Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Bio-based systems.

Livres sur le sujet « Bio-based systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 17 meilleurs livres pour votre recherche sur le sujet « Bio-based systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Bizzarri, Mariano. Approaching Complex Diseases : Network-Based Pharmacology and Systems Approach in Bio-Medicine. Springer, 2020.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bizzarri, Mariano. Approaching Complex Diseases : Network-Based Pharmacology and Systems Approach in Bio-Medicine. Springer International Publishing AG, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kim, Seungil, dir. Toward Sustainability through Bio-Based Materials at the Interfaces with Living Systems. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-9339-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jadrnicek, Shawn. Bio-Integrated Farm : A Revolutionary Permaculture-Based System Using Greenhouses, Ponds, Compost Piles, Aquaponics, Chickens, and More. Chelsea Green Publishing, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

The bio-integrated farm : A revolutionary permaculture-based system using greenhouses, ponds, compost piles, aquaponics, chickens, and more. White River Junction, Vermont : Chelsea Green Publishing, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rundo, Francesco, Giuseppe Luigi Banna, Concetto Spampinato et Sabrina Conoci, dir. Bio-inspired Physiological Signal(s) and Medical Image(s) Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio-Engineering Applications in Medical and Industrial Fields. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-916-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Parab, Sameer. Sequential flow based bio-analytical system. 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rai, Dibya Prakash, dir. Advanced Materials and Nano Systems : Theory and Experiment - Part 2. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150499611220201.

Texte intégral
Résumé :
The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind. Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update students, teachers, and scientists by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 12 topics in these areas: 1. Recent advancements in nanotechnology: a human health Perspective 2. An exploratory study on characteristics of SWIRL of AlGaAs/GaAs in advanced bio based nanotechnological systems 3. Electronic structure of the half-Heusler ScAuSn, LuAuSn and their superlattice 4. Recent trends in nanosystems 5. Improvement of performance of single and multicrystalline silicon solar cell using low-temperature surface passivation layer and antireflection coating 6. Advanced materials and nanosystems 7. Effect of nanostructure-materials on optical properties of some rare earth ions doped in silica matrix 8. Nd2Fe14B and SmCO5: a permanent magnet for magnetic data storage and data transfer technology 9. Visible light induced photocatalytic activity of MWCNTS decorated sulfide based nano photocatalysts 10. Organic solar cells 11. Neodymium doped lithium borosilicate glasses 12. Comprehensive quantum mechanical study of structural features, reactivity, molecular properties and wave function-based characteristics of capmatinib
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bio-Imaging : Principles and Techniques. Taylor & Francis Group, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jayas, Digvir S., et Rajagopal Vadivambal. Bio-Imaging : Principles, Techniques, and Applications. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jayas, Digvir S., et Rajagopal Vadivambal. Bio-Imaging : Principles, Techniques, and Applications. Taylor & Francis Group, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Jayas, Digvir S., et Rajagopal Vadivambal. Bio-Imaging : Principles, Techniques, and Applications. Taylor & Francis Group, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Jalan, Rajiv, et Banwari Agarwal. Extracorporeal liver support devices in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0198.

Texte intégral
Résumé :
Liver failure is common and carries high morbidity and mortality. Liver transplantation (LT) is the only definitive treatment available performed as an emergency in acute liver failure and electively for chronic liver disease. In the last 50 years, a number of extracorporeal liver support devices and modifications have emerged , some of them purely mechanical in nature aimed at detoxification, while others are cell based systems possessing bio-transformational capability. Mechanical devices are mainly based on albumin dialysis, albumin being a key transporter protein that is severely deficient and irreversibly destroyed in liver diseases. Despite a sound scientific rationale and good safety profile, none of the currently available devices have shown enough promise to be incorporated in routine clinical practice, their use being limited to specific clinical situations. This chapter describes currently available devices, their operational characteristics, current evidence of their utility and limitation, and the future developments in the field of extracorporeal liver support.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Musa, Sarhan M. Computational Optical Biomedical Spectroscopy and Imaging. Taylor & Francis Group, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Musa, Sarhan M. Computational Optical Biomedical Spectroscopy and Imaging. Taylor & Francis Group, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Computational Optical Biomedical Spectroscopy and Imaging. Taylor & Francis Group, 2015.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Salinas-Rodríguez, Sergio G., Juan Arévalo, Juan Manuel Ortiz, Eduard Borràs-Camps, Victor Monsalvo-Garcia, Maria D. Kennedy et Abraham Esteve-Núñez, dir. Microbial Desalination Cells for Low Energy Drinking Water. IWA Publishing, 2021. http://dx.doi.org/10.2166/9781789062120.

Texte intégral
Résumé :
The world's largest demonstrator of a revolutionary energy system in desalination for drinking water production is in operation. MIDES uses Microbial Desalination Cells (MDC) in a pre-treatment step for reverse osmosis (RO), for simultaneous saline stream desalination and wastewater treatment. MDCs are based on bio-electro-chemical technology, in which biological wastewater treatment can be coupled to the desalination of a saline stream using ion exchange membranes without external energy input. MDCs simultaneously treat wastewater and perform desalination using the energy contained in the wastewater. In fact, an MDC can produce around 1.8 kWh of bioelectricity from the energy contained in 1 m3 of wastewater. Compared to traditional RO, more than 3 kWh/m3 of electrical energy is saved. With this novel technology, two low-quality water streams (saline stream, wastewater) are transformed into two high-quality streams (desalinated water, treated wastewater) suitable for further uses. An exhaustive scaling-up process was carried out in which all MIDES partners worked together on nanostructured electrodes, antifouling membranes, electrochemical reactor design and optimization, life cycle assessment, microbial electrochemistry and physiology expertise, and process engineering and control. The roadmap of the lab-MDC upscaling goes through the assembly of a pre-pilot MDC, towards the development of the demonstrator of the MDC technology (patented). Nominal desalination rate between 4-11 Lm-2h-1 is reached with a current efficiency of 40 %. After the scalability success, two MDC pilot plants were designed and constructed consisting of one stack of 15 MDC pilot units with a 0.4 m2 electrode area per unit. This book presents the information generated throughout the EU funded MIDES project and includes the latest developments related to desalination of sea water and brackish water by applying microbial desalination cells. ISBN: 9781789062113 (Paperback) ISBN: 9781789062120 (eBook)
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie