Littérature scientifique sur le sujet « Binding ligandi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Binding ligandi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Binding ligandi"
Sunkara, Mallikarjuna Rao, Tina Schwabe, Gunter Ehrlich, Jana Kusch et Klaus Benndorf. « All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner ». Journal of General Physiology 150, no 9 (29 juin 2018) : 1261–71. http://dx.doi.org/10.1085/jgp.201711935.
Texte intégralSeo, Sangmin, Jonghwan Choi, Soon Kil Ahn, Kil Won Kim, Jaekwang Kim, Jaehyuck Choi, Jinho Kim et Jaegyoon Ahn. « Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms ». Computational and Mathematical Methods in Medicine 2018 (2018) : 1–5. http://dx.doi.org/10.1155/2018/6565241.
Texte intégralFéau, Clémentine, Leggy A. Arnold, Aaron Kosinski et R. Kiplin Guy. « A High-Throughput Ligand Competition Binding Assay for the Androgen Receptor and Other Nuclear Receptors ». Journal of Biomolecular Screening 14, no 1 (21 novembre 2008) : 43–48. http://dx.doi.org/10.1177/1087057108326662.
Texte intégralKohn, MC, et RL Melnick. « Biochemical origins of the non-monotonic receptor-mediated dose-response ». Journal of Molecular Endocrinology 29, no 1 (1 août 2002) : 113–23. http://dx.doi.org/10.1677/jme.0.0290113.
Texte intégralRuiz, MariaLuisa, et Jeffrey W. Karpen. « Opening Mechanism of a Cyclic Nucleotide–gated Channel Based on Analysis of Single Channels Locked in Each Liganded State ». Journal of General Physiology 113, no 6 (1 juin 1999) : 873–95. http://dx.doi.org/10.1085/jgp.113.6.873.
Texte intégralTakahashi, Masaki, Ryo Amano, Michiru Ozawa, Anna Martinez, Kazumasa Akita et Yoshikazu Nakamura. « Nucleic acid ligands act as a PAM and agonist depending on the intrinsic ligand binding state of P2RY2 ». Proceedings of the National Academy of Sciences 118, no 18 (28 avril 2021) : e2019497118. http://dx.doi.org/10.1073/pnas.2019497118.
Texte intégralSAYED, Yasien, Judith A. T. HORNBY, Marimar LOPEZ et Heini DIRR. « Thermodynamics of the ligandin function of human class Alpha glutathione transferase A1-1 : energetics of organic anion ligand binding ». Biochemical Journal 363, no 2 (8 avril 2002) : 341–46. http://dx.doi.org/10.1042/bj3630341.
Texte intégralMendoza, A., P. Navarrete-Ramírez, G. Hernández-Puga, P. Villalobos, G. Holzer, J. P. Renaud, V. Laudet et A. Orozco. « 3,5-T2 Is an Alternative Ligand for the Thyroid Hormone Receptor β1 ». Endocrinology 154, no 8 (1 août 2013) : 2948–58. http://dx.doi.org/10.1210/en.2013-1030.
Texte intégralSuzuki, Sadako, Shigekazu Sasaki, Hiroshi Morita, Yutaka Oki, Daisuke Turiya, Takeshi Ito, Hiroko Misawa, Keiko Ishizuka et Hirotoshi Nakamura. « The role of the amino-terminal domain in the interaction of unliganded peroxisome proliferator-activated receptor γ-2 with nuclear receptor co-repressor ». Journal of Molecular Endocrinology 45, no 3 (29 juin 2010) : 133–45. http://dx.doi.org/10.1677/jme-10-0007.
Texte intégralMicovic, Vuk, Milovan Ivanovic et Ljiljana Dosen-Micovic. « Structural requirements for ligands of the δ-opioid receptor ». Journal of the Serbian Chemical Society 74, no 11 (2009) : 1207–17. http://dx.doi.org/10.2298/jsc0911207m.
Texte intégralThèses sur le sujet "Binding ligandi"
CALLEA, LARA. « MODELING OF LIGAND-PROTEIN BINDING WITH ADVANCED MOLECULAR DYNAMICS METHODS ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/374733.
Texte intégralThis thesis focused on modeling of ligand-protein binding with computational methods based on molecular dynamics. Understanding this process is crucial for the design and discovery of new drugs and the use of computational methods to support experimental research in this field is constantly growing. Nowadays, thanks to the increasing computer power, it is possible to study the complete ligand binding/unbinding process and obtain estimate on thermodynamic and kinetic properties. In view of this, during my PhD, different advanced classical molecular dynamics (MD) methods were employed and compared to identify an effective computational approach for studying ligand binding/unbinding processes. Specifically, a protocol based on combination of the steered MD (sMD) and the Metadynamics (MetaD) with Path Collective Variables (PCVs) approaches was developed with the aim of using the advantages of both methods to obtain a complete description of the process. While the sMD method was employed to investigate different unbinding pathways and identify the preferred one, MetaD with PCVs was used to determine more accurately the binding free energy. The proposed protocol was successfully applied to study ligand binding to the Hypoxia Inducible Factor (HIF-2α) and it demonstrated to be effective for simulations performed both on a known ligand-protein X-ray structure and on a docking pose. On the other hand, most of the MD methods requires the production of several replicas or long simulations to sample the binding/unbinding event several times in order to obtain a reliable statistics of the process. This produces the need of methods able to analyze all the simulated events at once and to provide a clearly interpretable picture of the differences in the sampled pathways. For this reason, a tool based on the self-organizing maps (SOMs) was developed. The PathDetect-SOM (Pathway Detection on SOM) tool, exploiting the advantages of the topological ordering of the SOM, allowing to visually represent the binding paths sampled during different MD events/replicas in a clear bidimensional representation. In addition, hints on the kinetic and thermodynamic properties of the process can be derived. The tool was successfully applied to different study-cases to demonstrate its general applicability. Furthermore, as part of a project performed at the Jülich research center (Institute of Advanced Simulations and Institute for Neuroscience and Medicine) under the supervision of Prof. Paolo Carloni, a novel hybrid quantum mechanics/molecular mechanics (QM/MM) interface (MiMiC) was tested. The code, that allows QM/MM molecular dynamics simulations of biomolecular systems, was applied to the mitogen-activated protein kinase p38 in complex with the 2g ligand to investigate the ligand unbinding process. The focus was on the first step of the process involving the dynamics of the ligand in its bound state. QM/MM MD simulations were effective in describing ligand-protein interactions accurately. In particular, by monitoring the change of the atomic charges during the simulation and calculating the electronic density difference between the ligand in its bound state and in vacuum, insights into the polarization effects of the protein electric field onto the ligand were obtained. It is expected that these effects, albeit small in the bound state, become very important in the following steps of the unbinding process.
Schinina', Barbara. « Progettazione, sintesi e valutazione farmacologica di derivati del 4-nitro-7-piperazin-1-il-2,1,3-benzossadiazolo come nuovi ligandi sigma fluorescenti ». Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1173.
Texte intégralKandala, Srikanth. « Diphosphine Ligand Substitution in H4Ru4(CO)12 : X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products ». Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5410/.
Texte intégralSchechner-Resom, Martina Gabriele. « Ligand binding and molecular flexibility : Studies on DNA gyrase B ». Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR1A001.
Texte intégralDNA gyrase is a vital bacterial enzyme necessary for the handling of the large DNA molecules in the living cell. Therefore DNA gyrase is an ideal target enzyme for anti-infectious compounds. In this work DNA gyrase has been studied by molecular modelling methods. A computational structure-based ligand design approach has been carried out on the N-terminal 24 kDa subdomain of DNA gyrase B (GHKL domain). To further examine the flexibility of two active site loops, molecular dynamics simulations have been carried out on the GHKL domain in different ligand binding conditions. In a final part, normal mode analysis has been carried out on the dimer of the 43 kDa domain of DNA gyrase B
Wade, R. C. « Ligand-macromolecule interactions ». Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:576ce119-6a93-4eb0-a7e4-1f2513736dbd.
Texte intégralTeng, Su Fern. « Immunoglobulins binding ligands ». Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627345.
Texte intégralYamamoto, Izumi. « Structure-function studies of GABA-C receptor ligands ». Thesis, The University of Sydney, 2012. https://hdl.handle.net/2123/28927.
Texte intégralDuraj-Thatte, Anna. « Fluorescent GFP chromophores as potential ligands for various nuclear receptors ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44764.
Texte intégralMikolajek, Halina. « Ligand binding to pentraxins ». Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486591.
Texte intégralKolstoe, Simon Erik. « Ligand binding to pentraxins ». Thesis, University of Southampton, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416900.
Texte intégralLivres sur le sujet "Binding ligandi"
H, Sawyer William, dir. Quantitative characterization of ligand binding. New York : Wiley-Liss, 1995.
Trouver le texte intégralBellelli, Andrea, et Jannette Carey. Reversible Ligand Binding. Chichester, UK : John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119238508.
Texte intégralKhan, Masood N., et John W. A. Findlay, dir. Ligand-Binding Assays. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470541517.
Texte intégralWoodbury, Charles P. Introduction to macromolecular binding equilibria. Boca Raton : CRC Press, 2008.
Trouver le texte intégralThermodynamic theory of site-specific binding processes in biological macromolecules. Cambridge, [Eng.] : Cambridge University Press, 1995.
Trouver le texte intégralE, Harding S., et Chowdhry Babur Z, dir. Protein-ligand interactions, structure and spectroscopy : A practical approach. Oxford : Oxford University Press, 2001.
Trouver le texte intégral1961-, Keen Mary, dir. Receptor binding techniques. Totowa, N.J : Humana Press, 1999.
Trouver le texte intégralStoddard, Barry L., dir. Computational Design of Ligand Binding Proteins. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3569-7.
Texte intégralKrishna, Mallia A., et Smith Paul K, dir. Immobilized affinity ligand techniques. San Diego : Academic Press, 1992.
Trouver le texte intégral(Firm), Knovel, dir. Engineering biosensors : Kinetics and design applications. San Diego : Academic Press, 2002.
Trouver le texte intégralChapitres de livres sur le sujet "Binding ligandi"
Prakash, Om, et Feroz Khan. « CoSSDb : A Database of Co-crystallized Ligand Sub-structures for Anticancer Lead Designing & ; Optimization ». Dans Proceedings of the Conference BioSangam 2022 : Emerging Trends in Biotechnology (BIOSANGAM 2022), 133–41. Dordrecht : Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_14.
Texte intégralFischer, Gabriele, Annemarie Unger, W. Wolfgang Fleischhacker, Cécile Viollet, Jacques Epelbaum, Daniel Hoyer, Ina Weiner et al. « Ligand Binding ». Dans Encyclopedia of Psychopharmacology, 709. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3350.
Texte intégralBonomo, R. P., D. Grasso, G. Grasso, V. Guantieri, G. Impellizzeri, C. Rosa, D. Milardi, G. Pappalardo, G. Tabbì et E. Rizzarelli. « Metal Binding to Prion Protein ». Dans Metal-Ligand Interactions, 21–39. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0191-5_2.
Texte intégralLambert, Bernard, et Jean-Bernard Le Pecq. « Pharmacology of DNA Binding Drugs ». Dans DNA—Ligand Interactions, 141–57. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_9.
Texte intégralRana, Brinda K., Philip E. Bourne et Paul A. Insel. « Receptor Databases and Computational Websites for Ligand Binding ». Dans Receptor Binding Techniques, 1–13. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-909-9_1.
Texte intégralFischer, Gabriele, Annemarie Unger, W. Wolfgang Fleischhacker, Cécile Viollet, Jacques Epelbaum, Daniel Hoyer, Ina Weiner et al. « Labeled Ligand Binding ». Dans Encyclopedia of Psychopharmacology, 685. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3342.
Texte intégralTuckwell, Danny S., et Martin J. Humphries. « Ligand Binding Sites Within the Integrins ». Dans Integrin-Ligand Interaction, 199–217. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-4064-6_9.
Texte intégralHoldgate, Geoffrey A., et Paul E. Hemsley. « Ligand Discovery : High-Throughput Binding : Fluorescence () ». Dans Protein-Ligand Interactions, 231–46. New York, NY : Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1197-5_10.
Texte intégralSharp, Kim A. « Statistical Thermodynamics of Binding and Molecular Recognition Models ». Dans Protein-Ligand Interactions, 1–22. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645947.ch1.
Texte intégralTangemann, Kirsten, et Jürgen Engel. « Binding Studies of Integrins with Their Respective Ligands ». Dans Integrin-Ligand Interaction, 85–100. Boston, MA : Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-4064-6_3.
Texte intégralActes de conférences sur le sujet "Binding ligandi"
Dzichenka, Yaraslau, Michail Shapira, Sergei Usanov, Marina Savić, Ljubica Grbović, Jovana Ajduković et Suzana Jovanović-Šanta. « NOVEL LIGANDS OF HUMAN CYP7 ENZYMES – POSSIBLE MODULATORS OF CHOLESTEROL BLOOD LEVEL : COMPUTER SIMULATION STUDIES ». Dans 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.435d.
Texte intégralChristensen, Ulla. « Kinetics of piasminogen-activation. Effects of ligands binding to the AH-site of plasminogen ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644420.
Texte intégralSigurdson, M., C. Meinhart, D. Wang, X. Liu, J. J. Feng, S. Krishnamoorthy et S. Sundaram. « AC Electrokinetics for Microfluidic Immunosensors ». Dans ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41442.
Texte intégralSolis-Calero, C., PA Morais, FF Maia Jr, VN Freire et HF Carvalho. « Explaining SARS-CoV-2 3CL Mpro binding to peptidyl Michael acceptor and a ketone-based inhibitors using Molecular fractionation with conjugate caps method ». Dans VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020185.
Texte intégralLim, Manko, Timothy A. Jackson et Philip A. Anfinrud. « Ultrafast Near-IR Spectroscopy of Carbonmonoxymyoglobin : the Dynamics of Protein Relaxation ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.thb3.
Texte intégralJovanović-Šanta, Suzana S., Aleksandar M. Oklješa, Antos B. Sachanka, Yaraslau U. Dzichenka et Sergei A. Usanov. « 17-SUBSTITUTED STEROIDAL TETRAZOLES – NOVEL LIGANDS FOR HUMAN STEROID-CONVERTING CYP ENZYMES ». Dans 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.336js.
Texte intégralLim, Manho, Timothy A. Jackson et Philip A. Anfinrud. « Ultrafast Mid-IR Spectroscopy of Carbonmonoxymyoglobin : The Dynamics of Ligand Motion ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.fb.4.
Texte intégralHsu, Kai-Cheng, Yen-Fu Chen et Jinn-Moon Yang. « Binding Affinity Analysis of Protein-Ligand Complexes ». Dans 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.46.
Texte intégralGupta, Vijay K., et Charles D. Eggleton. « A 3-D Computational Model of L-Selectin-PSGL-1 Dependent Homotypic Leukocyte Binding and Rupture in Shear Flow ». Dans ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80862.
Texte intégralNechipurenko, Y. D., A. S. Buchelnikov et I. A. Lavrinenko. « COOPERATIVE EFFECTS IN BINDING OF LIGANDS TO BIOPOLYMERS ». Dans NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2022. http://dx.doi.org/10.47501/978-5-6044060-2-1.257-261.
Texte intégralRapports d'organisations sur le sujet "Binding ligandi"
Henderson, Terry J., et Rossitza K. Gitti. Conformational Changes in Small Ligands Upon Tetanus Toxin Binding. Fort Belvoir, VA : Defense Technical Information Center, juin 2008. http://dx.doi.org/10.21236/ada485632.
Texte intégralRafaeli, Ada, et Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species : Design of Antagonists. United States Department of Agriculture, décembre 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Texte intégralChung, Arthur. Development of Novel Ligand Binding Assay for Estrogen Receptor. Fort Belvoir, VA : Defense Technical Information Center, avril 2000. http://dx.doi.org/10.21236/ada390487.
Texte intégralChung, Arthur C. Development of a Novel Ligand Binding Assay for Estrogen Receptor. Fort Belvoir, VA : Defense Technical Information Center, avril 2002. http://dx.doi.org/10.21236/ada421346.
Texte intégralArnold, John. Potential New Ligand Systems for Binding Uranyl Ions in Seawater Environments. Office of Scientific and Technical Information (OSTI), décembre 2014. http://dx.doi.org/10.2172/1166963.
Texte intégralTrewhella, J. The role of low frequency collective modes in biological function : Ligand binding and cooperativity in calcium-binding proteins. Office of Scientific and Technical Information (OSTI), novembre 2000. http://dx.doi.org/10.2172/768788.
Texte intégralFagan, Patricia A. NMR studies of DNA oligomers and their interactions with minor groove binding ligands. Office of Scientific and Technical Information (OSTI), mai 1996. http://dx.doi.org/10.2172/373863.
Texte intégralOntko, Alyn. Equilibrium binding studies of mono, di and triisocyanide ligands on Au powder surfaces. Office of Scientific and Technical Information (OSTI), octobre 1997. http://dx.doi.org/10.2172/587882.
Texte intégralArnold, John. Selectivity in ligand binding to uranyl compounds : A synthetic, structural, thermodynamic and computational study. Office of Scientific and Technical Information (OSTI), janvier 2015. http://dx.doi.org/10.2172/1183657.
Texte intégralArnold, John. Selectivity in Ligand Binding to Uranyl Compounds : A Synthetic, Structural, Thermodynamic and Computational Study. Office of Scientific and Technical Information (OSTI), décembre 2017. http://dx.doi.org/10.2172/1414423.
Texte intégral