Articles de revues sur le sujet « Biomagnetic »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Biomagnetic.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Biomagnetic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Embi, Abraham A. « THE HUMAN HAIR FOLLICLE PULSATING BIOMAGNETIC FIELD REACH AS POSSIBLE ADDITIONAL FACTOR IN MIGRAINE HEADACHES A BIOPHYSICS BASED HYPOTHESIS ». International Journal of Research -GRANTHAALAYAH 8, no 5 (8 juin 2020) : 221–29. http://dx.doi.org/10.29121/granthaalayah.v8.i5.2020.179.

Texte intégral
Résumé :
This manuscript introduces a hypothesis linking the intrinsic pulsating nature of the biomagnetic fields reach found in the human hair follicle as factor in the etiology of migraine headaches. In the last two decades, researchers have emphasized the efficiency of external pulsed electromagnetic fields in the treatment of migraine headaches. Clinical trials have also demonstrated that external pulsed electromagnetic fields may prevent or decrease the migraine attacks. A hypothesis is presented linking the inherent hair follicle pulsed bioelectomagnetism as a factor in the etiology of migraines. Does the internal pulsed biomagnetic field reach of the hair follicles factor in the genesis of migraine headaches? Supporting the hypothesis are published papers confirming the inherent biomagnetism of the human hair follicle. The introduction of a novel optical microscopy technique using a special Prussian Blue Stain (PBS) mixed with fine iron particles has produced numerous papers confirming the inherent biomagnetism of the human hair. This manuscript expands on those findings by introducing documentation of the hair follicle pulsating biomagnetic field reach. This is demonstrated by using diamagnetic as well as paramagnetic preparations mixed with iron particles. Still microphotographs and video-recordings are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Swithenby, S. J. « Biomagnetism and the biomagnetic inverse problem ». Physics in Medicine and Biology 32, no 1 (1 janvier 1987) : 3–4. http://dx.doi.org/10.1088/0031-9155/32/1/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

A., Abraham. « BIOMAGNETISM AS FACTOR IN RED BLOOD CELLS DEFORMATION ». International Journal of Research -GRANTHAALAYAH 6, no 12 (31 décembre 2018) : 46–57. http://dx.doi.org/10.29121/granthaalayah.v6.i12.2018.1245.

Texte intégral
Résumé :
The purpose of this manuscript is to report in vitro experiments showing the role of pulsed biomagnetic fields tissues cross-talk between Red Blood Cells (RBCs) and human hairs. Both tissues have been reported to express magnetic properties, ie: RBCs diamagnetic and paramagnetic forces and the hair follicle pulsed diamagnetic forces. This biomagnetic cross-talk is reported as a novel factor in RBCs deformation. In the in vitro experimental model herein used, other forces such as keratin biomagnetism, hydrophilic and hydrophobic properties of the hair shaft may also play a role in the deformation. Presently teardrop red blood cells found in blood smears; and oriented in the same direction are attributed to mechanical artifacts introduced during slide preparations. The data presented in this manuscript supports the new principle of biomagnetic cross talk forces as factor in replicating RBCs deformities.as described in Optical Tweezers Trapping.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Embi Bs, Abraham A. « BIOMAGNETISM AS FACTOR IN RED BLOOD CELLS DEFORMATION ». International Journal of Research -GRANTHAALAYAH 6, no 12 (31 décembre 2018) : 46–57. http://dx.doi.org/10.29121/granthaalayah.v7.i1.2019.1076.

Texte intégral
Résumé :
The purpose of this manuscript is to report in vitro experiments showing the role of pulsed biomagnetic fields tissues cross-talk between Red Blood Cells (RBCs) and human hairs. Both tissues have been reported to express magnetic properties, ie: RBCs diamagnetic and paramagnetic forces and the hair follicle pulsed diamagnetic forces. This biomagnetic cross-talk is reported as a novel factor in RBCs deformation. In the in vitro experimental model herein used, other forces such as keratin biomagnetism, hydrophilic and hydrophobic properties of the hair shaft may also play a role in the deformation. Presently teardrop red blood cells found in blood smears; and oriented in the same direction are attributed to mechanical artifacts introduced during slide preparations. The data presented in this manuscript supports the new principle of biomagnetic cross talk forces as factor in replicating RBCs deformities.as described in Optical Tweezers Trapping.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Embi, Abraham A. « DEMONSTRATION OF THE HUMAN HAIR FOLLICLE MAGNETORECEPTION OF BIOMAGNETISM RADIATED BY THE CONCAVE PART OF THE HUMAN HAND ». International Journal of Research -GRANTHAALAYAH 8, no 5 (12 juin 2020) : 348–54. http://dx.doi.org/10.29121/granthaalayah.v8.i5.2020.291.

Texte intégral
Résumé :
Biological material has been documented to produce an external magnetic field that radiates out. There have been several papers documenting the magnetic fields produced by steady currents in the body. The most notable was published in 1980 by Cohen et al. where the human hair follicle was used as sentinel and biophysically evaluated via sophisticated equipment such as a double planar Superconducting Quantum Interference Devices (SQUID). Most recently, in 2019 Cohen’s work was duplicated by Khan,S by also using double-planar gladiometers. Of interest to this manuscript is that since the introduction of anovel optical microscopy method in 2016 by Scherlag BJ et al is that numerous papers have been introduced in the literature now identifying intrinsic biomagnetic properties of the follicle such as penetration through glass barriers. In this manuscript, a concept of biomagnetic fields by the concave part of the human hand transferring energy to hair follicles is introduced, this was accomplished by using a novel optical microscopy method, in other words, the hair follicle is not limited to radiate out biomagnetism; but also, to receive externally radiated biomagnetic fields from a body part. This magneto receptive property is herein introduced.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rechnitz, Garry A., et Christopher W. Babb. « Biomagnetic neurosensors ». Current Opinion in Biotechnology 7, no 1 (février 1996) : 55–59. http://dx.doi.org/10.1016/s0958-1669(96)80095-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Leech, Donal, et Garry A. Rechnitz. « Biomagnetic neurosensors ». Analytical Chemistry 65, no 22 (15 novembre 1993) : 3262–66. http://dx.doi.org/10.1021/ac00070a016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yamada, Shokei, et Christopher C. Gallen. « Biomagnetic Technologies ». Neurosurgery 33, no 1 (juillet 1993) : 166–68. http://dx.doi.org/10.1227/00006123-199307000-00031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yamada, Shokei, et Christopher C. Gallen. « Biomagnetic Technologies ». Neurosurgery 33, no 1 (1 juillet 1993) : 166–68. http://dx.doi.org/10.1097/00006123-199307000-00031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

川勝, 真喜, 宏一郎 小林, 義則 内川 et M. Kotani. « Measurement System for Biomagnetic Fields(Special Issue : Research of Biomagnetism) ». JAPANES JOURNAL OF MEDICAL INSTRUMENTATION 69, no 5 (1 mai 1999) : 240–45. http://dx.doi.org/10.4286/ikakikaigaku.69.5_240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

A., Abraham. « THE HUMAN HAIR FOLLICLE PULSATING BIOMAGNETIC FIELD REACH AS MEASURED BY CRYSTALS ACCRETION ». International Journal of Research -GRANTHAALAYAH 6, no 7 (31 juillet 2018) : 290–99. http://dx.doi.org/10.29121/granthaalayah.v6.i7.2018.1309.

Texte intégral
Résumé :
This manuscript introduces the biomagnetic fields reach (BMFs) of the human hair follicles. The introduction of a novel table top optical microscopy technique using a special Prussian Blue Stain solution (PBS) mixed with fine iron particles has produced numerous papers confirming the inherent biomagnetism of the human hair. This technique allowed for the design of sets of incremental stacked glass slides for the purpose of measuring the human hair follicle BMFs reach out. This was demonstrated (measured) by using diamagnetic as well as paramagnetic Potassium Ferrocyanide preparations mixed with fine iron particles. Still microphotographs and video-recordings are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Xu, Ming, Changlin Han, Hui Min Lu, Junhao Xiao, Jingsheng Tang et Zongtan Zhou. « The Design of the Biomagnetic Field Sensor without Magnetic Shielding ». International Journal of Humanoid Robotics 16, no 04 (août 2019) : 1950019. http://dx.doi.org/10.1142/s0219843619500191.

Texte intégral
Résumé :
Due to the extremely weak intensity of the biomagnetic field and the serious interference from the environmental magnetic field, the detection of the biomagnetic field becomes such challenging work. After analyzing the deficiencies in the current biomagnetic field sensors, this paper proposes and realizes a high-sensitivity magnetic field sensor, based on the giant magneto-impedance (GMI) effect. Taking advantage of the miniaturized magnetic probe, the multistage multiple amplification and the multiband interference suppression, our sensor mainly makes three achievements: the pT level magnetic resolution, the ability to detect the muscle magnetic field without the magnetic shielding and the resistibility to a small-range wobbling in the state of working, which makes it possible to detect the biomagnetic field by wearable sensors under natural conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Owen, Valerie M. « USA — Biomagnetic neurosensors ». Biosensors and Bioelectronics 11, no 9 (janvier 1996) : vii. http://dx.doi.org/10.1016/0956-5663(96)89449-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Babb, Christopher W., David R. Coon et Garry A. Rechnitz. « Biomagnetic Neurosensors. 3. Noninvasive Sensors Using Magnetic Stimulation and Biomagnetic Detection ». Analytical Chemistry 67, no 4 (février 1995) : 763–69. http://dx.doi.org/10.1021/ac00100a012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Embi Bs, Abraham A. « HAIR AND BLOOD ENDOGENOUS LOW LEVEL BIOMAGNETIC FIELDS CROSS-TALK EFFECTS ON FIBRIN INHIBITION AND ROULEAU FORMATION ». International Journal of Research -GRANTHAALAYAH 6, no 11 (30 novembre 2018) : 200–208. http://dx.doi.org/10.29121/granthaalayah.v6.i11.2018.1118.

Texte intégral
Résumé :
This manuscript introduces a microscopic tabletop technique that demonstrates endogenous biomagnetic fields tissue crosstalk; namely the human hair and human blood. This interaction induces red blood cells (RBCs) agglutination and Rouleaux Formations. Man made exogenous static magnets as well as pulsating low-level magnetic fields have been applied to small animals and shown to affect blood parameters. Those experiments showed an increase in blood coagulation time attributed to the treatment. Ever since the development of a tabletop technique (introduced in 2016) numerous papers have demonstrated the intrinsic pulsating low-level biomagnetic fields emitted by the human hair shaft and follicle. Several published hypothesis involving body parts biomagnetic interactions have been published; they range from diseases such as cancer to the role of iron levels in blood biomagnetically interacting with arterial tissue and atherosclerosis.
Styles APA, Harvard, Vancouver, ISO, etc.
16

TSUKADA, Keiji. « Biomagnetic Measurement using SQUIDs ». TEION KOGAKU (Journal of the Cryogenic Society of Japan) 38, no 9 (2003) : 461–68. http://dx.doi.org/10.2221/jcsj.38.461.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Anninos, P. A., G. Anogianakis, K. Lehnertz, Ch Pantev et M. Hoke. « Biomagnetic Measurements Using Squids ». International Journal of Neuroscience 37, no 3-4 (janvier 1987) : 149–68. http://dx.doi.org/10.3109/00207458708987144.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

KOBAYASHI, Tetsuo. « Towards Biomagnetic Field Measurements ». Journal of the Institute of Electrical Engineers of Japan 136, no 1 (2016) : 8–9. http://dx.doi.org/10.1541/ieejjournal.136.8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Trahms, Lutz, Frank Ludwig et Dietmar Drung. « Biomagnetic instruments go portable ». Physics World 10, no 2 (février 1997) : 16. http://dx.doi.org/10.1088/2058-7058/10/2/17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Herman, Christine. « Biomagnetic Separation Attracting Users ». Genetic Engineering & ; Biotechnology News 32, no 13 (juillet 2012) : 22–24. http://dx.doi.org/10.1089/gen.32.13.12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rudy, Yoram. « Bioelectric and Biomagnetic Imaging ». Academic Radiology 2 (septembre 1995) : S143—S144. http://dx.doi.org/10.1016/s1076-6332(12)80059-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Saotome, Hideo, Kazuyasu Kitsuta, Seiji Hayano et Yoshifuru Saito. « Inverse Problems in Biomagnetic Fields ». IEEJ Transactions on Fundamentals and Materials 112, no 4 (1992) : 279–86. http://dx.doi.org/10.1541/ieejfms1990.112.4_279.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Moshage, W., S. Achenbach, K. Göhl, A. Weikl, K. Bachmann, P. Wegener, S. Schneider et W. Härer. « Biomagnetic localization of ventricular arrhythmias. » Radiology 180, no 3 (septembre 1991) : 685–92. http://dx.doi.org/10.1148/radiology.180.3.1714612.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Hoenig, H. E. « Squid arrays for biomagnetic diagnosis ». Physica Scripta T35 (1 janvier 1991) : 177–78. http://dx.doi.org/10.1088/0031-8949/1991/t35/038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Paulson, D. N., R. L. Fagaly, R. M. Toussaint et R. Fischer. « Biomagnetic susceptometer with SQUID instrumentation ». IEEE Transactions on Magnetics 27, no 2 (mars 1991) : 3249–52. http://dx.doi.org/10.1109/20.133904.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Pizzella, Vittorio, Stefania Della Penna, Cosimo Del Gratta et Gian Luca Romani. « SQUID systems for biomagnetic imaging ». Superconductor Science and Technology 14, no 7 (22 juin 2001) : R79—R114. http://dx.doi.org/10.1088/0953-2048/14/7/201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Matsunaga, Tadashi, et Haruko Takeyama. « Biomagnetic nanoparticle formation and application ». Supramolecular Science 5, no 3-4 (juillet 1998) : 391–94. http://dx.doi.org/10.1016/s0968-5677(98)00037-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Anastasiadis, P., Ph Anninos et E. Sivridis. « Biomagnetic activity in breast lesions ». Breast 3, no 3 (septembre 1994) : 177–80. http://dx.doi.org/10.1016/0960-9776(94)90072-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bradshaw, L. A., A. Myers, W. O. Richards, W. Drake et J. P. Wikswo. « Vector projection of biomagnetic fields ». Medical & ; Biological Engineering & ; Computing 43, no 1 (février 2005) : 85–93. http://dx.doi.org/10.1007/bf02345127.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Spathopoulos, J., G. Galazios, V. Liberis et P. Anastasiadis. « Biomagnetic findings in breast lesions ». International Journal of Gynecology & ; Obstetrics 70 (2000) : E16. http://dx.doi.org/10.1016/s0020-7292(00)82372-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Schneider, S., K. Abraham-Fuchs, H. Seifert et H. E. Hoenig. « Current trends in biomagnetic instrumentation ». Applied Superconductivity 1, no 10-12 (octobre 1993) : 1791–812. http://dx.doi.org/10.1016/0964-1807(93)90329-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Nenonen, Jukka, et Toivo Katila. « Mathematical modelling for biomagnetic localization ». International Journal of Cardiac Imaging 7, no 3-4 (septembre 1991) : 177–84. http://dx.doi.org/10.1007/bf01797750.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Katila, Toivo, Matti Leiniö, Juha Montonen et Juku Nenonen. « Sensitivity Limits in Biomagnetic Measurements ». Acta Oto-Laryngologica 111, sup491 (janvier 1991) : 36–42. http://dx.doi.org/10.3109/00016489109136779.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Watson, J., et D. Ellwood. « Biomagnetic separation and extraction process ». IEEE Transactions on Magnetics 23, no 5 (septembre 1987) : 3751–52. http://dx.doi.org/10.1109/tmag.1987.1065215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Nenonen, Jukka, Juha Montonen et Toiro Katila. « Thermal noise in biomagnetic measurements ». Review of Scientific Instruments 67, no 6 (juin 1996) : 2397–405. http://dx.doi.org/10.1063/1.1147514.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Fenici, R. R., et G. Melillo. « Biomagnetic study of cardiac arrhythmias ». Clinical Physics and Physiological Measurement 12, A (1 janvier 1991) : 5–10. http://dx.doi.org/10.1088/0143-0815/12/a/001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Della Penna, S., C. Delgratta, C. Granata, A. Pasquarelli, V. Pizzella, R. Rossi, M. Russo, K. Torquatiand et S. N. Erné. « Biomagnetic systems for clinical use ». Philosophical Magazine B 80, no 5 (mai 2000) : 937–48. http://dx.doi.org/10.1080/01418630008221960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Della Penna, C. Del Gratta, C. Gran, S. « Biomagnetic systems for clinical use ». Philosophical Magazine B 80, no 5 (1 mai 2000) : 937–48. http://dx.doi.org/10.1080/014186300254899.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ishak, B. « Biomagnetics : principles and applications of biomagnetic stimulation and imaging, edited by Shoogo Ueno and Masaki Sekino ». Contemporary Physics 58, no 2 (17 février 2017) : 200–201. http://dx.doi.org/10.1080/00107514.2017.1291730.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Primin, Mykhailo, et Igor Nedayvoda. « Magnetometric Investigations of Biomagnetic Signals : Magnetocardiography ». Cybernetics and Computer Technologies, no 1 (30 juin 2022) : 28–41. http://dx.doi.org/10.34229/2707-451x.22.1.4.

Texte intégral
Résumé :
Introduction. Superconducting magnetometers based on SQUIDs (SQUID- Superconducting QUantum Interference Device) are currently used to register weak magnetic fields generated in various human organs and measured outside the body (in the environment). The creation of information technology, which is a set of methods and software tools combined into a technological chain that ensures registration, storage, pre-processing, analysis of measurement data and automatic diagnostic output, is an essential science-intensive component that determines the possibilities and success of the applied use of non-contact diagnostic systems of the human heart The purpose. Article presents new algorithms for spatial analysis of cardiomagnetic signal measurement results. The algorithms are based on the inverse problem solution, when the magnetic field source is matched to the spatial distribution of the magnetic signal and the parameters and spatial configuration of the source are determined. A model of the cardiomagnetic source was used in the form of a system of current density vectors, which are distributed in a plane that is parallel to the measurement plane and crosses the volume of the heart. Results. The inverse problem is solved using the apparatus of two-dimensional integral Fourier transformations. The data transformation algorithm allows to correctly take into account the design of the magnetic flux transformer (the dimensions of the pickup coils, their spatial location and the electrical connection scheme). Algorithm modifications have been developed for most of the known (implemented in existing magnetocardiographs) designs of magnetic flux transformers of the first and second order gradientometers. The operation of the algorithm is modeled on real data of magnetometric investigations of the human heart. Investigations have shown that the application of the proposed algorithms allows obtaining new information about the spatial configuration of the magnetic signal source in the human heart, which can be used in the future for the diagnosis of human heart diseases. Keywords: magnetocardiography, inverse problem of magnetostatics, Fourier transform, SQUID gradientometer.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Matsuura, Kanta, et Yoichi Okabe. « Reconstruction of Sparse Biomagnetic-Source Distribution ». IEEJ Transactions on Electronics, Information and Systems 116, no 2 (1996) : 223–29. http://dx.doi.org/10.1541/ieejeiss1987.116.2_223.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kazami, Kunio, Jun Kawai, Gen Uehara et Hisashi Kado. « Series SQUID Array for Biomagnetic Measurement ». IEEJ Transactions on Electronics, Information and Systems 116, no 2 (1996) : 252–58. http://dx.doi.org/10.1541/ieejeiss1987.116.2_252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

ISHIKAWA, Noboru, Kenichi HARAKAWA et Hisashi KADO. « Magnetically Shielded Room for Biomagnetic Measurement. » TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 28, no 5 (1993) : 237–43. http://dx.doi.org/10.2221/jcsj.28.237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

David, B., D. Grundler, S. Krey, V. Doormann, R. Eckart, J. P. Krumme, G. Rabe et O. Doessel. « High- SQUID magnetometers for biomagnetic measurements ». Superconductor Science and Technology 9, no 4A (1 avril 1996) : A96—A99. http://dx.doi.org/10.1088/0953-2048/9/4a/025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Alvarez, R. E. « Biomagnetic Fourier imaging (current density reconstruction) ». IEEE Transactions on Medical Imaging 9, no 3 (1990) : 299–304. http://dx.doi.org/10.1109/42.57767.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Bommel, F. R., R. Rockelein et L. Urankar. « Boundary element solution of biomagnetic problems ». IEEE Transactions on Magnetics 29, no 2 (mars 1993) : 1395–98. http://dx.doi.org/10.1109/20.250663.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Matsunaga, T., N. Tsujimura et S. Kamiya. « Genetic Analysis of Biomagnetic Crystal Formation ». Le Journal de Physique IV 07, no C1 (mars 1997) : C1–651—C1–654. http://dx.doi.org/10.1051/jp4:19971268.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Kirschvink, Joseph L. « Radio waves zap the biomagnetic compass ». Nature 509, no 7500 (7 mai 2014) : 296–97. http://dx.doi.org/10.1038/nature13334.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

NENONEN, JUKKA, et TOIVO KATILA. « Noninvasive Functional Localization by Biomagnetic Methods ». Journal of Clinical Engineering 16, no 5 (septembre 1991) : 423–34. http://dx.doi.org/10.1097/00004669-199109000-00014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Flynn, E. R., et H. C. Bryant. « A biomagnetic system forin vivocancer imaging ». Physics in Medicine and Biology 50, no 6 (3 mars 2005) : 1273–93. http://dx.doi.org/10.1088/0031-9155/50/6/016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie