Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Bio-nanocomposite Coating.

Articles de revues sur le sujet « Bio-nanocomposite Coating »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Bio-nanocomposite Coating ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Vertlib, Viatcheslav, Marianne Dietiker, Michael Plötze, Lee Yezek, Ralph Spolenak et Alexander M. Puzrin. « Fast assembly of bio-inspired nanocomposite films ». Journal of Materials Research 23, no 4 (avril 2008) : 1026–35. http://dx.doi.org/10.1557/jmr.2008.0147.

Texte intégral
Résumé :
This paper presents a spin-coating layer-by-layer assembly process to prepare multilayered polyelectrolyte-clay nanocomposites. This method allows for the fast production of films with controlled layered structure. The preparation of a 100-bilayer film with a thickness of about 330 nm needs less than 1 h, which is 20 times faster than conventional dip-coating processes maintaining the same hardness and modulus values. For validation of this technique, nanocomposite films with thicknesses up to 0.5 μm have been created with the common dip self-assembly and with the spin coating layer-by-layer assembly technique from a poly(diallyldimethylammonium)chloride (PDDA) solution and a suspension of a smectite clay mineral (Laponite). Geometrical characteristics (thickness, roughness, and texture) as well as mechanical characteristics (hardness and modulus) of the clay-polyelectrolyte films have been studied. The spin-coated nanocomposite films exhibit clearly improved mechanical properties (hardness 0.4 GPa, elastic modulus 7 GPa) compared to the “pure” polymer film, namely a sixfold increase in hardness and a 17-fold increase in Young’s modulus.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Concórdio-Reis, Patrícia, Ana Catarina Macedo, Martim Cardeira, Xavier Moppert, Jean Guézennec, Chantal Sevrin, Christian Grandfils, Ana Teresa Serra et Filomena Freitas. « Selenium Bio-Nanocomposite Based on Alteromonas macleodii Mo169 Exopolysaccharide : Synthesis, Characterization, and In Vitro Antioxidant Activity ». Bioengineering 10, no 2 (2 février 2023) : 193. http://dx.doi.org/10.3390/bioengineering10020193.

Texte intégral
Résumé :
In this study, the novel exopolysaccharide (EPS) produced by the marine bacterium Alteromonas macleodii Mo 169 was used as a stabilizer and capping agent in the preparation of selenium nanoparticles (SeNPs). The synthesized nanoparticles were well dispersed and spherical with an average particle size of 32 nm. The cytotoxicity of the EPS and the EPS/SeNPs bio-nanocomposite was investigated on human keratinocyte (HaCaT) and fibroblast (CCD-1079Sk) cell lines. No cytotoxicity was found for the EPS alone for concentrations up to 1 g L−1. A cytotoxic effect was only noticed for the bio-nanocomposite at the highest concentrations tested (0.5 and 1 g L−1). In vitro experiments demonstrated that non-cytotoxic concentrations of the EPS/SeNPs bio-nanocomposite had a significant cellular antioxidant effect on the HaCaT cell line by reducing ROS levels up to 33.8%. These findings demonstrated that the A. macleodii Mo 169 EPS can be efficiently used as a stabilizer and surface coating to produce a SeNP-based bio-nanocomposite with improved antioxidant activity.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sali, Anjumol Kidangayil. « Aloe vera Incorporated Chitosan/Nanocellulose Hybrid Nanocomposites as Potential Edible Coating Material under Humid Conditions ». Journal of Siberian Federal University. Biology 14, no 4 (décembre 2021) : 475–97. http://dx.doi.org/10.17516/1997-1389-0366.

Texte intégral
Résumé :
Innovative post-harvest technologies are in demand to meet the requirements of farmers and agricultural industries to ensure global food security and to avoid food wastage. Edible coatings that can prevent food spoilage and/or enhance shelf life have taken on increasing importance. This work involves the development of edible coatings based on easily available bio resources, chitosan and nanocellulose, and utilizing their unique properties as an effective coating material. Aloe vera, known for its antioxidant and antimicrobial properties, has been proposed as an active ingredient that can be incorporated into the biodegradable film. Varying volumes of Aloe vera (0.25 ml, 0.35 ml, 0.5 ml, and 2.5 ml) were added to fabricate nanocomposite films by solvent casting. Transparent films were obtained, and their morphology was analysed using scanning electron microscope (SEM). The incorporation of Aloe vera was confirmed in various spectroscopic studies, which clearly show reduction in light transmittance for the nanocomposite films containing Aloe vera. The contact angle study showed an increase in hydrophobicity initially. Maximum tensile strength was obtained with 0.25 ml of Aloe vera. The potential use of nanocomposite solution as edible films was demonstrated in green chillies, which showed lower weight loss after 3 days when compared with uncoated chillies. In the first phase of this study, chitosan/nanocellulose nanocomposites enriched with Aloe vera have been proposed as a potential edible food coating material
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gammariello, D., A. Conte, G. G. Buonocore et M. A. Del Nobile. « Bio-based nanocomposite coating to preserve quality of Fior di latte cheese ». Journal of Dairy Science 94, no 11 (novembre 2011) : 5298–304. http://dx.doi.org/10.3168/jds.2011-4161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ghosh, Biplab, Satyabrat Gogoi, Suman Thakur et Niranjan Karak. « Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material ». Progress in Organic Coatings 90 (janvier 2016) : 324–30. http://dx.doi.org/10.1016/j.porgcoat.2015.10.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Domingues, Eddy M., Gil Gonçalves, Bruno Henriques, Eduarda Pereira et Paula A. A. P. Marques. « Effective and simple removal of Hg from real waters by a robust bio-nanocomposite ». Environmental Science : Nano 9, no 3 (2022) : 1156–67. http://dx.doi.org/10.1039/d1en00764e.

Texte intégral
Résumé :
The purpose of this study is to immobilize GOPEI on a spongin skeleton coated with an alginate coating layer in order to generate a cohesive composite that is very efficient in removing Hg and can be easily recovered from remediated water.
Styles APA, Harvard, Vancouver, ISO, etc.
7

An, Wen, Jianzhong Ma, Qunna Xu, Hui Zhang, Linfeng Wei et Liu Yuan. « Construction of hetero-structured fillers to significantly enhance the fire safety of bio-based nanocomposite coating ». Applied Surface Science 575 (février 2022) : 151767. http://dx.doi.org/10.1016/j.apsusc.2021.151767.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Khandan, Amirsalar, Majid Abdellahi, Neriman Ozada et Hamid Ghayour. « Study of the bioactivity, wettability and hardness behaviour of the bovine hydroxyapatite-diopside bio-nanocomposite coating ». Journal of the Taiwan Institute of Chemical Engineers 60 (mars 2016) : 538–46. http://dx.doi.org/10.1016/j.jtice.2015.10.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Weththimuni, Maduka Lankani, Marwa Ben Chobba, Ilenia Tredici et Maurizio Licchelli. « ZrO2-doped ZnO-PDMS nanocomposites as protective coatings for the stone materials ». ACTA IMEKO 11, no 1 (31 mars 2022) : 5. http://dx.doi.org/10.21014/acta_imeko.v11i1.1078.

Texte intégral
Résumé :
<p class="Abstract"><span lang="EN-US">ZnO is a semiconductor that has found wide application in the optics and electronics areas. Moreover, it is widely used in different technological areas </span><span lang="EN-US">due to its beneficial qualities (high chemical stability, non-toxicity, high photo-reactivity, and cheapness). Based on its antibacterial activity, recently it has found also application to prevent bio-deterioration of cultural heritage buildings. As many authors suggested, doped ZnO nano-structures exhibit better antibacterial properties than undoped analogues. In the present work, ZnO nanoparticles doped with ZrO<sub>2</sub> have been prepared by a sol-gel method in order to enhance the photocatalytic properties as well as the antibacterial activity of ZnO. Then, ZrO<sub>2</sub>-ZnO-PDMS nanocomposite (PDMS, polydimethylsiloxane used as the binder) was synthesized by in-situ reaction. The resulting nanocomposite has been investigated as a possible protective material for cultural heritage building substrates. The performances of newly prepared coating were evaluated in three different stones (Lecce stone, Carrara Marble and Brick) and compared with Plain PDMS as a reference coating. </span></p>
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kumar, Amit, Pen-Yi Hsieh, Muhammad Omar Shaikh, R. K. Rakesh Kumar et Cheng-Hsin Chuang. « Flexible Temperature Sensor Utilizing MWCNT Doped PEG-PU Copolymer Nanocomposites ». Micromachines 13, no 2 (27 janvier 2022) : 197. http://dx.doi.org/10.3390/mi13020197.

Texte intégral
Résumé :
In this study, polyethylene glycol (PEG) and polyurethane (PU)-based shape-stabilized copolymer nanocomposites were synthesized and utilized for developing low-cost and flexible temperature sensors. PU was utilized as a flexible structural material for loading a thermosensitive phase change PEG polymer by means of physical mixing and chemical crosslinking. Furthermore, the introduction of multi-walled carbon nanotubes (MWCNT) as a conductive filler in the PEG-PU copolymer resulted in a nanocomposite with thermoresistive properties. MWCNT loading concentrations from 2 wt.% to 10 wt.% were investigated, to attain the optimum conductivity of the nanocomposite. Additionally, the effect of MWCNT loading concentration on the thermosensitive behavior of the nanocomposite was analyzed in the temperature range 25 °C to 50 °C. The thermosensitive properties of the physically mixed and crosslinked polymeric nanocomposites were compared by spin coating the respective nanocomposites on screen printed interdigitated (IDT) electrodes, to fabricate the temperature sensor. The chemically crosslinked MWCNT-PEG-PU polymeric nanocomposite showed an improved thermosensitive behavior in the range 25 °C to 50 °C, compared to the physically mixed nanocomposite. The detailed structural, morphological, thermal, and phase transition properties of the nanocomposites were investigated using XRD, FTIR, and DSC analysis. XRD and FTIR were used to analyze the crystallinity and PEG-PU bonding of the copolymer nanocomposite, respectively; while the dual phase (solid–liquid) transition of PEG was analyzed using DSC. The proposed nanocomposite-based flexible temperature sensor demonstrated excellent sensitivity, reliability and shows promise for a wide range of bio-robotic and healthcare applications.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Babahan-Bircan, Ilknur, Ilke Demirkaya, Samer Obaid Hasan Hasan, Jomin Thomas et Mark D. Soucek. « Comparison of new bio-based epoxide-amine coatings with their nanocomposite coating derivatives (graphene, CNT, and fullerene) as replacements for BPA ». Progress in Organic Coatings 165 (avril 2022) : 106714. http://dx.doi.org/10.1016/j.porgcoat.2022.106714.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Balaji, J., P. Bothi Raja, M. G. Sethuraman et T. H. Oh. « Experimental and multiscale simulation studies on Chitosan doped Hybrid/Zirconium—a bio-nanocomposite coating for aluminium protection ». Journal of Sol-Gel Science and Technology 100, no 2 (8 octobre 2021) : 341–51. http://dx.doi.org/10.1007/s10971-021-05642-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mastromatteo, Marianna, Amalia Conte, Annalisa Lucera, Maria Antonietta Saccotelli, Giovanna Giuliana Buonocore, Angelo Vittorio Zambrini et Matteo Alessandro Del Nobile. « Packaging solutions to prolong the shelf life of Fiordilatte cheese : Bio-based nanocomposite coating and modified atmosphere packaging ». LWT - Food Science and Technology 60, no 1 (janvier 2015) : 230–37. http://dx.doi.org/10.1016/j.lwt.2014.08.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Hegde, Mahesh Bhaskar, Kikkeri Narasimha Shetty Mohana, Kamalon Rajitha et Ambale Murthy Madhusudhana. « Reduced graphene oxide-epoxidized linseed oil nanocomposite : A highly efficient bio-based anti-corrosion coating material for mild steel ». Progress in Organic Coatings 159 (octobre 2021) : 106399. http://dx.doi.org/10.1016/j.porgcoat.2021.106399.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Echavarría, Aida M., P. Rico, J. L. Gómez Ribelles, Miguel A. Pacha-Olivenza, María-Coronada Fernández-Calderón et Gilberto Bejarano-G. « Development of a Ta/TaN/TaNx(Ag)y/TaN nanocomposite coating system and bio-response study for biomedical applications ». Vacuum 145 (novembre 2017) : 55–67. http://dx.doi.org/10.1016/j.vacuum.2017.08.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Huang, Chen, Guigan Fang, Yangyang Zhao, Samarthya Bhagia, Xianzhi Meng, Qiang Yong et Arthur J. Ragauskas. « Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix ». Carbohydrate Polymers 222 (octobre 2019) : 115036. http://dx.doi.org/10.1016/j.carbpol.2019.115036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Shahmoradi, Ali Reza, Mohsen Saket Bejandi, Elmira Hadian Rasanani, Ali Asghar Javidparvar et Bahram Ramezanzadeh. « Graphene oxide nano-layers functionalized/reduced by L-Citrulline/Pectin bio-molecules for epoxy nanocomposite coating mechanical properties reinforcement ». Progress in Organic Coatings 178 (mai 2023) : 107493. http://dx.doi.org/10.1016/j.porgcoat.2023.107493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Khan, Avik, Baobin Wang et Yonghao Ni. « Chitosan-Nanocellulose Composites for Regenerative Medicine Applications ». Current Medicinal Chemistry 27, no 28 (6 août 2020) : 4584–92. http://dx.doi.org/10.2174/0929867327666200127152834.

Texte intégral
Résumé :
Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Dutta, Geeti Kaberi, et Niranjan Karak. « Bio-based waterborne polyester/cellulose nanofiber-reduced graphene oxide–zinc oxide nanocomposite : an approach towards sustainable mechanically robust anticorrosive coating ». Cellulose 29, no 3 (19 janvier 2022) : 1679–703. http://dx.doi.org/10.1007/s10570-021-04414-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Cavallaro, Giuseppe, Giuseppe Lazzara, Lorenzo Lisuzzo, Stefana Milioto et Filippo Parisi. « Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity ». Journal of Functional Biomaterials 9, no 4 (21 octobre 2018) : 60. http://dx.doi.org/10.3390/jfb9040060.

Texte intégral
Résumé :
We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, while DMA measurements under the oscillatory regime showed that the polymer glass transition was not affected by the addition of the nanoclay. The tensile properties of the Mater-Bi/halloysite nanotube (HNT) films were competitive compared to those of traditional petroleum plastics in terms of the elastic modulus and stress at the breaking point. Both the mechanical response to the temperature and the tensile properties make the bio-nanocomposites appropriate for food packaging and smart coating purposes. Here, we report a preliminary study of the development of sustainable hybrid materials that could be employed in numerous industrial and technological applications within materials science and pharmaceutics.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Shanmugam, Ragavanantham, Vishnuvarthanan Mayakrishnan, Radhakrishnan Kesavan, Kirubanandan Shanmugam, Subha Veeramani et Rajangam Ilangovan. « Mechanical, Barrier, Adhesion and Antibacterial Properties of Pullulan/Graphene Bio Nanocomposite Coating on Spray Coated Nanocellulose Film for Food Packaging Applications ». Journal of Polymers and the Environment 30, no 5 (15 octobre 2021) : 1749–57. http://dx.doi.org/10.1007/s10924-021-02311-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Rajimol, P. R., Sarah Bill Ulaeto, Anoop Puthiyamadam, S. Neethu, T. P. D. Rajan, K. V. Radhakrishnan et Rajeev K. Sukumaran. « Smart anticorrosive and antimicrobial multifunctional epoxy coating using bergenin and malabaricone C bio-nanocomposite dispersoids on mild steel and aluminium-6061 alloy ». Progress in Organic Coatings 169 (août 2022) : 106924. http://dx.doi.org/10.1016/j.porgcoat.2022.106924.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ryu, Dong Hyeon, et Kenneth J. Loh. « Analyzing the Strain Sensing Response of Photoactive Thin Films Using Absorption Spectroscopy ». Key Engineering Materials 569-570 (juillet 2013) : 695–701. http://dx.doi.org/10.4028/www.scientific.net/kem.569-570.695.

Texte intégral
Résumé :
Structural health monitoring systems are required for detecting damage in structures so as to facilitate their timely maintenance and repair and to prevent catastrophic structural failure. To date, a variety of different sensor platforms (e.g., piezoelectric materials, fiber optics, and wireless sensors) have been proposed for SHM. However, they still suffer from high energy demand, large form factors, and durability issues, particularly when applied for monitoring space structures and reusable spacecraft. In a previous study, a bio-inspired and photocurrent-based strain sensor has been developed. This poly(3-hexylthiophene) (P3HT)-based nanocomposite sensor has been shown to generate photocurrent whose magnitude varies in tandem with applied strain. However, the photocurrent generation performance of the sensor is quite low. In addition, the strain sensing mechanism is not fully understood. In this study, the performance of the photoactive thin films were enhanced, and its strain sensing characteristics were analyzed using ultraviolet-visible (UV-Vis) absorption spectroscopy. First, multilayered photoactive and P3HT-based thin films were assembled via spin coating. The photocurrent generation performance of the films was evaluated using two methodologies, namely its photocurrent time history and current-voltage (IV) response. Uniform coating of the photoactive layer and high purity aluminum electrodes were crucial for improving their photocurrent generation. Second, light absorption properties of the P3HT-based photoactive layer were investigated at different strain levels using a UV-Vis spectrophotometer. Light absorption was shown to vary linearly with applied tensile strains.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Schlebrowski, Torben, Zineb Kassab, Mounir El Achaby, Stefan Wehner et Christian B. Fischer. « Effect of Cellulose Nanocrystals on the Coating of Chitosan Nanocomposite Film Using Plasma-Mediated Deposition of Amorphous Hydrogenated Carbon (a–C:H) Layers ». C — Journal of Carbon Research 6, no 3 (30 juillet 2020) : 51. http://dx.doi.org/10.3390/c6030051.

Texte intégral
Résumé :
The substitution of petroleum-based polymers with naturally derived biopolymers may be a good alternative for the conservation of natural fossil resources and the alleviation of pollution and waste disposal problems. However, in order to be used in a wide range of applications, some biopolymers’ properties should be enhanced. In this study, biocompatible, non-toxic, and biodegradable chitosan (CS) film and CS reinforced with 10 wt% of cellulose nanocrystals (CN–CS) were coated with amorphous hydrogenated carbon layers (a–C:H) of different thickness. To investigate the effect of the nano-reinforcement on the a–C:H layer applied, mild radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) was used to coat the CS and its CN–CS bio-nanocomposite film. Both the surface characteristics and the chemical composition were analyzed. The surface morphology and wettability were examined by ex-situ atomic force microscopy (AFM) and contact angle measurements (CA), respectively. Hereby, the relationship between sp2/sp3 ratios on a macroscopic scale was also evaluated. For the investigation of the chemical composition, the surface sensitive synchrotron X-ray radiation techniques near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) as well as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) were used.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Zeng, Qi, Shoujun Yu, Zihui Fan, Yubin Huang, Bing Song et Tian Zhou. « Nanocone-Array-Based Platinum-Iridium Oxide Neural Microelectrodes : Structure, Electrochemistry, Durability and Biocompatibility Study ». Nanomaterials 12, no 19 (1 octobre 2022) : 3445. http://dx.doi.org/10.3390/nano12193445.

Texte intégral
Résumé :
Neural interfaces provide a window for bio-signal modulation and recording with the assistance of neural microelectrodes. However, shrinking the size of electrodes results in high electrochemical impedance and low capacitance, thus limiting the stimulation/recording efficiency. In order to achieve critical stability and low power consumption, here, nanocone-shaped platinum (Pt) with an extensive surface area is proposed as an adhesive layer on a bare Pt substrate, followed by the deposition of a thin layer of iridium oxide (IrOx) to fabricate high-performance nanocone-array-based Pt-IrOx neural microelectrodes (200 μm in diameter). A uniform nanocone-shaped Pt with significant roughness is created via controlling the ratio of NH4+ and Pt4+ ions in the electrolyte, which can be widely applicable for batch production on multichannel flexible microelectrode arrays (fMEAs) and various substrates with different dimensions. The Pt-IrOx nanocomposite-coated microelectrode presents a significantly low impedance down to 0.72 ± 0.04 Ω cm2 at 1 kHz (reduction of ~92.95%). The cathodic charge storage capacity (CSCc) and charge injection capacity (CIC) reaches up to 52.44 ± 2.53 mC cm−2 and 4.39 ± 0.36 mC cm−2, respectively. Moreover, superior chronic stability and biocompatibility are also observed. The modified microelectrodes significantly enhance the adhesion of microglia, the major immune cells in the central nervous system. Therefore, such a coating strategy presents great potential for biomedical and other practical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Dulski, Mateusz, Robert Gawecki, Sławomir Sułowicz, Michal Cichomski, Alicja Kazek-Kęsik, Marta Wala, Katarzyna Leśniak-Ziółkowska et al. « Key Properties of a Bioactive Ag-SiO2/TiO2 Coating on NiTi Shape Memory Alloy as Necessary at the Development of a New Class of Biomedical Materials ». International Journal of Molecular Sciences 22, no 2 (6 janvier 2021) : 507. http://dx.doi.org/10.3390/ijms22020507.

Texte intégral
Résumé :
Recent years have seen the dynamic development of methods for functionalizing the surface of implants using biomaterials that can mimic the physical and mechanical nature of native tissue, prevent the formation of bacterial biofilm, promote osteoconduction, and have the ability to sustain cell proliferation. One of the concepts for achieving this goal, which is presented in this work, is to functionalize the surface of NiTi shape memory alloy by an atypical glass-like nanocomposite that consists of SiO2-TiO2 with silver nanoparticles. However, determining the potential medical uses of bio(nano)coating prepared in this way requires an analysis of its surface roughness, tribology, or wettability, especially in the context of the commonly used reference coat-forming hydroxyapatite (HAp). According to our results, the surface roughness ranged between (112 ± 3) nm (Ag-SiO2)—(141 ± 5) nm (HAp), the water contact angle was in the range (74.8 ± 1.6)° (Ag-SiO2)—(70.6 ± 1.2)° (HAp), while the surface free energy was in the range of 45.4 mJ/m2 (Ag-SiO2)—46.8 mJ/m2 (HAp). The adhesive force and friction coefficient were determined to be 1.04 (Ag-SiO2)—1.14 (HAp) and 0.247 ± 0.012 (Ag-SiO2) and 0.397 ± 0.034 (HAp), respectively. The chemical data showed that the release of the metal, mainly Ni from the covered NiTi substrate or Ag from Ag-SiO2 coating had a negligible effect. It was revealed that the NiTi alloy that was coated with Ag-SiO2 did not favor the formation of E. coli or S. aureus biofilm compared to the HAp-coated alloy. Moreover, both approaches to surface functionalization indicated good viability of the normal human dermal fibroblast and osteoblast cells and confirmed the high osteoconductive features of the biomaterial. The similarities of both types of coat-forming materials indicate an excellent potential of the silver-silica composite as a new material for the functionalization of the surface of a biomaterial and the development of a new type of functionalized implants.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Jung, Seohui, Yufei Cui, Morgan Barnes, Chinmay Satam, Shenxiang Zhang, Reaz A. Chowdhury, Aparna Adumbumkulath et al. « Bio‐Nanocomposite Coatings : Multifunctional Bio‐Nanocomposite Coatings for Perishable Fruits (Adv. Mater. 26/2020) ». Advanced Materials 32, no 26 (juillet 2020) : 2070199. http://dx.doi.org/10.1002/adma.202070199.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Bratovcic, Amra. « Physical – Chemical, Mechanical and Antimicrobial Properties of Bio-Nanocomposite Films and Edible Coatings ». International Journal for Research in Applied Sciences and Biotechnology 8, no 5 (8 octobre 2021) : 151–61. http://dx.doi.org/10.31033/ijrasb.8.5.22.

Texte intégral
Résumé :
Bio-nanocomposite films and edible coatings constitute of metal nanoparticles incorporated in biopolymers on the shelf life and quality of food were studied. It has been seen that the application of bio-nanocomposite films and edible coatings to fruits and vegetables may lead to decreasing the color changes, respiration rate, weight loss and extended shelf life, delaying ripening and being environmentally friendly. Physical-chemical properties such as moisture barrier, oxygen scavengers, and antimicrobial properties have been reviewed. In addition, the physicochemical characterization which covers surface and structure characterization, as well as contact angle, thickness, transparency, colour characterization and thermal stability were included. Moreover, it has been seen that novel bio-nanocomposite films and edible coatings are able to enhance the texture, improve the product appearance, and prolong the shelf-life by creating semi-permeable barriers to gases and moisture, such as carbon dioxide and oxygen.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Jung, Seohui, Yufei Cui, Morgan Barnes, Chinmay Satam, Shenxiang Zhang, Reaz A. Chowdhury, Aparna Adumbumkulath et al. « Multifunctional Bio‐Nanocomposite Coatings for Perishable Fruits ». Advanced Materials 32, no 26 (4 mai 2020) : 1908291. http://dx.doi.org/10.1002/adma.201908291.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Kantheti, Sasidhar, Ramanuj Narayan et K. V. S. N. Raju. « The impact of 1,2,3-triazoles in the design of functional coatings ». RSC Advances 5, no 5 (2015) : 3687–708. http://dx.doi.org/10.1039/c4ra12739k.

Texte intégral
Résumé :
This review article presents an overview of the application of 1,2,3-triazoles in the design of various high performance organic coatings with properties like anti-corrosive, anti-microbial, self-healing, hybrid nanocomposite, bio degradableetc.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhou, Jinman, Xianyuan Liu, Xiaojiang He, Haoxin Wang, Dongli Ma et Xianyong Lu. « Bio-Inspired Aramid Fibers@silica Binary Synergistic Aerogels with High Thermal Insulation and Fire-Retardant Performance ». Polymers 15, no 1 (28 décembre 2022) : 141. http://dx.doi.org/10.3390/polym15010141.

Texte intégral
Résumé :
Flame-retardant, thermal insulation, mechanically robust, and comprehensive protection against extreme environmental threats aerogels are highly desirable for protective equipment. Herein, inspired by the core (organic)-shell (inorganic) structure of lobster antenna, fire-retardant and mechanically robust aramid fibers@silica nanocomposite aerogels with core-shell structures are fabricated via the sol-gel-film transformation and chemical vapor deposition process. The thickness of silica coating can be well-defined and controlled by the CVD time. Aramid fibers@silica nanocomposite aerogels show high heat resistance (530 °C), low thermal conductivity of 0.030 W·m−1·K−1, high tensile strength of 7.5 MPa and good flexibility. More importantly, aramid fibers@silica aerogels have high flame retardancy with limiting oxygen index 36.5. In addition, this material fabricated by the simple preparation process is believed to have potential application value in the field of aerospace or high-temperature thermal protection.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Madhan Kumar, A., S. Nagarajan, Suresh Ramakrishna, P. Sudhagar, Yong Soo Kang, Hyongbum Kim, Zuhair M. Gasem et N. Rajendran. « Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants ». Materials Science and Engineering : C 43 (octobre 2014) : 76–85. http://dx.doi.org/10.1016/j.msec.2014.07.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Hassan, Enas, Shaimaa Fadel, Wafaa Abou-Elseoud, Marwa Mahmoud et Mohammad Hassan. « Cellulose Nanofibers/Pectin/Pomegranate Extract Nanocomposite as Antibacterial and Antioxidant Films and Coating for Paper ». Polymers 14, no 21 (30 octobre 2022) : 4605. http://dx.doi.org/10.3390/polym14214605.

Texte intégral
Résumé :
Bio-based polymer composites find increasing research and industrial interest in different areas of our life. In this study, cellulose nanofibers (CNFs) isolated from sugar beet pulp and nanoemulsion prepared from sugar beet pectin and pomegranate extract (PGE) were used for making films and used as coating with antioxidant and antimicrobial activities for paper. For Pectin/PGE nanoemulsion preparation, different ratios of PGE were mixed with pectin using ultrasonic treatment; the antibacterial properties were evaluated to choose the formula with the adequate antibacterial activity. The antioxidant activity of the nanoemulsion with the highest antimicrobial activity was also evaluated. The nanoemulsion with the optimum antibacterial activity was mixed with different ratios of CNFs. Mechanical, greaseproof, antioxidant activity, and antibacterial properties of the CNFs/Pectin/PGE films were evaluated. Finally, the CNFs/Pectin/PGE formulation with the highest antibacterial activity was tested as a coating material for paper. Mechanical, greaseproof, and air porosity properties, as well as water vapor permeability and migration of the coated layer from paper sheets in different media were evaluated. The results showed promising applicability of the CNFs/Pectin/PGE as films and coating material with antibacterial and antioxidant activities, as well as good stability for packaging aqueous, fatty, and acidic food products.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Phogat, Kapender, Susheem Kanwar, Debabrata Nayak, Navya Mathur, Subrata Bandhu Ghosh et Sanchita Bandyopadhyay‐Ghosh. « Nano‐enabled poly(vinyl alcohol) based injectable bio‐nanocomposite hydrogel scaffolds ». Journal of Applied Polymer Science 137, no 23 (18 décembre 2019) : 48789. http://dx.doi.org/10.1002/app.48789.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Jafarzadeh, Shima, Abdorreza Mohammadi Nafchi, Ali Salehabadi, Nazila Oladzad-abbasabadi et Seid Mahdi Jafari. « Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables ». Advances in Colloid and Interface Science 291 (mai 2021) : 102405. http://dx.doi.org/10.1016/j.cis.2021.102405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Wu, Hao, Jiwen Li, Wanyu Zhang, Tao Chen, Fuchun Liu et En-Hou Han. « Supramolecular engineering of nacre-inspired bio-based nanocomposite coatings with exceptional ductility and high-efficient self-repair ability ». Chemical Engineering Journal 437 (juin 2022) : 135405. http://dx.doi.org/10.1016/j.cej.2022.135405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Singh, Simrjit, Neeraj Khare, Balasubramanian Sivakumar, Athulya Aravind et Dasappan Nair Sakthikumar. « Multifunctional CdS/CoFe2O4fluorescent/magnetic core/shell nanocomposite structure for bio-applications ». Materials Research Express 3, no 4 (26 avril 2016) : 045024. http://dx.doi.org/10.1088/2053-1591/3/4/045024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kadam, H., S. Bandyopadhyay‐Ghosh, N. Malik et S. B. Ghosh. « Bio‐based engineered nanocomposite foam with enhanced mechanical and thermal barrier properties ». Journal of Applied Polymer Science 136, no 7 (8 octobre 2018) : 47063. http://dx.doi.org/10.1002/app.47063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Rahman, Muhammad M., Anil N. Netravali, Boniface J. Tiimob, Vitus Apalangya et Vijaya K. Rangari. « Bio-inspired “green” nanocomposite using hydroxyapatite synthesized from eggshell waste and soy protein ». Journal of Applied Polymer Science 133, no 22 (19 février 2016) : n/a. http://dx.doi.org/10.1002/app.43477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Khalifa, Mohammed, Govind S. Ekbote, S. Anandhan, Guenter Wuzella, Herfried Lammer et Arunjunai Raj Mahendran. « Physicochemical characteristics of bio‐based thermoplastic polyurethane/graphene nanocomposite for piezoresistive strain sensor ». Journal of Applied Polymer Science 137, no 44 (2 mai 2020) : 49364. http://dx.doi.org/10.1002/app.49364.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Perumal, Anand Babu, Periyar Selvam Sellamuthu, Reshma B. Nambiar et Emmanuel Rotimi Sadiku. « Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw ». Applied Surface Science 449 (août 2018) : 591–602. http://dx.doi.org/10.1016/j.apsusc.2018.01.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Cui, Jiuyun, Yilin Wu, Minjia Meng, Jian Lu, Chen Wang, Juan Zhao et Yongsheng Yan. « Bio-inspired synthesis of molecularly imprinted nanocomposite membrane for selective recognition and separation of artemisinin ». Journal of Applied Polymer Science 133, no 19 (21 janvier 2016) : n/a. http://dx.doi.org/10.1002/app.43405.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Sharma, Shubham, P. Sudhakara, Abdoulhdi A. Borhana Omran, Jujhar Singh et R. A. Ilyas. « Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications ». Polymers 13, no 17 (28 août 2021) : 2898. http://dx.doi.org/10.3390/polym13172898.

Texte intégral
Résumé :
Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells, fuel cells, supercapacitors, LEDs, and adhesive applications with desired-appealing and cost-effective, functional surface coatings. The distinctive properties of nanocomposite materials involve significantly improved mechanical characteristics, barrier-properties, weight-reduction, and increased, long-lasting performance in terms of heat, wear, and scratch-resistant. Constraint in availability of power due to continuous depletion in the reservoirs of fossil fuels has affected the performance and functioning of electronic and energy storage appliances. For such reasons, efforts to modify the performance of such appliances are under way through blending design engineering with organic electronics. Unlike conventional inorganic semiconductors, organic electronic materials are developed from conducting polymers (CPs), dyes and charge transfer complexes. However, the conductive polymers are perhaps more bio-compatible rather than conventional metals or semi-conductive materials. Such characteristics make it more fascinating for bio-engineering investigators to conduct research on polymers possessing antistatic properties for various applications. An extensive overview of different techniques of synthesis and the applications of polymer bio-nanocomposites in various fields of sensors, actuators, shape memory polymers, flexible electronics, optical limiting, electrical properties (batteries, solar cells, fuel cells, supercapacitors, LEDs), corrosion-protection and biomedical application are well-summarized from the findings all across the world in more than 150 references, exclusively from the past four years. This paper also presents recent advancements in composites of rare-earth oxides based on conducting polymer composites. Across a variety of biological and medical applications, the fact that numerous tissues were receptive to electric fields and stimuli made CPs more enticing.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wang, Fangxin, Yongyang Sun, Wenyan Liang, Hailing He, Bin Yang et Alex Osei Bonsu. « The three-line synergistic icephobicity of conductive CNTs/PDMS nanocomposite with bio-inspired hierarchical surface ». Surfaces and Interfaces 26 (octobre 2021) : 101424. http://dx.doi.org/10.1016/j.surfin.2021.101424.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

SaifulAzry, S. O. A., T. G. Chuah, M. T. Paridah, M. M. Aung, M. A. Ridzuan, C. H. Lee, S. Sariah, S. H. Lee et A. H. Juliana. « Influence of cellulose II polymorph nanowhiskers on bio-based nanocomposite film from Jatropha oil polyurethane ». Materials Research Express 8, no 1 (1 janvier 2021) : 015003. http://dx.doi.org/10.1088/2053-1591/abc6ce.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Mahmoodi, Niyaz Mohammad, Mohsen Taghizadeh, Ali Taghizadeh, Jafar Abdi, Bagher Hayati et Ali Akbar Shekarchi. « Bio-based magnetic metal-organic framework nanocomposite : Ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media ». Applied Surface Science 480 (juin 2019) : 288–99. http://dx.doi.org/10.1016/j.apsusc.2019.02.211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mosayebi, Maryam, Gity Mir Mohamad Sadeghi et Roghieh Jamjah. « Synthesis of waterborne polyurethane nanocomposite adhesives of bio‐based polyol from rapeseed cake residual and cellulose nanowhisker ». Journal of Applied Polymer Science 139, no 15 (3 décembre 2021) : 51954. http://dx.doi.org/10.1002/app.51954.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Peng, Hongyun, Dong Wang et Shaohai Fu. « Biomimetic construction of highly durable nacre-like MoS2 bio-nanocomposite coatings on polyacrylonitrile textile for intumescent flame retardation and sustainable solar-thermal-electricity conversion ». Composites Part B : Engineering 215 (juin 2021) : 108742. http://dx.doi.org/10.1016/j.compositesb.2021.108742.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Oliveira Filho, Josemar Gonçalves de, Beatriz Regina Albiero, Ítalo Henrique Calisto, Mirella Romanelli Vicente Bertolo, Fernanda Campos Alencar Oldoni, Mariana Buranelo Egea, Stanislau Bogusz Junior, Henriette Monteiro Cordeiro de Azeredo et Marcos David Ferreira. « Bio-nanocomposite edible coatings based on arrowroot starch/cellulose nanocrystals/carnauba wax nanoemulsion containing essential oils to preserve quality and improve shelf life of strawberry ». International Journal of Biological Macromolecules 219 (octobre 2022) : 812–23. http://dx.doi.org/10.1016/j.ijbiomac.2022.08.049.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Maruthai, Jayapriya, Krithikadevi Ramachandran, Arulmozhi Muthukumarasamy, Siva Chidambaram, Mounir Gaidi et Kais Daoudi. « Bio fabrication of 2D MgO/Ag nanocomposite for effective environmental utilization in antibacterial, anti-oxidant and catalytic applications ». Surfaces and Interfaces 30 (juin 2022) : 101921. http://dx.doi.org/10.1016/j.surfin.2022.101921.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie