Littérature scientifique sur le sujet « Biomaterials, neural stem cell »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Biomaterials, neural stem cell ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Biomaterials, neural stem cell"
Russell, Lauren N., et Kyle J. Lampe. « Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production ». Cells Tissues Organs 202, no 1-2 (2016) : 85–101. http://dx.doi.org/10.1159/000446645.
Texte intégralLittle, Lauren, Kevin E. Healy et David Schaffer. « Engineering Biomaterials for Synthetic Neural Stem Cell Microenvironments ». Chemical Reviews 108, no 5 (mai 2008) : 1787–96. http://dx.doi.org/10.1021/cr078228t.
Texte intégralAgbay, Andrew, John M. Edgar, Meghan Robinson, Tara Styan, Krista Wilson, Julian Schroll, Junghyuk Ko, Nima Khadem Mohtaram, Martin Byung-Guk Jun et Stephanie M. Willerth. « Biomaterial Strategies for Delivering Stem Cells as a Treatment for Spinal Cord Injury ». Cells Tissues Organs 202, no 1-2 (2016) : 42–51. http://dx.doi.org/10.1159/000446474.
Texte intégralXia, Lin, Wenjuan Zhu, Yunfeng Wang, Shuangba He et Renjie Chai. « Regulation of Neural Stem Cell Proliferation and Differentiation by Graphene-Based Biomaterials ». Neural Plasticity 2019 (16 octobre 2019) : 1–11. http://dx.doi.org/10.1155/2019/3608386.
Texte intégralFinch, L., S. Harris, C. Adams, J. Sen, J. Tickle, N. Tzerakis et DM Chari. « WP1-22 DuraGen™ as an encapsulating material for neural stem cell delivery ». Journal of Neurology, Neurosurgery & ; Psychiatry 90, no 3 (14 février 2019) : e7.2-e7. http://dx.doi.org/10.1136/jnnp-2019-abn.22.
Texte intégralAssunção-Silva, Rita C., Eduardo D. Gomes, Nuno Sousa, Nuno A. Silva et António J. Salgado. « Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration ». Stem Cells International 2015 (2015) : 1–24. http://dx.doi.org/10.1155/2015/948040.
Texte intégralKang, Phillip H., Sanjay Kumar et David V. Schaffer. « Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies ». Current Opinion in Biomedical Engineering 4 (décembre 2017) : 13–20. http://dx.doi.org/10.1016/j.cobme.2017.09.005.
Texte intégralDai, Xizi, et Yen-Chih Huang. « Pluripotent Stem Cell Derived Neural Lineage Cells and Biomaterials for Neuroscience and Neuroengineering ». Journal of Neuroscience and Neuroengineering 2, no 2 (1 avril 2013) : 119–40. http://dx.doi.org/10.1166/jnsne.2013.1047.
Texte intégralSoria, Jose Miguel, María Sancho-Tello, M. Angeles Garcia Esparza, Vicente Mirabet, Jose Vicente Bagan, Manuel Monleón et Carmen Carda. « Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation ». Journal of Biomedical Materials Research Part A 97A, no 1 (11 février 2011) : 85–92. http://dx.doi.org/10.1002/jbm.a.33032.
Texte intégralMaclean, Francesca L., Alexandra L. Rodriguez, Clare L. Parish, Richard J. Williams et David R. Nisbet. « Integrating Biomaterials and Stem Cells for Neural Regeneration ». Stem Cells and Development 25, no 3 (février 2016) : 214–26. http://dx.doi.org/10.1089/scd.2015.0314.
Texte intégralThèses sur le sujet "Biomaterials, neural stem cell"
Ma, Weili. « Engineered Biomaterials for Human Neural Stem Cell Applications ». Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/594172.
Texte intégralPh.D.
Within the last decade, neurodegenerative diseases such as Alzheimer’s and Parkinson’s have emerged as one of the top 5 leading causes of death globally, and there is currently no cure. All neurodegenerative diseases lead to loss of the functional cells in the nervous system, the neurons. One therapeutic approach is to replace the damaged and lost neurons with new, healthy neurons. Unfortunately, this is a difficult endeavor since mature neurons are not capable of cell division. Instead, researchers are turning to neural stem cells, which are able to self-renew and be rapidly expanded before being differentiated into functional cell phenotypes, such as neurons, allowing for large numbers of cells to be generated in vitro. Controlled differentiation of human neural stem cells into new neurons has been of interest due to the immense potential for improving clinical outcomes. Adult neural stem cell behavior, however, is not well understood and the transplanted stem cells are at risk for tumorigenesis. The focus of this dissertation is the development of engineered biomaterials as tools to study human neural stem cell behavior and neurogenesis (differentiation). A novel cell penetrating peptide was developed to enhance intracellular delivery of retinoic acid, a bioactive lipid known to induce differentiation. A hydrogel platform fabricated from hyaluronic acid, a naturally-occurring polysaccharide found in brain extracellular space, was designed to serve as a biomimetic soft substrate with similar mechanical properties to the brain. The biological behavior of the stem cells was characterized in response to chemical and physical cues.
Temple University--Theses
Edgar, Yuji Egawa. « Biomaterials for neural cells replacement therapy ». 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199333.
Texte intégralMa, Weili. « Development of Hyaluronic Acid Hydrogels for Neural Stem Cell Engineering ». Master's thesis, Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/340372.
Texte intégralM.S.
In this work, a hydrogel made from hyaluronic acid is synthesized and utilized to study neural stem cell behavior within a custom tailored three dimensional microenvironment. The physical properties of the hydrogel have been optimized to create an environment conducive for neural stem cell differentiation by mimicking the native brain extracellular matrix (ECM) environment. The physical properties characterized include degree of methacrylation, swelling ratios, enzymatic degradation rates, and viscoelastic moduli. One dimensional proton nuclear magnetic resonance (1HNMR) confirms modification of the hyaluronic acid polymers, and is used to quantify the degree of methacrylation. Rheological measurements are made to quantify the viscoelastic moduli. Further post-processing by lyophilization leads to generation of large voids to facilitate re-swelling and cell infiltration. ReNcell VM (RVM), and adult human neural stem cell line derived from the ventral mesencephalon, are cultured and differentiated inside the hydrogel for up to 2 weeks. Differentiation is characterized by immunocytochemistry (ICC) and real time quantitative polymerase chain reaction (qRT-PCR).
Temple University--Theses
Ham, Trevor Richard. « Covalent Growth Factor Tethering to Guide Neural Stem Cell Behavior ». University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555347467862553.
Texte intégralTARABALLI, FRANCESCA. « Computational and experimental characterization of self-assembling peptides for nanobiomedical applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7475.
Texte intégralDai, Xizi. « Fiber Scaffolds of Poly (glycerol-dodecanedioate) and its Derivative via Electrospinning for Neural Tissue Engineering ». FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1852.
Texte intégralErlandsson, Anna. « Neural Stem Cell Differentiation and Migration ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl.[distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3546.
Texte intégralHopp, I. « Novel synthetic biomaterials for kidney-derived progenitor/stem cell differentiation ». Thesis, University of Liverpool, 2016. http://livrepository.liverpool.ac.uk/3004383/.
Texte intégralClem, William Charles. « Mesenchymal stem cell interaction with nanonstructured biomaterials for orthopaedic applications ». Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/clem.pdf.
Texte intégralAdditional advisors: Yogesh K. Vohra, Xu Feng, Jack E. Lemons, Timothy M. Wick. Description based on contents viewed July 8, 2009; title from PDF t.p. Includes bibliographical references.
Albertson, Roger Joseph. « Establishing asymmetry in Drosophila neural stem cells / ». view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3112998.
Texte intégralTypescript. Includes vita and abstract. Includes bibliographical references (leaves 101-117). Also available for download via the World Wide Web; free to University of Oregon users.
Livres sur le sujet "Biomaterials, neural stem cell"
Kaur, Navjot, et Mohan C. Vemuri, dir. Neural Stem Cell Assays. Hoboken, NJ, USA : John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118308295.
Texte intégralV, Greer Erik, dir. Neural stem cell research. New York : Nova Science Publishers, 2006.
Trouver le texte intégralRoy, Krishnendu, dir. Biomaterials as Stem Cell Niche. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13893-5.
Texte intégralE, Bottenstein Jane, dir. Neural stem cells : Development and transplantation. Boston : Kluwer Academic Publishers, 2003.
Trouver le texte intégralNeil, Scolding, dir. Neural cell transplantation : Methods and protocols. New York : Humana, 2009.
Trouver le texte intégralTaupin, Philippe. Neural stem cells and cellular therapy. Hauppauge, NY : Nova Science Publishers, 2009.
Trouver le texte intégralTaupin, Philippe. Neural stem cells and cellular therapy. Hauppauge, NY : Nova Science Publishers, 2009.
Trouver le texte intégralTaupin, Philippe. Adult neurogenesis and neural stem cells in mammals. New York : Nova Science Publishers, 2006.
Trouver le texte intégralPaul, Alexander J. Local and Long-range Regulation of Adult Neural Stem Cell Quiescence. [New York, N.Y.?] : [publisher not identified], 2016.
Trouver le texte intégralNeural stem cells in health and diseases. New Jersey : World Scientific, 2015.
Trouver le texte intégralChapitres de livres sur le sujet "Biomaterials, neural stem cell"
Amiryaghoubi, Nazanin, Marziyeh Fathi, Khosro Adibkia, Jaleh Barar, Hossein Omidian et Yadollah Omidi. « Chitosan-Based Biomaterials : Their Interaction with Natural and Synthetic Materials for Cartilage, Bone, Cardiac, Vascular, and Neural Tissue Engineering ». Dans Engineering Materials for Stem Cell Regeneration, 619–50. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4420-7_22.
Texte intégralKaphle, Pranita, Li Yao et Joshua Kehler. « Stem Cell- and Biomaterial-Based Neural Repair for Enhancing Spinal Axonal Regeneration ». Dans Glial Cell Engineering in Neural Regeneration, 59–84. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02104-7_4.
Texte intégralNanduri, Lalitha Sarad Yamini. « Chitosan–Stem Cell Interactions ». Dans Chitosan for Biomaterials III, 343–59. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/12_2021_83.
Texte intégralParekh, Yash, Ekta Dagar, Khawaja Husnain Haider et Kiran Kumar Bokara. « Neural Stem Cells ». Dans Handbook of Stem Cell Therapy, 821–47. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2655-6_38.
Texte intégralParekh, Yash, Ekta Dagar, Khawaja Husnain Haider et Kiran Kumar Bokara. « Neural Stem Cells ». Dans Handbook of Stem Cell Therapy, 1–27. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6016-0_38-1.
Texte intégralMateos-Timoneda, Miguel Angel, Melba Navarro et Josep Anton Planell. « Bioresponsive Surfaces and Stem Cell Niches ». Dans Biomaterials Surface Science, 269–84. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527649600.ch9.
Texte intégralGenchi, Angela, Beatrice Von Wunster, Paola Panina-Bordignon et Gianvito Martino. « Neural Stem Cell Biology ». Dans Hematopoietic Stem Cell Transplantation and Cellular Therapies for Autoimmune Diseases, 78–85. Boca Raton : CRC Press, 2021. http://dx.doi.org/10.1201/9781315151366-9.
Texte intégralCastrén, Maija. « Neural Stem Cells ». Dans Results and Problems in Cell Differentiation, 33–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21649-7_3.
Texte intégralKubis, Nathalie, et Martin Catala. « Neural Stem Cells ». Dans Stem Cell Biology and Regenerative Medicine, 461–94. 2e éd. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003339618-18.
Texte intégralKubis, Nathalie, et Martin Catala. « Neural Stem Cells ». Dans Stem Cell Biology and Regenerative Medicine, 477–97. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003339601-22.
Texte intégralActes de conférences sur le sujet "Biomaterials, neural stem cell"
Monteiro, Gary A., et David I. Shreiber. « Guiding Stem Cell Differentiation Into Neural Lineages With Tunable Collagen Biomaterials ». Dans ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206752.
Texte intégralKawazoe, Naoki, Likun Guo, Guoping Chen et Tetsuya Tateishi. « Manipulation of Stem Cell Functions On Grafted Polymer Surfaces ». Dans In Commemoration of the 1st Asian Biomaterials Congress. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835758_0015.
Texte intégralChirasatitsin, Somyot, Priyalakshmi Viswanathan, Giuseppe Battaglia et Adam J. Engler. « Directing Stem Cell Fate in 3D Through Cell Inert and Adhesive Diblock Copolymer Domains ». Dans ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14442.
Texte intégralKhetan, Sudhir, Wesley R. Legant, Christopher S. Chen et Jason A. Burdick. « Stem Cell Fate Within 3D Hydrogels is Mediated by Network Structure-Dependent Traction Generation ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80277.
Texte intégralFadhilah, Shabrina, et Yudan Whulanza. « Flow focusing microfluidics or stem cell dual layers droplet microencapsulation ». Dans THE 5TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES : Proceedings of the 5th International Symposium of Biomedical Engineering (ISBE) 2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0047168.
Texte intégralRigaud, Stéphane U., et Nicolas Loménie. « Neural stem cell tracking with phase contrast video microscopy ». Dans SPIE Medical Imaging, sous la direction de Benoit M. Dawant et David R. Haynor. SPIE, 2011. http://dx.doi.org/10.1117/12.877651.
Texte intégralChen, Taoyi, Yong Zhang, Changhong Wang, Zhenshen Qu et Stephen T. C. Wong. « Neural stem cell segmentation using local complex phase information ». Dans 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5652071.
Texte intégralJuncosa-Melvin, Natalia, Jason T. Shearn, Marc T. Galloway, Gregory P. Boivin, Cynthia Gooch et David L. Butler. « Effect of Mechanical Stimulation on the Biomechanics of Stem Cell : Collagen Sponge Constructs for Patellar Tendon Repair ». Dans ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175814.
Texte intégralKato-Negishi, Midori, Hiroaki Onoe et Shoji Takeuchi. « Specially patterned and aligned neural bundle formed by neural stem cell microfibers ». Dans 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474194.
Texte intégralRatushnyak, Mariya, et Yuliya Semochkina. « STEM CELL EXOSOMES CAN IMPROVE THE SURVIVAL OF NEURAL STEM CELLS AFTER RADIATION EXPOSURE ». Dans XVIII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m2901.sudak.ns2022-18/282-283.
Texte intégralRapports d'organisations sur le sujet "Biomaterials, neural stem cell"
Felding-Habermann, Brunhilde. Neural Stem Cell Delivery of Therapeutic Antibodies to Treat Breast Cancer Brain Metastases. Fort Belvoir, VA : Defense Technical Information Center, octobre 2009. http://dx.doi.org/10.21236/ada541313.
Texte intégral