Littérature scientifique sur le sujet « BIOMEDICAL INSTRUMENT »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « BIOMEDICAL INSTRUMENT ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "BIOMEDICAL INSTRUMENT"

1

Broer, Klaas H. « Instrument evaluation in biomedical sciences ». TrAC Trends in Analytical Chemistry 5, no 4 (avril 1986) : xxii. http://dx.doi.org/10.1016/0165-9936(86)80052-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Zheng Jeremy. « Mathematical Modeling and Computational Simulation of a New Biomedical Instrument Design ». ISRN Biomathematics 2012 (10 décembre 2012) : 1–5. http://dx.doi.org/10.5402/2012/256741.

Texte intégral
Résumé :
Endo surgiclip instrument is the biomedical instrument that can be applied for endoscopic surgery to assist surgeons in homeostasis and secure mucosal gap surfaces during surgical operations. Since some clinic feedbacks show the surgiclip drop-off incidents which can potentially sever organ and tissue, the improvement of endo surgiclip instrument has been made in these years. Since few research papers were involved in the study of endo surgiclip instrument performance via mathematical modeling and computational simulation, currently some instrumental modifications are mainly based on clinic lab tests which prolong the improvement cycle and increase additional manufacturing cost. This paper introduces a new biomedical surgiclip instrument based on mathematical modeling, computer-aided simulation, and prototype testing. The analytic methodology proposed in this paper can help engineers in biomedical industry develop and improve biomedical instrument. Compared to the current conventional surgiclip instruments, this new surgiclip instrument can properly assist surgeon in surgical procedure with less operational force and no surgiclip drop-off incident. The prototype has also been built and tested. Both computational simulation and prototype testing show close results which validate the feasibility of this newly developed endo surgiclip instrument and the methodologies of mathematical modeling based computational simulation proposed in this paper.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Heibeyn, Jan, Nils König, Nadine Domnik, Matthias Schweizer, Max Kinzius, Armin Janß et Klaus Radermacher. « Design and Evaluation of a Novel Instrument Gripper for Handling of Surgical Instruments ». Current Directions in Biomedical Engineering 7, no 1 (1 août 2021) : 1–5. http://dx.doi.org/10.1515/cdbme-2021-1001.

Texte intégral
Résumé :
Abstract Introduction: Contaminated surgical instruments are manually prepared for cleaning and disinfection in the reprocessing unit for medical devices (RUMED). Manual labour exposes staff to the risk of infection and is particularly stressful at peak times due to the large volume of instruments. Partial automation of processes by a robot could provide a solution but requires a gripper that can handle the variety of surgical instruments. This paper describes the development and first evaluation of an instrument gripper. Methods: First, an analysis of gripping geometries on basic surgical instruments is carried out. Based on the identified common features and a review of the state of the art of gripper technology, the SteriRob gripper concept is developed. The concept is compared with a force closure gripper in a series of tests using seven criteria. Results: Both gripping approaches investigated can be used for handling surgical instruments in a pick-and-place process. However, the SteriRob gripper can transmit significantly higher acting forces and torques. In addition, the gripping process is more robust against deviations from the expected instrument position. Conclusion: Overall, it has been shown that the developed instrument gripper is suitable for about 60% of reusable surgical instruments due to the focus on horizontal cylindrical geometries. Because of the large possible force transmission, this gripping approach is particularly suitable for tasks in which the robot assists with cleaning processes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wagner, Lars, Lukas Bernhard, Jonas Fuchtmann, Mert Asim Karaoglu, Alexander Ladikos, Hubertus Feußner et Dirk Wilhelm. « Integrating 3D cameras into sterile surgical environments : A comparison of different protective materials regarding scan accuracy ». Current Directions in Biomedical Engineering 8, no 1 (1 juillet 2022) : 25–29. http://dx.doi.org/10.1515/cdbme-2022-0007.

Texte intégral
Résumé :
Abstract This work presents a sterile concept for 3D cameras within sterile surgical environments. In the digital operating room (OR), such cameras can serve as a valuable data source for cognitive workflow assistance systems, e.g decision or mechatronic support systems. One recent example are robotic assistants for instrument handling, such as the robotic scrub nurse currently developed in the framework of the SASHA-OR research project1. In this context, we detect laparoscopic instruments and the surgical environment with a 3D camera, whereby hygienic requirements need to be met. Using a Zivid Two sensor, we generated point clouds of the laparoscopic instruments located in an instrument holder and a drop zone. We compared the effect of using different pane types and thicknesses for the sterile camera enclosure and compared the performance with and without protective pane in terms of the point cloud accuracy. When analyzing multiple pane types, polymethyl methacrylate with 0.5 mm thickness (PMMA 0.5) provided the best results. At a scan distance of 560 mm to the surface center, which is required for the complete acquisition of a laparoscopic instrument, PMMA 0.5 achieved the smallest Chamfer distance (CD) values for both the scans with the laparoscopic instruments in the instrument holder (0.23 ± 1.52 mm) and in the drop zone (0.12 ± 0.25 mm).
Styles APA, Harvard, Vancouver, ISO, etc.
5

Muralidhar, Deutschland, Shiva Sirasala, Venkata Jammalamadaka, Moritz Spiller, Thomas Sühn, Alfredo Illanes, Axel Boese et Michael Friebe. « Collaborative Robot as Scrub Nurse ». Current Directions in Biomedical Engineering 7, no 1 (1 août 2021) : 162–65. http://dx.doi.org/10.1515/cdbme-2021-1035.

Texte intégral
Résumé :
Abstract Under-staffing of nurses is a significant problem in most countries. It is expected to rise in the coming years, making it challenging to perform crucial tasks like assessing a patient's condition, assisting the surgeon in medical procedures, catheterization and Blood Transfusion etc., Automation of some essential tasks would be a viable idea to overcome this shortage of nurses. One such task intended to automate is the role of a 'Scrub Nurse' by using a robotic arm to hand over the surgical instruments. In this project, we propose to use a Collaborative Robotic-arm as a Scrub nurse that can be controlled with voice commands. The robotic arm was programmed to reach the specified position of the instruments placed on the table equipped with a voice recognition module to recognize the requested surgical instrument. When the Surgeon says "Pick Instrument", the arm picks up the instrument from the table and moves it over to the prior defined handover position. The Surgeon can take over the instrument by saying the command "Drop". Safe pathways for automatic movement of arm and handover position will be predefined by the Surgeon manually. This concept was developed considering the convenience of the Surgeon and the patient's safety, tested for collision, noisy environments, positioning failures and accuracy in grasping the instruments. Limitations that need to be considered in future work are the recognition of voice commands which as well as the returning of the instruments by the surgeon in a practical and safe way.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bachmann, Ada L., Giuliano A. Giacoppo et Peter P. Pott. « Work space analysis of a new instrument for Natural Orifice Transluminal Endoscopic Surgery (NOTES) ». Current Directions in Biomedical Engineering 8, no 2 (1 août 2022) : 301–4. http://dx.doi.org/10.1515/cdbme-2022-1077.

Texte intégral
Résumé :
Abstract Minimally invasive procedures such as Natural Orifice Transluminal Endoscopic Surgery (NOTES) require powerful, small, and flexible instruments. A cable-driven instrument was developed, which is able to retract tissue to create sufficient space for an actual operation (e.g. cholecystectomy). In this paper, the work space of a developed instrument is presented. The work space is calculated using direct kinematics equations and verified by measurement using an electromagnetic (EM) tracking system. The angular orientation of the instrument can be up to 85° with a length of the active section of 60 mm. However, a longitudinal rotation up to 17° becomes apparent. This is due to the characteristics of the steel cable used for actuation. Nevertheless, the instrument reaches the intended work space. Further measurements are necessary to evaluate the instrument’s behavior under payload and whether this affects the work space.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lebedev, Andrei D., Maria A. Ivanova, Aleksey V. Lomakin et Valentine A. Noskin. « Heterodyne quasi-elastic light-scattering instrument for biomedical diagnostics ». Applied Optics 36, no 30 (20 octobre 1997) : 7518. http://dx.doi.org/10.1364/ao.36.007518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vujović, Stefan, Andjela Draganić, Maja Lakičević Žarić, Irena Orović, Miloš Daković, Marko Beko et Srdjan Stanković. « Sparse Analyzer Tool for Biomedical Signals ». Sensors 20, no 9 (2 mai 2020) : 2602. http://dx.doi.org/10.3390/s20092602.

Texte intégral
Résumé :
The virtual (software) instrument with a statistical analyzer for testing algorithms for biomedical signals’ recovery in compressive sensing (CS) scenario is presented. Various CS reconstruction algorithms are implemented with the aim to be applicable for different types of biomedical signals and different applications with under-sampled data. Incomplete sampling/sensing can be considered as a sort of signal damage, where missing data can occur as a result of noise or the incomplete signal acquisition procedure. Many approaches for recovering the missing signal parts have been developed, depending on the signal nature. Here, several approaches and their applications are presented for medical signals and images. The possibility to analyze results using different statistical parameters is provided, with the aim to choose the most suitable approach for a specific application. The instrument provides manifold possibilities such as fitting different parameters for the considered signal and testing the efficiency under different percentages of missing data. The reconstruction accuracy is measured by the mean square error (MSE) between original and reconstructed signal. Computational time is important from the aspect of power requirements, thus enabling the selection of a suitable algorithm. The instrument contains its own signal database, but there is also the possibility to load any external data for analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhuang, Ziyun, et Ho Pui Ho. « Application of digital micromirror devices (DMD) in biomedical instruments ». Journal of Innovative Optical Health Sciences 13, no 06 (5 août 2020) : 2030011. http://dx.doi.org/10.1142/s1793545820300116.

Texte intégral
Résumé :
There is an ongoing technological revolution in the field of biomedical instruments. Consequently, high performance healthcare devices have led to remarkable economic developments in the medical hardware industry. Until now, nearly all optical bio-imaging systems are based on the 2-dimensional imaging chip architecture. In fact, recent developments in digital micromirror devices (DMDs) are gradually making their way from conventional optical projection displays into biomedical instruments. As an ultrahigh-speed spatial light modulator, the DMD may offer a range of new applications including real-time biomedical sensing or imaging, as well as orientation tracking and targeted screening. Given its short history, the use of DMD in biomedical and healthcare instruments has emerged only within the past decade. In this paper, we first provide an overview by summarizing all reported cases found in the literature. We then critically analyze the general pros and cons of using DMD, specifically in terms of response speed, stability, accuracy, repeatability, robustness, and degree of automation, in relation to the performance outcome of the designated instrument. Particularly, we shall focus our discussion on the use of Micro-Electro-Mechanical System (MEMS)-based devices in a set of representative instruments including the surface plasmon resonance biosensor, optical microscopes, Raman spectrometers, ophthalmoscopes, and the micro stereolithographic system. Finally, the prospects of using the DMD approach in biomedical or healthcare systems and possible next generation DMD-based biomedical devices are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shadgan, Babak, W. Darlene Reid, Reza Gharakhanlou, Lynn Stpublisher-ids et Andrew John Macnab. « Wireless near-infrared spectroscopy of skeletal muscle oxygenation and hemodynamics during exercise and ischemia ». Spectroscopy 23, no 5-6 (2009) : 233–41. http://dx.doi.org/10.1155/2009/719604.

Texte intégral
Résumé :
The majority ofin vivoapplications of near-infrared spectroscopic (NIRS) monitoring use continuous wave instruments that require a fiberoptic cable connection between the subject and the instrument during monitoring. In studies of muscle physiology where subjects are exercising, and particularly in those who are engaged in sports activity, a wireless instrument with telemetric capacity provides obvious advantages. Having access to reliable telemetric NIRS technology will also increase the practicality and scope of this biomedical monitoring technique in clinical settings.We report the feasibility of using a wireless continuous wave NIRS instrument with light emitting diodes, spatially resolved configuration, and Bluetooth®capability to study skeletal muscle oxygenation and hemodynamics during isometric contraction and ischemia induction.In ten healthy subjects comparable patterns of change in chromophore concentration (oxygenated and deoxygenated hemoglobin), total hemoglobin and muscle oxygen saturation were observed during 3 sets of isometric voluntary forearm muscle contraction at 10, 30 and 50% of maximum voluntary capacity (MVC), and a period of ischemia generated subsequently.This small series indicates that data with good intra- and inter-subject reproducibility that is free of movement artifact can be obtained with the wireless NIRS instrument described. The validity of these muscle studies demonstrate a basis for applying wireless NIRS monitoring to publisher-id biomedical applications.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "BIOMEDICAL INSTRUMENT"

1

Ahmed, Mohamed E. « PORTABLE MEDICAL INSTRUMENT FOR OBJECTIVELY DIAGNOSING HUMAN TINNITUS ». OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/165.

Texte intégral
Résumé :
This thesis presents designs of portable medical instruments to diagnose human tinnitus. At the present time, portable medical instruments are used everywhere for almost all kinds of daily health needs. Those high-performance instruments are used in medical facilities, hospitals, and clinics, and on the personal use level, as patients need them. Nowadays the digital means to design those instruments have become very important, and it's our goal to make use of the technology to upgrade and make those designs fast, accurate, easy to use, and inexpensive, so all people with need of those devices will be able to obtain them. At this time, there are many questions regarding tinnitus, but few definitive answers. Since it is still not fully understood, many comprehensive studies and analysis were carried out to present a complete model for the instruments.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mares, David M. « Developmental laboratories for biomedical instrumentation and digital signal processing with virtual instrument technology and diverse software techniques ». Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1292461511&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lomas, Martin. « The development of high performance scanning probe microscopes for biomedical applications ». Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Larsson, Marcus. « Influence of optical properties on Laser Doppler Flowmetry / ». Linköping : Univ, 2004. http://www.bibl.liu.se/liupubl/disp/disp2004/tek914s.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tweedie, Richard John. « Conception, design and development of the Impulse Response Impedance Spectroscopy instrument ». Thesis, University of Dundee, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yao, Hsin-Yun 1974. « Touch magnifying instrument applied to minimally invasive surgery ». Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81578.

Texte intégral
Résumé :
The MicroTactus is an instrument designed to detect signals arising from the interaction of a tip with soft or hard objects and to magnify them for haptic and auditory reproduction. An enhanced arthroscopic surgical probe was developed using an accelerometer and a custom-designed actuator for haptic feedback. Measurements were made to characterize the device and the results showed that numerous factors such as gripping method and gripping force influenced the system response in a complicated manner. The device was tested with the task of detecting surface defects of a cartilage-like material. Subjects were asked to detect the cuts of different depths under four conditions: no amplification, with haptic feedback, with sound feedback, and with passive touch. Both haptic and auditory feedback was found to significantly improve detection performance, which demonstrated that an enhanced arthroscopic probe provided useful information for the detection of small cuts in tissue-like materials.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Williams, Robin Bede. « An instrument for the measurement of body/support interface stresses : with particular application to below-knee prostheses ». Thesis, King's College London (University of London), 1993. https://kclpure.kcl.ac.uk/portal/en/theses/an-instrument-for-the-measurement-of-bodysupport-interface-stresses--with-particular-application-to-belowknee-prostheses(75e24619-efdb-4d71-bd55-2080cf733aea).html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Smith, Heather D. « Designing an Instrument Based nn Native Fluorescence to Determine Soil Microbial Content at a Mars Analog Site ». DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/614.

Texte intégral
Résumé :
For this research project we designed an instrument to detect bacteria via biomolecular fluorescence. We introduce the current understanding of astrobiology, our knowledge of life beyond Earth, and the commonality of Earth life as it pertains to the search for life on Mars. We proposed a novel technique for searching for direct evidence of life on the surface of Mars using fluorescence. We use the arid region of the Mojave Desert as an analog of Mars. Results indicate the fluorescence of the biotic component of desert soils is approximately as strong as the fluorescence of the mineral component. Fluorescence laboratory measurements using the portable instrument reveal microbial concentration in the Mojave Desert soil is 107 bacteria per gram of soil. Soil microbial concentrations over a 50 meter area in the Mojave Desert, determined in situ via fluorescence, show that the number varies from 104 to 107 cells per gram of soil. We then designed an instrument for detection of biomolecular fluorescence, and considered also fluorescence from polycyclic aromatic hydrocarbons and minerals on the Martian surface. The majority of the instrument is designed from Mars surface operation flight qualified components, drastically reducing development costs. The basic design adapts the ChemCam instrument package on-board Mars Science Laboratory rover Curiosity to detect organics via fluorescence. By placing frequency multipliers in front of the 1064 nm laser, wavelengths suitable for fluorescence excitation (266 nm, 355 nm, and 532 nm) will be achieved. The emission system is modified by the addition of band pass filters in front of the existing spectrometers to block out the excitation energy. Biomolecules and polycyclic aromatic hydrocarbons are highly fluorescent at wavelengths in the ultra violet (266 nm, 355 nm), but not as much in the visible 532 nm range. Preliminary results show minerals discovered, such as perchlorate, fluoresce highest when excited by 355 nm. Overall, we conclude the fluorescent instrument described is suitable to detect soil microbes, organics, biomolecules, and some minerals via fluorescence, offering a high scientific return for minimal cost with non-contact applications in extreme environments on Earth and on future missions to Mars.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Saez, Miguel Angel. « Micro-forging technique for rapid, low-cost manufacture of lens array molds and its application in a biomedical instrument ». Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40478.

Texte intégral
Résumé :
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
Includes bibliographical references (leaves 46-48).
Interest in micro-optical components for applications ranging from telecommunications to the life sciences has driven the need for accessible, low-cost fabrication techniques. Most micro-lens fabrication processes are unsuitable for applications requiring 100% fill factor, apertures around 1 mm, and scalability to large areas with millions of lenses. A flexible, low-cost mold fabrication technique that utilizes a combination of milling and micro-forging is reported. The technique involves first performing a rough cut with a ball-end mill. Final shape and sag height are then achieved by pressing a sphere of equal diameter into the milled divot. Using this process, molds were fabricated for rectangular arrays of 1-10,000 lenses with apertures of 0.25-1.6 mm, sag heights of 3-130 [mu]m, inter-lens spacings of 0.25-2 mm, and fill factors of 0-100%. Mold profiles have roughness and figure error of 68 nm and 354 nm, respectively, for 100% fill factor, 1 mm aperture square lenses. The required forging force was modeled as a modified open-die forging process and experimentally verified to increase nearly linearly with surface area.
(cont.) The optical performance of lens arrays injection molded from micro-forged molds was characterized by imaging the point spread function, and was found to be in the range of theoretical values. Limitations include milling machine range and accuracy. Application to biological fluorescence detection in a biomedical device is also reported.
by Miguel Angel Saez.
S.B.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bonilla, Guerrero Jader Alfredo. « Jämförelse av natrium-resultat mellan patientnära instrument (GEM Premier 5000) och central laboratoriet instrument (Advia Chemistry XPT) på Universitetssjukhus Örebro. Finns det signifikant skillnad ? » Thesis, Örebro universitet, Institutionen för hälsovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-92908.

Texte intégral
Résumé :
Bakgrund: Natrium (Na+) är en viktig elektrolyt i kroppen, och analyseras bland annat för att kunna bedöma patientens tillstånd och för att avgöra om akut behandling är nödvändigt. Analysen av Na+ på intensivvårdsavdelningen (IVA) i Örebro sker med hjälp av GEM Premier 5000, vilket är ett patientnära instrument som använder direkt metod för analys av helblod. Vid patientprovsjämförelse skickas provet vidare till centrallaboratoriet där plasman analyseras genom indirekt metod på Advia Chemistry XPT. Avvikelse mellan metoderna får inte överstiga 3%, annars måste orsaken utredas.  Syfte: Syftet med arbetet är att undersöka om det finns en systematisk skillnad på natrium-resultat mellan patientnära instrument, Gem Premier 5000 och centrallaboratoriets instrument, Advia Chemistry XPT hos olika patientgrupper. Metod: Mätning utfördes på blodprover tagna i litium-heparin rör på 60 deltagare, varav 30 var friska blodgivare (grupp 1) och resterande 30 bestod av inneliggande patienter (IVA) samt njurdialys-patienter, (grupp 2). Proverna analyserades för natrium i helblod på GEM Premier 5000 och strax därefter analyserades natrium, albumin, totalt protein, C-reaktivt protein (CRP), glukos och triglycerider i plasma på Advia Chemistry XPT. Resultat: Advia Chemistry XPT gav en högre medelkoncentration av Na+ (139 mmol/L) än GEM Premier 5000 (138 mmol/L) sett till samtliga deltagare. Procentuella skillnaden för natrium mellan metoderna översteg 3% för 3 deltagare i grupp 1 respektive hos hälften av deltagarna i grupp 2.   Slutsats: Na+ resultat på Advia Chemistry XPT var högre än på GEM Premier 5000 för alla deltagare. Skillnaden var större hos patienter med hög grad av sjuklighet. Detta antyder att nuvarande acceptabla avvikelse på 3% bör höjas till 5%, för att antal avvikande värden ska reduceras till nästan samma för båda grupper. Detta måste övervägas och implementeras i verksamheten.
Background: Sodium (Na +) is an important electrolyte in the body, and is analyzed, among other things, to be able to assess the patient's condition in the intensive care unit (IVA) and to determine if emergency treatment is necessary. The analysis of Na + on IVA is done with the help of GEM Premier 5000, which is a patient-centered instrument and uses a direct method for analysis of whole blood. For patient sample comparison, the sample is sent to the central laboratory where the plasma is analyzed by indirect method on Advia Chemistry XPT. Deviation between the methods must not exceed 3%, otherwise the cause must be investigated. Aim: The aim of the study is to investigate whether there is a systematic difference in Sodium results between patient-related instruments, Gem Premier 5000 and the central laboratory's instrument, Advia Chemistry XPT in different patient groups. Method: Measurement was performed on blood samples taken in Lithium Heparin tubes of 60 participants, of which 30 were healthy blood donors (group 1) and the remaining 30 consisted of inpatients (IVA) and kidney dialysis patients, (group 2). The samples were analyzed for sodium on GEM Premier 5000 and shortly thereafter for sodium, albumin, total protein, C-reactive protein (CRP), glucose and triglycerides on Advia Chemistry XPT. Results: Advia Chemistry XPT gave a higher concentration of Na + (139 mmol / L) than GEM Premier 5000 (138 mmol / L) for all participants. The percentage difference of Na between the methods differed for 3 participants in group 1 while it differed for half of the participants in group 2. Conclusion: Na + results on Advia Chemistry XPT were higher than on GEM Premier 5000 for all participants. The difference was greater in patients with a high degree of morbidity. This suggests that the current acceptable deviation of 3% should be increased to 5%, in order to reduce the number of deviating values ​​to almost the same for both groups. This must be taken into account and implemented in the business.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "BIOMEDICAL INSTRUMENT"

1

1932-, Webster John G., dir. Bioinstrumentation. Hoboken, N.J : John Wiley & Sons, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chow, Chan Chung, dir. Analytical method validation and instrument performance verification. Hoboken, N.J : Wiley-Interscience, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Togawa, Tatsuo. Biomedical sensors and instruments. 2e éd. Boca Raton : CRC Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Toshiyo, Tamura, et Öberg P. Åke, dir. Biomedical transducers and instruments. Boca Raton : CRC Press, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Welkowitz, Walter. Biomedical instruments : Theory and design. 2e éd. San Diego : Academic Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

1918-, Deutsch Sid, et Akay Metin, dir. Biomedical instruments : Theory and design. 2e éd. San Diego : Academic Press, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

C, Dorf Richard, dir. Sensors, nanoscience, biomedical engineering and instruments. Boca Raton : CRC/Taylor & Francis, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1975-, Singh Rahul, et Lee Hua, dir. Biomedical devices and technology. Hoboken, N.J : Wiley, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Utah. Business Expansion & Retention., dir. Utah biomedical industry directory. Salt Lake City, UT (324 S. State, Salt Lake City 84114-7355) : State of Utah, Division of Business & Economic Development, Business Expansion & Retention, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

M, Verga Scheggi A., dir. Biomedical optical instrumentation and laser-assisted biotechnology. Boston : Kluwer Academic, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "BIOMEDICAL INSTRUMENT"

1

Kügler, David, Martin Andrade Jastrzebski et Anirban Mukhopadhyay. « Instrument Pose Estimation Using Registration for Otobasis Surgery ». Dans Biomedical Image Registration, 105–14. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92258-4_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Othman, Wan Zulkarnain, Mohamad Redhwan Abd Aziz, Nor Hana Mamat et Ahmad Fikri Ramli. « Development of Cutting Force Measurement Instrument for Turning Tool Post Using Arduino UNO ». Dans Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics, 239–49. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6926-9_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dennis, Cindi L. « Magnetic Characterization : Instruments and Methods ». Dans Biomedical Applications of Magnetic Particles, 83–120. First edition. | Boca Raton : CRC Press, 2021. : CRC Press, 2020. http://dx.doi.org/10.1201/9781315117058-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dubra, Alfredo, et Zachary Harvey. « Registration of 2D Images from Fast Scanning Ophthalmic Instruments ». Dans Biomedical Image Registration, 60–71. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14366-3_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Friedman, Charles P., Jeremy C. Wyatt et Joan S. Ash. « Designing Measurement Processes and Instruments ». Dans Evaluation Methods in Biomedical and Health Informatics, 177–203. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86453-8_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Olivier Fernandez, Jean Raphaël, et César Briso Rodríguez. « Gbps Data Transmission in Biomedical and Communications Instruments ». Dans 4G Wireless Communication Networks, 427–40. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003357247-20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Narang, Mahak, Ankit Gambhir et Mandeep Singh. « Harnessing Energy for Implantable Biomedical Instruments with IoT Networks ». Dans Energy Harvesting, 105–16. Boca Raton : Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003218760-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gupta, Meena, et Dinesh Bhatia. « Retrain the Brain Through Noninvasive Medically Acclaimed Instruments ». Dans Application of Biomedical Engineering in Neuroscience, 51–60. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7142-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dewanjee, Mrinal K. « Principles of Measurement of Radioiodinated Tracers and Related Instruments ». Dans Radioiodination : Theory, Practice, and Biomedical Applications, 19–25. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3508-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Santos, João P., João P. Ferreira, Manuel Crisóstomo et A. Paulo Coimbra. « Instrumented Shoes for 3D GRF Analysis and Characterization of Human Gait ». Dans Bioinformatics and Biomedical Engineering, 51–62. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "BIOMEDICAL INSTRUMENT"

1

Burns, S. « A biomedical instrument development center ». Dans IEE Seminar on Appropriate Medical Technology for Developing Countries. IEE, 2002. http://dx.doi.org/10.1049/ic:20020046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, Ning, Yang Yu, Angelo Sassaroli et Sergio Fantini. « Spectral Imaging Instrument for Optical Mammography ». Dans Biomedical Optics. Washington, D.C. : OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bmd42.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mirbagheri, Alireza, Mobin Yahyazadehfar et Farzam Farahmand. « Conceptual Design of a Novel Laparoscopic Instrument for Manipulation of Large Internal Organs ». Dans ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32012.

Texte intégral
Résumé :
Manipulation of large internal organs, e.g., spleen, kidney, and liver, is a demanding but challenging task during laparoscopic surgery using conventional miniature instruments. Recently fingered hand instruments have been proposed for doing this task which are assembled/disassemble inside the patient’s abdomen [1–3]. They are not, however, feasible for use in real surgeries considering the substantial time needed for their setting up process. This paper describes the conceptual design of an effective laparoscopic instrument for manipulation of large human organs. A novel mechanism is presented which enables the instrument to pass through a 10 mm trocar to enter the abdominal cavity when it is closed, and grasp body organs, as large as 80 mm diameter, when it is opened. It is shown that the instrument can be used effectively for laparoscopic surgery operations without the need to an assembling/disassembling procedure.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dubnack, S., R. Rützler, M. Wiechmann, J. Hinz et P. Amend. « New instrument solutions for Photodynamic Therapy ». Dans Biomedical Topical Meeting. Washington, D.C. : OSA, 1999. http://dx.doi.org/10.1364/bio.1999.ctub5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sato, Rika, Norihiko Saga, Naoki Saito et Seiji Chonan. « Development of a Rehabilitation Instrument for Prevent Contracture of Ankle ». Dans ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38061.

Texte intégral
Résumé :
It is called contracture that a joint’s range of motion is restricted. Range of motion exercise is effective to prevent contracture. However, if range of motion exercise by the physiotherapist is performed, a range of motion will improve, but if time not to exercise is long, contracture will decrease again. Then, a rehabilitation instrument for passive range-of-motion exercise which can use after exercise by the physiotherapist is required. A CPM for a knee is developed as such an instrument, and it is also used for an ankle. But, most of instrument used motors to get a high power. So, those are heavy and large size. Installation and movement of instruments at facilities are difficult, and it is also difficult to use freely at home.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Emir, Uzay, Ahmet Ademoglu, Cengizhan Ozturk, Kubilay Aydin, Tamer Demiralp, Adnan Kurt, Alp Dincer et Ata Akin. « Design of an MR-compatible fNIRS instrument ». Dans Biomedical Optics 2005, sous la direction de Kenneth E. Bartels, Lawrence S. Bass, Werner T. W. de Riese, Kenton W. Gregory, Henry Hirschberg, Abraham Katzir, Nikiforos Kollias et al. SPIE, 2005. http://dx.doi.org/10.1117/12.590710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tahani, Nada, Shayaan Hussain, Kunta Nithya Sri et Vijaya Gunturu. « Enhancement of a Biomedical Instrument using Machine Learning ». Dans 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS). IEEE, 2023. http://dx.doi.org/10.1109/icscss57650.2023.10169625.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nieman, Linda T., Alexey Myakov, Konstantin Sokolov et Rebecca Richards-Kortum. « Polarized reflectance spectroscopy instrument for the clinical setting ». Dans Biomedical Topical Meeting. Washington, D.C. : OSA, 2002. http://dx.doi.org/10.1364/bio.2002.wb1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

JelÍnková, Helena, Michal Němec, Jan Šulc, Pavel Černý, Mitsunobu Miyagi, Yi-Wei Shi et Yuji Matsuura. « Delivery system for laser medical instrument ». Dans European Conference on Biomedical Optics. Washington, D.C. : OSA, 2003. http://dx.doi.org/10.1364/ecbo.2003.5143_300.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Stockford, Ian M., Stephen P. Morgan, John A. Crowe et John G. Walker. « A polarized light imaging instrument for characterizing skin lesions ». Dans Biomedical Optics 2004, sous la direction de Robert R. Alfano et Alvin Katz. SPIE, 2004. http://dx.doi.org/10.1117/12.529030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie