski, Umut A. Gurkan, Antonio De Luca et Giuseppe Strangi. « Extreme sensitivity biosensing platform based on hyperbolic metamaterials ». Nature Materials 15, no 6 (28 mars 2016) : 621–27. http://dx.doi.org/10.1038/nmat4609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Baikova, Tatiana V., Pavel A. Danilov, Sergey A. Gonchukov, Valery M. Yermachenko, Andrey A. Ionin, Roman A. Khmelnitskii, Sergey I. Kudryashov et al. « Diffraction microgratings as a novel optical biosensing platform ». Laser Physics Letters 13, no 7 (27 mai 2016) : 075602. http://dx.doi.org/10.1088/1612-2011/13/7/075602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hu, Peng, Lei Han, Chengzhou Zhu et Shao Jun Dong. « Nanoreactors : a novel biosensing platform for protein assay ». Chemical Communications 49, no 17 (2013) : 1705. http://dx.doi.org/10.1039/c2cc37734a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Fallatah, Ahmad, et Sonal Padalkar. « Ceria Nanostructures as Biosensing Platform for Glucose Sensing ». ECS Transactions 80, no 10 (25 octobre 2017) : 1269–75. http://dx.doi.org/10.1149/08010.1269ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Patel, Manoj K., Md Azahar Ali, Ved V. Agrawal, Z. A. Ansari, S. G. Ansari et B. D. Malhotra. « Nanostructured magnesium oxide biosensing platform for cholera detection ». Applied Physics Letters 102, no 14 (8 avril 2013) : 144106. http://dx.doi.org/10.1063/1.4800933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jeykumari, D. R. Shobha, et S. Sriman Narayanan. « Bienzyme Based Biosensing Platform Using Functionalized Carbon Nanotubes ». Journal of Nanoscience and Nanotechnology 9, no 9 (1 septembre 2009) : 5411–16. http://dx.doi.org/10.1166/jnn.2009.1169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Voccia, Diego, Francesca Bettazzi, Serena Laschi, Cristina Gellini, Giangaetano Pietraperzia, Luigi Falciola, Valentina Pifferi et al. « Nanostructured Photoelectrochemical Biosensing Platform for Cancer Biomarker Detection ». Procedia Technology 27 (2017) : 144–45. http://dx.doi.org/10.1016/j.protcy.2017.04.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tong, Jinguang, Li Jiang, Huifang Chen, Yiqin Wang, Ken-Tye Yong, Erik Forsberg et Sailing He. « Graphene–bimetal plasmonic platform for ultra-sensitive biosensing ». Optics Communications 410 (mars 2018) : 817–23. http://dx.doi.org/10.1016/j.optcom.2017.11.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Xu, Tailin, Wanxin Shi, Jinrong Huang, Yongchao Song, Feilong Zhang, Li-Ping Xu, Xueji Zhang et Shutao Wang. « Superwettable Microchips as a Platform toward Microgravity Biosensing ». ACS Nano 11, no 1 (22 décembre 2016) : 621–26. http://dx.doi.org/10.1021/acsnano.6b06896.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Selnihhin, Denis, Steffen Møller Sparvath, Søren Preus, Victoria Birkedal et Ebbe Sloth Andersen. « Multifluorophore DNA Origami Beacon as a Biosensing Platform ». ACS Nano 12, no 6 (15 mai 2018) : 5699–708. http://dx.doi.org/10.1021/acsnano.8b01510.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Xu, Wendao, Lijuan Xie, Jianfei Zhu, Longhua Tang, Ranjan Singh, Chen Wang, Yungui Ma, Hou-Tong Chen et Yibin Ying. « Terahertz biosensing with a graphene-metamaterial heterostructure platform ». Carbon 141 (janvier 2019) : 247–52. http://dx.doi.org/10.1016/j.carbon.2018.09.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Vengasandra, Srikanth, Yuankun Cai, David Grewell, Joseph Shinar et Ruth Shinar. « Polypropylene CD-organic light-emitting diode biosensing platform ». Lab on a Chip 10, no 8 (2010) : 1051. http://dx.doi.org/10.1039/b923689a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zhang, Xiaowei, Jing Li, Chaogui Chen, Baohua Lou, Lingling Zhang et Erkang Wang. « A self-powered microfluidic origami electrochemiluminescence biosensing platform ». Chemical Communications 49, no 37 (2013) : 3866. http://dx.doi.org/10.1039/c3cc40905h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Dutta, Sibasish, Koushik Saikia et Pabitra Nath. « Smartphone based LSPR sensing platform for bio-conjugation detection and quantification ». RSC Advances 6, no 26 (2016) : 21871–80. http://dx.doi.org/10.1039/c6ra01113f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Pai, Alex, Aroutin Khachaturian, Stephen Chapman, Alexander Hu, Hua Wang et Ali Hajimiri. « A handheld magnetic sensing platform for antigen and nucleic acid detection ». Analyst 139, no 6 (2014) : 1403–11. http://dx.doi.org/10.1039/c3an01947k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Avila-Huerta, Mariana D., Edwin J. Ortiz-Riaño, Diana L. Mancera-Zapata et Eden Morales-Narváez. « Real-Time Pathogen Determination by Optical Biosensing Based on Graphene Oxide ». Proceedings 60, no 1 (2 novembre 2020) : 59. http://dx.doi.org/10.3390/iecb2020-07016.

Texte intégral
Résumé :
Pathogenic bacterial contamination in food is a public health concern. It represents a health and safety consumer risk that could cause several diseases and even death. Currently, the food industry uses culture-based assays to determine the presence of pathogens as a gold standard method. Although this method is highly accurate, it is often time-consuming and expensive. In this regard, the development of biosensing platforms results as an alternative for the reduction of time and cost of pathogenic bacteria detection in food. In this work, we report the development of a single-step bacterial detection platform based on graphene oxide. Non-radiative energy transfer between graphene oxide coated microplates (GOMs) and photoluminescence bioprobes (PLBs) is presented in absence of the target analyte, but in presence of analyte, PLBs exhibit strong photoluminescence due to the distance between GOMs and PLBs. These PLBs are based on quantum dot (Qds)-antibody (Ab) complexes, thereby resulting as a biorecognition and interrogation element. Escherichia coli was used as model analyte. In optimal conditions, the bacterial detection platform reached a limit of detection around 2 CFU mL−1 in 30 min, enabling a fast and sensitive alternative for bacterial detection. The biosensing platform was also used to test food industry samples achieving a qualitative response, that allows determining the presence of E. coli during the first 30 min of the assay. This biosensing strategy potentially offers a low-cost and quick option for the food industry to assure the quality of the product and consumer safety.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dong, Yuanyuan, Chenxing Xu et Lei Zhang. « Construction of 3D Bi/ZnSnO3 hollow microspheres for label-free highly selective photoelectrochemical recognition of norepinephrine ». Nanoscale 13, no 20 (2021) : 9270–79. http://dx.doi.org/10.1039/d1nr00792k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Li, Jingjing, Long Jiang, Xu Wang, Zhixue Zhu, Qingxin Zhang, Su Liu, Yu Wang et Jiadong Huang. « Ultrasensitive electrochemical aptasensor based on palindromic sequence mediated bidirectional SDA and a DNAzyme walker for kanamycin detection ». New Journal of Chemistry 46, no 21 (2022) : 10394–401. http://dx.doi.org/10.1039/d2nj01368a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Asefifeyzabadi, Narges, Grace Durocher, Kizito-Tshitoko Tshilenge, Tanimul Alam, Lisa M. Ellerby et Mohtashim H. Shamsi. « PNA microprobe for label-free detection of expanded trinucleotide repeats ». RSC Advances 12, no 13 (2022) : 7757–61. http://dx.doi.org/10.1039/d2ra00230b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lee, Sang-Nam, Jin-Ha Choi, Hyeon-Yeol Cho et Jeong-Woo Choi. « Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals ». Pharmaceutics 12, no 1 (7 janvier 2020) : 50. http://dx.doi.org/10.3390/pharmaceutics12010050.

Texte intégral
Résumé :
The biosensing platform is noteworthy for high sensitivity and precise detection of target analytes, which are related to the status of cells or specific diseases. The modification of the transducers with metallic nanoparticles (MNPs) has attracted attention owing to excellent features such as improved sensitivity and selectivity. Moreover, the incorporation of MNPs into biosensing systems may increase the speed and the capability of the biosensors. In this review, we introduce the current progress of the developed cell-based biosensors, cell chip, based on the unique physiochemical features of MNPs. Mainly, we focus on optical intra/extracellular biosensing methods, including fluorescence, localized surface plasmon resonance (LSPR), and surface-enhanced Raman spectroscopy (SERS) based on the coupling of MNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of new MNP-based cell chip platforms for pharmaceutical applications such as drug screening and toxicological tests in the near future.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Cheng, Cheng, Mark H. Harpster et John Oakey. « Convection-driven microfabricated hydrogels for rapid biosensing ». Analyst 145, no 18 (2020) : 5981–88. http://dx.doi.org/10.1039/d0an01069c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Long, Lingfeng, Yun Hu, Le Xie, Fubao Sun, Zhenghong Xu et Jinguang Hu. « Constructing a bacterial cellulose-based bacterial sensor platform by enhancing cell affinity via a surface-exposed carbohydrate binding module ». Green Chemistry 23, no 23 (2021) : 9600–9609. http://dx.doi.org/10.1039/d1gc03097c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yang, Wen, Jianniao Tian, Lijun Wang, Shui Fu, Hongyun Huang, Yanchun Zhao et Shulin Zhao. « A new label-free fluorescent sensor for human immunodeficiency virus detection based on exonuclease III-assisted quadratic recycling amplification and DNA-scaffolded silver nanoclusters ». Analyst 141, no 10 (2016) : 2998–3003. http://dx.doi.org/10.1039/c6an00184j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Lee, Kyungyeon, Taehee Yoon, Hee-seon Yang, Sunyeong Cha, Yong-Pil Cheon, Leila Kashefi-Kheyrabadi et Hyo-Il Jung. « All-in-one platform for salivary cotinine detection integrated with a microfluidic channel and an electrochemical biosensor ». Lab on a Chip 20, no 2 (2020) : 320–31. http://dx.doi.org/10.1039/c9lc01024f.

Texte intégral
Résumé :
An all-in-one platform is presented to basically collect the human saliva and directly deliver it onto an electrochemical biosensing surface. Salivary cotinine is accurately analyzed with the aid of the meticulously developed platform.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Xi, Sunfan, Luhui Wang, Meng Cheng, Mengyang Hu, Rong Liu et Yafei Dong. « Developing a DNA logic gate nanosensing platform for the detection of acetamiprid ». RSC Advances 12, no 42 (2022) : 27421–30. http://dx.doi.org/10.1039/d2ra04794b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhang, Lei, Cuisong Zhou, Jiaojiao Luo, Yuyin Long, Congmin Wang, Tingting Yu et Dan Xiao. « A polyaniline microtube platform for direct electron transfer of glucose oxidase and biosensing applications ». Journal of Materials Chemistry B 3, no 6 (2015) : 1116–24. http://dx.doi.org/10.1039/c4tb01604a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Hua, Zulin, Qin Qin, Xue Bai, Xin Huang et Qi Zhang. « An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol ». RSC Advances 6, no 30 (2016) : 25427–34. http://dx.doi.org/10.1039/c5ra27563f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lu, Xianbo, Xue Wang, Jing Jin, Qing Zhang et Jiping Chen. « Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications ». Biosensors and Bioelectronics 62 (décembre 2014) : 134–39. http://dx.doi.org/10.1016/j.bios.2014.06.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhu, Zhixue, Qianqian Pei, Jingjing Li, Qingxin Zhang, Wanqing Xu, Yu Wang, Su Liu et Jiadong Huang. « Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria ». Analytical Methods 14, no 15 (2022) : 1490–97. http://dx.doi.org/10.1039/d1ay02103f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Byrne, Daragh, Yan Zhao, Peter O'Brien et Colette McDonagh. « Direct spray deposition of silver nanoparticle films for biosensing applications ». RSC Advances 5, no 77 (2015) : 62836–43. http://dx.doi.org/10.1039/c5ra10898e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Byrne, Daragh, et Colette McDonagh. « In situ generation of plasmonic cavities for high sensitivity fluorophore and biomolecule detection ». Nanoscale 10, no 39 (2018) : 18555–64. http://dx.doi.org/10.1039/c8nr04764b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lou, Jing, Zhaoyin Wang, Xiao Wang, Jianchun Bao, Wenwen Tu et Zhihui Dai. « Highly sensitive “signal-on” electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction ». Chemical Communications 51, no 78 (2015) : 14578–81. http://dx.doi.org/10.1039/c5cc06156c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Manna, Bhaskar, et C. Retna Raj. « Covalent functionalization and electrochemical tuning of reduced graphene oxide for the bioelectrocatalytic sensing of serum lactate ». Journal of Materials Chemistry B 4, no 26 (2016) : 4585–93. http://dx.doi.org/10.1039/c6tb00721j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Alexander Powell, Jeffery, Krishnan Venkatakrishnan et Bo Tan. « A primary SERS-active interconnected Si-nanocore network for biomolecule detection with plasmonic nanosatellites as a secondary boosting mechanism ». RSC Advances 7, no 53 (2017) : 33688–700. http://dx.doi.org/10.1039/c7ra01970j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mao, Xiaoxia, Dongsheng Mao, Juanjuan Jiang, Benyue Su, Guifang Chen et Xiaoli Zhu. « A semi-dry chemistry hydrogel-based smart biosensing platform for on-site detection of metal ions ». Lab on a Chip 21, no 1 (2021) : 154–62. http://dx.doi.org/10.1039/d0lc00855a.

Texte intégral
Résumé :
A semi-dry chemistry-based biosensing platform was developed for detection of metal ions by intelligent stimulus-responsive DNA hydrogel. The platform combines the advantages of liquid (wet) chemistry and solid (dry) chemistry, providing a promising approach for on-site testing.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bhunia, Subhajit, Nilanjan Dey, Anirban Pradhan et Santanu Bhattacharya. « A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water ». Chemical Communications 54, no 54 (2018) : 7495–98. http://dx.doi.org/10.1039/c8cc02865f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhao, Jiali, Zhen Tan, Liu Wang, Chunyang Lei et Zhou Nie. « A ligation-driven CRISPR–Cas biosensing platform for non-nucleic acid target detections ». Chemical Communications 57, no 57 (2021) : 7051–54. http://dx.doi.org/10.1039/d1cc02578c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Liu, Jia-Li, Ying Zhuo, Ya-Qin Chai et Ruo Yuan. « BSA stabilized tetraphenylethylene nanocrystals as aggregation-induced enhanced electrochemiluminescence emitters for ultrasensitive microRNA assay ». Chemical Communications 55, no 67 (2019) : 9959–62. http://dx.doi.org/10.1039/c9cc04660g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie