Littérature scientifique sur le sujet « Bionanocompositi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Bionanocompositi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Bionanocompositi"
Modi, Vaibhav, et Antti J. Karttunen. « Molecular Dynamics Simulations on the Elastic Properties of Polypropylene Bionanocomposite Reinforced with Cellulose Nanofibrils ». Nanomaterials 12, no 19 (27 septembre 2022) : 3379. http://dx.doi.org/10.3390/nano12193379.
Texte intégralZakuwan, Siti, et Ishak Ahmad. « Synergistic Effect of Hybridized Cellulose Nanocrystals and Organically Modified Montmorillonite on κ-Carrageenan Bionanocomposites ». Nanomaterials 8, no 11 (24 octobre 2018) : 874. http://dx.doi.org/10.3390/nano8110874.
Texte intégralIndarti, Eti, Arisa Sri Marlita et Zaidiyah Zaidiyah. « SIFAT TRANSPARANSI DAN PERMEABILITAS FILM BIONANOKOMPOSIT POLYLACTIC ACID DAN POLYCAPROLACTONE DENGAN PENAMBAHAN NANOCRYSTALLINE CELLULOSE SEBAGAI PENGISI [Transparency and permeability properties of Bionanocomposite Film of Polylactic Acid and Polycaprolactone, and Nanocrystalline Cellulose as a Filler] ». Jurnal Teknologi & ; Industri Hasil Pertanian 25, no 2 (4 septembre 2020) : 81. http://dx.doi.org/10.23960/jtihp.v25i2.81-89.
Texte intégralKassa, Amel, Aida Benhamida, Mustapha Kaci et Stéphane Bruzaud. « Effects of montmorillonite, sepiolite, and halloysite clays on the morphology and properties of polycaprolactone bionanocomposites ». Polymers and Polymer Composites 28, no 5 (23 septembre 2019) : 338–47. http://dx.doi.org/10.1177/0967391119877040.
Texte intégralShazleen, Siti Shazra, Fatimah Athiyah Sabaruddin, Yoshito Ando et Hidayah Ariffin. « Optimization of Cellulose Nanofiber Loading and Processing Conditions during Melt Extrusion of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Bionanocomposites ». Polymers 15, no 3 (28 janvier 2023) : 671. http://dx.doi.org/10.3390/polym15030671.
Texte intégralUddin, Md Nizam, Puttagounder S. Dhanasekaran et Ramazan Asmatulu. « Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications ». Progress in Biomaterials 8, no 3 (septembre 2019) : 211–21. http://dx.doi.org/10.1007/s40204-019-00123-1.
Texte intégralRizal, Samsul, E. M. Mistar, A. A. Oyekanmi, Abdul Khalil H.P.S., Tata Alfatah, N. G. Olaiya et C. K. Abdullah. « Propionic Anhydride Modification of Cellulosic Kenaf Fibre Enhancement with Bionanocarbon in Nanobiocomposites ». Molecules 26, no 14 (13 juillet 2021) : 4248. http://dx.doi.org/10.3390/molecules26144248.
Texte intégralRâpă, Maria, Laura Mihaela Stefan, Traian Zaharescu, Ana-Maria Seciu, Anca Andreea Țurcanu, Ecaterina Matei, Andra Mihaela Predescu, Iulian Antoniac et Cristian Predescu. « Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility ». Applied Sciences 10, no 7 (26 mars 2020) : 2265. http://dx.doi.org/10.3390/app10072265.
Texte intégralDebons, Nicolas, Kenta Matsumoto, Noriyuki Hirota, Thibaud Coradin, Toshiyuki Ikoma et Carole Aimé. « Magnetic Field Alignment, a Perspective in the Engineering of Collagen-Silica Composite Biomaterials ». Biomolecules 11, no 5 (18 mai 2021) : 749. http://dx.doi.org/10.3390/biom11050749.
Texte intégralCosta da Silva, Milena, Sara Verusca de Oliveira et Edcleide Maria Araújo. « Structural and Thermomechanical Evaluation of Bionanocomposites Obtained from Biodegradable Polymers with a Organoclay ». Materials Science Forum 775-776 (janvier 2014) : 178–82. http://dx.doi.org/10.4028/www.scientific.net/msf.775-776.178.
Texte intégralThèses sur le sujet "Bionanocompositi"
Iozzino, Valentina. « PLA-based bionanocomposites with modulated degradation rate : preparation and processing by microinjection molding ». Doctoral thesis, Universita degli studi di Salerno, 2019. http://elea.unisa.it:8080/xmlui/handle/10556/4646.
Texte intégral... The aim of this work has been to obtain bionanocomposites with a degradation rate which can be modulated in time, so that it can be possible to decide a priori the time after which the material will disappear in a given environment. At the same time, the material should preserve its properties during processing. Several mixtures of PLA (4032D, 4060D) and LDH of cation composition Mg2Al organo-modified with organic acids (succinc, fumaric and ascorbic acid) have been obtained by extrusion. From the extruded materials there were obtained films by compression molding; these films were then subjected to hydrolysis tests. The experimental results show that for samples loaded with LDH-organic acid (in particular LDH-succinic acid), there is an increase in the time needed for degradation, and a decrease in this time for samples loaded with organic acid alone. From the selected material (PLA + LDH-succinic acid) and from pure PLA, biphasic samples (half amorphous and the other half crystalline) have been obtained by micro-injection molding. Also in this case, the experimental results show an increase for the loaded samples in the time needed for degradation compared to pure PLA both for the crystal phase and for the amorphous one, and in particular the presence of a degradation profile within the same sample is observed. [edited by Author]
XVI n.s. (XXX ciclo)
He, Jing. « Des (bio)nano-composites utilisés dans le traitement d'eaux contaminées par de l'arsenic/gentamicine ou pour des applications médicales ». Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00988092.
Texte intégralBelda, Marín Cristina. « Silk bionanocomposites : design, characterization and potential applications ». Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2570.
Texte intégralSilk-based bionancompoistes have attracted a growing interest in numerous applications, particularly in the biomedical field, owing to their ability to combine the specific properties of silk fibroin (biodegradability, biocompatibility and interesting mechanical properties) and nanoparticles (NPs). This work aims to (i) develop a straightforward, yet efficient, methodology to design various silk bionanocomposite materials; (ii) provide an in-depth characterization regarding the silk/NPs interface and (iii) provide potential applications which are relevant for the use of these bionanocompoistes. To this end, gold (Au NPs), silver (Ag NPs) and iron oxide (IONPs) NPs are used as model nanomaterials due to their well-known properties. The successful design of silk bionancocomposite electrospun mats, hydrogels, cryogels, sponges and 3D printed structures is described. An in-depth characterization, including in situ (during hydrogel formation) and ex situ (once hydrogel is formed), of silk hydrogel bionanocomposites do not reveal any noticeable structural changes of silk hydrogels, while their biocompatibility is not impacted by the incorporation of NPs. Finally, a potential application for each bionanocomposite is presented. In a biomedical perspective, silk-Ag NPs hydrogels bionanocomposites show significant antibacterial activity. Silk-IONPs hydrogel bionanocomposites are implanted into rat’s brain allowing a good monitoring of the implant by magnetic resonance imaging and inducing a brain regeneration process up to 3 months. In depollution perspective, silk-Au NPs hydrogel bionanocomposites show remarkable ability to adsorb and catalyze the reduction of methylene blue dye by sodium borohydride
Silva, Mariana Rodrigues Ferreira da. « Active and intelligent bionanocomposites for food packaging ». Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22400.
Texte intégralA produção de plásticos, baseados no uso de combustíveis fósseis, está a aumentar e estima-se que esta tendência continuará no futuro com impactos ambientais consideráveis. Os bioplásticos são uma alternativa amiga do ambiente. Biopolímeros como quitosana já foram adotados com sucesso para produzir bioplásticos que agem como substitutos do plástico em embalagem. A quitosana foi selecionada devido às suas numerosas vantagens para embalagem alimentar, principalmente devido às suas atividades antioxidantes e antimicrobiana. Por outro lado, o dióxido de titânio foi selecionado como aditivo devido à sua capacidade de retirar oxigénio do ambiente e devido à possibilidade de poder ser facilmente funcionalizado para a formação de um sensor. Isto permitiria a formação de uma embalagem ativa e inteligente na proteção do alimento. Assim, nanopartículas homogéneas arredondadas e monofásicas de anatase de dióxido de titânio (TiO2) foram usadas para melhorar os filmes de quitosana, criando um bionanocompósito. Estas nanopartículas de TiO2 foram produzidas por síntese hidrotermal, tendo sido otimizadas as condições de síntese, como a temperatura e tempo, para selecionar as condições que originam as nanopartículas com as caraterísticas desejadas. As condições escolhidas para a produção do TiO2 foram 200 ºC e 2,5 h devido ao tamanho, dispersão e tipo de nanoparticulas de TiO2 produzidas. Os filmes de quitosana foram preparados com cerca de 9 mg de nanopartículas de TiO2. Para criar uma embalagem ativa e inteligente compostos fenólicos (principalmente antocianinas) de arroz preto (Oryza sativa L. Indica) foram adicionados para funcionalizar o TiO2 (4,1 mg de extrato por filme). Os filmes foram caracterizados em relação à sua atividade antioxidante, humidade, solubilidade, hidrofobicidade da superfície e propriedades mecânicas. Os melhores resultados foram obtidos nos filmes com nanopartículas e compostos fenólicos e foi demonstrado que a forma como cada componente é adicionado altera as suas propriedades. Os melhores resultados foram o aumento da atividade antioxidante, diminuição da solubilidade e da elasticidade, elongação e resistência à tração no filme composto por pigmento e TiO2,. No entanto nestes últimos três parâmetros, a sua diminuição pode ser um aspeto positivo ou negativo dependendo das propriedades desejadas para o filme e o produto alimentar a embalar
Plastic production based in fossil fuels is rising, and predictions supports it continuous and enhanced use, with consequent environmental damage. Bioplastics are an environmentally friendly alternative. Biopolymers as chitosan have already been successfully used to produce bioplastics that act as plastic substitutes in packaging. Chitosan was chosen for its numerous advantages for food packaging namely due to its antioxidant and antimicrobial activities. On the other hand, TiO2 was selected due to its oxygen scavenging ability and due to its possibility to be easily functionalised to create a sensor. This would allow the construction of an active and intelligent packaging for food protection. Thus, monophasic anatase homogeneous round-shaped nanoparticles of titanium dioxide (TiO2) were used as filler to improve the chitosan films, creating a bionanocomposite. These TiO2 nanoparticles were produced via a hydrothermal method and its synthesis was optimized testing various reaction times and temperatures to find the conditions that create TiO2 nanoparticles with the desired features. The conditions used for the chosen TiO2 were 200 ºC and 2.5 h due to the size, dispersion and TiO2 of the nanoparticles produced. The chitosan films were prepared with about 9 mg of TiO2 nanoparticles. To develop an active and intelligent food packaging, phenolic compounds (mainly anthocyanins) from black rice (Oryza sativa L. Indica) were used to functionalise the TiO2 (4.1 mg of extract in each film). The films were characterised regarding its antioxidant activity, humidity, solubility, surface hydrophilicity and mechanical properties. The best results were from films with both nanoparticles and phenolic compounds, and it was established that the order in which they are added alters its properties. The more notable improvements are an increase in antioxidant activity and a decrease in solubility, elasticity, elongation and tensile strength in the film containing pigment and TiO2. However, the reduction of the later three properties can either be positive or negative, it depends on desired properties for the film for a chosen food product
Nechyporchuk, Oleksandr. « Nanofibres de cellulose pour la production de bionanocomposites ». Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI056/document.
Texte intégralOne of the main challenges in the context of biocomposites development is to replace petroleum-based materials with bio-based. Because of their natural origin, relatively high strength and the ability to form transparent products, cellulose nanofibers have a large potential for application in the composite materials. This work was focused primarily on the optimization of cellulose nanofiber production methods using biochemical and mechanical treatments, secondly on their rheological and structural properties in an aqueous medium and thirdly on the production of latex-based composites. The questions of homogeneous dispersion of cellulose nanofibers in the matrix and the interactions between these components for the purpose of matrix reinforcement are particularly addressed
Mousa, Mohanad Hashim. « Experimental Characterisation and Modelling of Sustainable Multiscaled Bionanocomposites ». Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75691.
Texte intégralPiazzolla, Caterina. « Study of plasticised PLA based bionanocomposites reinforced with nanofibrillated cellulose ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Trouver le texte intégralVassalli, J. Todd Grant Sheila Ann. « Development of electrospun synthetic bioabsorbable fibers for a novel bionanocomposite hernia repair material ». Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/5631.
Texte intégralBettini, Giacomo. « Bionanocomposites based on Plla, Pcl and montmorillonite : synthesis, characterization and crystallization ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10025/.
Texte intégralTouati, Souad. « Elaboration d'aérogels d'hydroxydes doubles lamellaires et de bionanocomposites à base d'alginate ». Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00975932.
Texte intégralLivres sur le sujet "Bionanocompositi"
Aimé, Carole, et Thibaud Coradin, dir. Bionanocomposites. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.
Texte intégralMousa, Mohanad, et Yu Dong. Multiscaled PVA Bionanocomposite Films. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8771-9.
Texte intégralVisakh P. M., dir. Rubber Based Bionanocomposites. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48806-6.
Texte intégralJawaid, Mohammad, et Sarat Kumar Swain, dir. Bionanocomposites for Packaging Applications. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67319-6.
Texte intégralVisakh, P. M., et Matheus Poletto, dir. Polypropylene-Based Biocomposites and Bionanocomposites. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119283621.
Texte intégralVisakh, P. M., et Sigrid Lüftl, dir. Polyethylene-Based Biocomposites and Bionanocomposites. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119038467.
Texte intégralVisakh P. M., dir. Biodegradable and Environmental Applications of Bionanocomposites. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-13343-5.
Texte intégralAbdullah, Zainab Waheed, et Yu Dong. Polyvinyl Alcohol/Halloysite Nanotube Bionanocomposites as Biodegradable Packaging Materials. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7356-9.
Texte intégralBionanocomposites. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-04398-7.
Texte intégralAhmed, Shakeel. Handbook of Bionanocomposites. Pan Stanford, 2018. http://dx.doi.org/10.1201/9781351170680.
Texte intégralChapitres de livres sur le sujet "Bionanocompositi"
Medeiros, Eliton S., Amélia S. F. Santos, Alain Dufresne, William J. Orts et Luiz H. C. Mattoso. « Bionanocomposites ». Dans Polymer Composites, 361–430. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527674220.ch11.
Texte intégralUrvoas, Agathe, Marie Valerio-Lepiniec, Philippe Minard et Cordt Zollfrank. « What Are Bionanocomposites ? » Dans Bionanocomposites, 1–7. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch1.
Texte intégralPrado, Enora, Mónika Ádok-Sipiczki et Corinne Nardin. « Nucleic Acids ». Dans Bionanocomposites, 9–27. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch2.1.
Texte intégralAimé, Carole, et Thibaud Coradin. « Lipids ». Dans Bionanocomposites, 29–40. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch2.2.
Texte intégralCzjzek, Mirjam. « Carbohydrates ». Dans Bionanocomposites, 41–57. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch2.3.
Texte intégralRomero, Stéphane, et François-Xavier Campbell-Valois. « Proteins ». Dans Bionanocomposites, 59–92. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch2.4.
Texte intégralPrado, Enora, Mónika Ádok-Sipiczki et Corinne Nardin. « Nucleic Acid Engineering ». Dans Bionanocomposites, 93–112. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch3.1.
Texte intégralUrvoas, Agathe, Marie Valerio-Lepiniec et Philippe Minard. « Protein Engineering ». Dans Bionanocomposites, 113–27. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch3.2.
Texte intégralAimé, Carole, et Thibaud Coradin. « Inorganic Nanoparticles ». Dans Bionanocomposites, 129–51. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch4.1.
Texte intégralKnežević, Nikola Ž., Laurence Raehm et Jean-Olivier Durand. « Hybrid Particles ». Dans Bionanocomposites, 153–68. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118942246.ch4.2.
Texte intégralActes de conférences sur le sujet "Bionanocompositi"
Zubair, Muhammad, Aman Ullah et Jianping Wu. « Spent hen proteins : An untapped bioresource for food packaging applications ». Dans 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/wasw9203.
Texte intégralKalendova, Alena, Jiri Smotek, Petr Stloukal, Milan Kracalik, Miroslav Slouf et Stephan Laske. « PLA based bionanocomposites and their transport properties ». Dans 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES” : From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045933.
Texte intégralHsu, Po-Yen, Jing-Jenn Lin, Jheng-Jia Jhuang et You-Lin Wu. « Nano-scale leakage characterizations of the γ-APTES/ silica nanoparticles bionanocomposite ». Dans 2011 International Conference of Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2011. http://dx.doi.org/10.1109/edssc.2011.6117608.
Texte intégral« Bionanocomposite Bamboo : A Regioselective Impregnation with Silver Nanofillers for Antifungal Application ». Dans Non-Conventional Materials and Technologies. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291838-39.
Texte intégralSharma, Aashish, G. S. Josan, N. P. Raju et A. K. Sharma. « Predicting Sorption Behavior in Edible Bionanocomposite Films with Machine Learning Algorithms ». Dans 2022 3rd International Conference on Computing, Analytics and Networks (ICAN). IEEE, 2022. http://dx.doi.org/10.1109/ican56228.2022.10007135.
Texte intégralAranda, Pilar, Ana C. S. Alcântara, Ligia N. M. Ribeiro, Margarita Darder et Eduardo Ruiz-Hitzky. « Bionanocomposites based on layered double hydroxides as drug delivery systems ». Dans SPIE Nanosystems in Engineering + Medicine, sous la direction de Sang H. Choi, Jin-Ho Choy, Uhn Lee et Vijay K. Varadan. SPIE, 2012. http://dx.doi.org/10.1117/12.2008317.
Texte intégralAdedoyin, A. A., R. Kumar, S. Sridhar et A. K. Ekenseair. « Injectable bionanocomposite hybrid scaffolds with responsive control for enhanced osteochondral tissue regeneration ». Dans 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). IEEE, 2015. http://dx.doi.org/10.1109/nebec.2015.7117047.
Texte intégral« Moringa oleifera Seeds Extracts / Magnetite based Bionanocomposites for Hexavalent chromium Uptake ». Dans Nov. 18-19, 2019 Johannesburg (South Africa). Eminent Association of Pioneers, 2019. http://dx.doi.org/10.17758/eares8.eap1119247.
Texte intégralDolbanosova, Rimma V., Valeriy B. Loboda, Tatyana O. Chernyavska, Olga G. Bordunova, Yuriy O. Shchepetilnikov, Victor O. Opara, Yevgeniya A. Samokhina, Oleksandr M. Chernenko et Vadym D. Chivanov. « A New Method for Determining the Quality of Bionanocomposite Layers of Chicken Eggshells ». Dans 2021 IEEE 11th International Conference Nanomaterials : Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568392.
Texte intégralPilon, Andrea, Ahmed Touny, Joseph Lawrence et Sarit Bhaduri. « Electrospun Poly(lactic acid) (PLA)/Calcium Phosphate Cement (CPC) Bionanocomposite for Bone Tissue Engineering Applications ». Dans SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2010. http://dx.doi.org/10.4271/2010-01-0423.
Texte intégral