Articles de revues sur le sujet « Binary superlattices »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Binary superlattices.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Binary superlattices ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Yun, Hongseok, et Taejong Paik. « Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures ». Nanomaterials 9, no 9 (1 septembre 2019) : 1243. http://dx.doi.org/10.3390/nano9091243.

Texte intégral
Résumé :
The self-assembly of colloidal inorganic nanocrystals (NCs) offers tremendous potential for the design of solution-processed multi-functional inorganic thin-films or nanostructures. To date, the self-assembly of various inorganic NCs, such as plasmonic metal, metal oxide, quantum dots, magnetics, and dielectrics, are reported to form single, binary, and even ternary superlattices with long-range orientational and positional order over a large area. In addition, the controlled coupling between NC building blocks in the highly ordered superlattices gives rise to novel collective properties, providing unique optical, magnetic, electronic, and catalytic properties. In this review, we introduce the self-assembly of inorganic NCs and the experimental process to form single and multicomponent superlattices, and we also describe the fabrication of multiscale NC superlattices with anisotropic NC building blocks, thin-film patterning, and the supracrystal formation of superlattice structures.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Garus, Sebastian, et Michal Szota. « Occurence of Characteristic Peaks in Phononic Multilayer Structures ». Revista de Chimie 69, no 3 (15 avril 2018) : 735–38. http://dx.doi.org/10.37358/rc.18.3.6188.

Texte intégral
Résumé :
In this paper the acoustic transmission properties of multilayer structures was analyzed. Were compared binary and aperiodic (Severin, Thue-Morse) superlattices, Calculations were performed using the Transfer Matrix Method (TMM) algorithm. As a superlattice environment in the simulation the water was used. The material used to construct the structure was a PNM-0.38PT piezoelectric. Multilayer types have been selected so that the total number of layers for a given generation is equal in all structures.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Deymier, Pierre A., Keith Runge, Alexander Khanikaev et Andrea Alù. « Pseudo-Spin Polarized One-Way Elastic Wave Eigenstates in One-Dimensional Phononic Superlattices ». Crystals 14, no 1 (19 janvier 2024) : 92. http://dx.doi.org/10.3390/cryst14010092.

Texte intégral
Résumé :
We investigate a one-dimensional discrete binary elastic superlattice bridging continuous models of superlattices that showcase a one-way propagation character, as well as the discrete elastic Su–Schrieffer–Heeger model, which does not exhibit this character. By considering Bloch wave solutions of the superlattice wave equation, we demonstrate conditions supporting elastic eigenmodes that do not satisfy the translational invariance of Bloch waves over the entire Brillouin zone, unless their amplitude vanishes for a certain wave number. These modes are characterized by a pseudo-spin and occur only on one side of the Brillouin zone for a given spin, leading to spin-selective one-way wave propagation. We demonstrate how these features result from the interplay of the translational invariance of Bloch waves, pseudo-spins, and a Fabry–Pérot resonance condition in the superlattice unit cell.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Reinhart, Wesley F., et Athanassios Z. Panagiotopoulos. « Multi-atom pattern analysis for binary superlattices ». Soft Matter 13, no 38 (2017) : 6803–9. http://dx.doi.org/10.1039/c7sm01642e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Caid, M., H. Rached, D. Rached, R. Khenata, S. Bin Omran, D. Vashney, B. Abidri, N. Benkhettou, A. Chahed et O. Benhellal. « Electronic structure and optical properties of (BeTe)n/(ZnSe)m superlattices ». Materials Science-Poland 34, no 1 (1 mars 2016) : 115–25. http://dx.doi.org/10.1515/msp-2016-0004.

Texte intégral
Résumé :
AbstractThe structural, electronic and optical properties of (BeTe)n/(ZnSe)m superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA). The ground state properties of (BeTe)n/(ZnSe)m binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω), the refractive index n(ω) and the refractivity R(ω), are calculated for radiation energies up to 35 eV.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mao, Runfang, Evan Pretti et Jeetain Mittal. « Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices ». ACS Nano 15, no 5 (3 mai 2021) : 8466–73. http://dx.doi.org/10.1021/acsnano.0c10874.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zha, Xun, et Alex Travesset. « Thermodynamic Equilibrium of Binary Nanocrystal Superlattices ». Journal of Physical Chemistry C 125, no 34 (18 août 2021) : 18936–45. http://dx.doi.org/10.1021/acs.jpcc.1c05015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Tkachenko, Alexei V. « Generic phase diagram of binary superlattices ». Proceedings of the National Academy of Sciences 113, no 37 (26 août 2016) : 10269–74. http://dx.doi.org/10.1073/pnas.1525358113.

Texte intégral
Résumé :
Emergence of a large variety of self-assembled superlattices is a dramatic recent trend in the fields of nanoparticle and colloidal sciences. Motivated by this development, we propose a model that combines simplicity with a remarkably rich phase behavior applicable to a wide range of such self-assembled systems. Those systems include nanoparticle and colloidal assemblies driven by DNA-mediated interactions, electrostatics, and possibly, controlled drying. In our model, a binary system of large and small hard spheres (L and S, respectively) interacts via selective short-range (“sticky”) attraction. In its simplest version, this binary sticky sphere model features attraction only between S and L particles. We show that, in the limit when this attraction is sufficiently strong compared with kT, the problem becomes purely geometrical: the thermodynamically preferred state should maximize the number of LS contacts. A general procedure for constructing the phase diagram as a function of system composition f and particle size ratio r is outlined. In this way, the global phase behavior can be calculated very efficiently for a given set of plausible candidate phases. Furthermore, the geometric nature of the problem enables us to generate those candidate phases through a well-defined and intuitive construction. We calculate the phase diagrams for both 2D and 3D systems and compare the results with existing experiments. Most of the 3D superlattices observed to date are featured in our phase diagram, whereas several more are predicted for future discovery.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shevchenko, Elena V., Dmitri V. Talapin, Nicholas A. Kotov, Stephen O'Brien et Christopher B. Murray. « Structural diversity in binary nanoparticle superlattices ». Nature 439, no 7072 (janvier 2006) : 55–59. http://dx.doi.org/10.1038/nature04414.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Overgaag, Karin, Wiel Evers, Bart de Nijs, Rolf Koole, Johannes Meeldijk et Daniel Vanmaekelbergh. « Binary Superlattices of PbSe and CdSe Nanocrystals ». Journal of the American Chemical Society 130, no 25 (juin 2008) : 7833–35. http://dx.doi.org/10.1021/ja802932m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bakrim, H., K. Bouslykhane, M. Hamedoun, A. Hourmatallah et N. Benzakour. « Couplings and interface effects in binary superlattices ». Surface Science 569, no 1-3 (octobre 2004) : 219–27. http://dx.doi.org/10.1016/j.susc.2004.07.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Travesset, A. « Topological structure prediction in binary nanoparticle superlattices ». Soft Matter 13, no 1 (2017) : 147–57. http://dx.doi.org/10.1039/c6sm00713a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Travesset, Alex. « Binary nanoparticle superlattices of soft-particle systems ». Proceedings of the National Academy of Sciences 112, no 31 (20 juillet 2015) : 9563–67. http://dx.doi.org/10.1073/pnas.1504677112.

Texte intégral
Résumé :
The solid-phase diagram of binary systems consisting of particles of diameter σA=σ and σB=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. Particular emphasis is given to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Pilania, G., et X. Y. Liu. « Machine learning properties of binary wurtzite superlattices ». Journal of Materials Science 53, no 9 (12 janvier 2018) : 6652–64. http://dx.doi.org/10.1007/s10853-018-1987-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kim, Hyeong Jin, Wenjie Wang, Honghu Zhang, Guillaume Freychet, Benjamin M. Ocko, Alex Travesset, Surya K. Mallapragada et David Vaknin. « Binary Superlattices of Gold Nanoparticles in Two Dimensions ». Journal of Physical Chemistry Letters 13, no 15 (12 avril 2022) : 3424–30. http://dx.doi.org/10.1021/acs.jpclett.2c00625.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Talapin, Dmitri V., Elena V. Shevchenko, Maryna I. Bodnarchuk, Xingchen Ye, Jun Chen et Christopher B. Murray. « Quasicrystalline order in self-assembled binary nanoparticle superlattices ». Nature 461, no 7266 (octobre 2009) : 964–67. http://dx.doi.org/10.1038/nature08439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Horst, Nathan, et Alex Travesset. « Prediction of binary nanoparticle superlattices from soft potentials ». Journal of Chemical Physics 144, no 1 (7 janvier 2016) : 014502. http://dx.doi.org/10.1063/1.4939238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Brittman, Sarah, Nadeemullah A. Mahadik, Syed B. Qadri, Patrick Y. Yee, Joseph G. Tischler et Janice E. Boercker. « Binary Superlattices of Infrared Plasmonic and Excitonic Nanocrystals ». ACS Applied Materials & ; Interfaces 12, no 21 (12 mai 2020) : 24271–80. http://dx.doi.org/10.1021/acsami.0c03805.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Evers, Wiel H., Bart De Nijs, Laura Filion, Sonja Castillo, Marjolein Dijkstra et Daniel Vanmaekelbergh. « Entropy-Driven Formation of Binary Semiconductor-Nanocrystal Superlattices ». Nano Letters 10, no 10 (13 octobre 2010) : 4235–41. http://dx.doi.org/10.1021/nl102705p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Deng, Kerong, Lili Xu, Xin Guo, Xiaotong Wu, Yulian Liu, Zhimin Zhu, Qian Li, Qiuqiang Zhan, Chunxia Li et Zewei Quan. « Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence ». Small 16, no 38 (20 août 2020) : 2002066. http://dx.doi.org/10.1002/smll.202002066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Smirnov M. B., Pankin D. V., Roginskii E. M. et Savin A. V. « Quantum-chemical study of structure and vibrational spectra of Si/SiO-=SUB=-2-=/SUB=- superlattices ». Physics of the Solid State 64, no 11 (2022) : 1675. http://dx.doi.org/10.21883/pss.2022.11.54190.430.

Texte intégral
Résumé :
Structure, phonon states and vibrational spectra of binary Si/SiO2 superlattices (SL) formed by junction of crystalline silicon and β-cristobalite are investigated with the use of ab-initio quantum-mechanical computational methods. Several stable SL structures with ultra-narrow interfaces consisted of only one monolayer of Si2+ atoms are found. For these SLs, we have simulated the infrared and Raman spectra in which some characteristic spectral features are detected. Keywords: oxide-semiconductor heterostructures, superlattices, computer simulation, density functional method, vibrational spectra.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kostiainen, Mauri A., Panu Hiekkataipale, Ari Laiho, Vincent Lemieux, Jani Seitsonen, Janne Ruokolainen et Pierpaolo Ceci. « Electrostatic assembly of binary nanoparticle superlattices using protein cages ». Nature Nanotechnology 8, no 1 (16 décembre 2012) : 52–56. http://dx.doi.org/10.1038/nnano.2012.220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shevchenko, Elena V., Dmitri V. Talapin, Christopher B. Murray et Stephen O'Brien. « Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices ». Journal of the American Chemical Society 128, no 11 (mars 2006) : 3620–37. http://dx.doi.org/10.1021/ja0564261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Babiker, M., N. C. Constantinou et M. G. Cottam. « General linear response theory of polaritons in binary superlattices ». Journal of Physics C : Solid State Physics 20, no 28 (10 octobre 1987) : 4581–96. http://dx.doi.org/10.1088/0022-3719/20/28/020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bodnarchuk, Maryna I., Elena V. Shevchenko et Dmitri V. Talapin. « Structural Defects in Periodic and Quasicrystalline Binary Nanocrystal Superlattices ». Journal of the American Chemical Society 133, no 51 (28 décembre 2011) : 20837–49. http://dx.doi.org/10.1021/ja207154v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bodnarchuk, Maryna I., Rolf Erni, Frank Krumeich et Maksym V. Kovalenko. « Binary Superlattices from Colloidal Nanocrystals and Giant Polyoxometalate Clusters ». Nano Letters 13, no 4 (20 mars 2013) : 1699–705. http://dx.doi.org/10.1021/nl4002475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Rogach, Andrey L. « Binary Superlattices of Nanoparticles : Self-Assembly Leads to“Metamaterials” ». Angewandte Chemie International Edition 43, no 2 (janvier 2004) : 148–49. http://dx.doi.org/10.1002/anie.200301704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Cheng, Ji-Chao, Ling-Yun Pan, Hong-Yu Tu, Hong-Jian Qi, Wen-Yu Ji, Fang-Fei Li, Ying-Hui Wang, Shu-Ping Xu, Zhi-Wei Men et Tian Cui. « Ultrafast Electron Transfer in Binary Nanoparticle Superlattices under High Pressure ». physica status solidi (RRL) – Rapid Research Letters 15, no 7 (13 mai 2021) : 2100066. http://dx.doi.org/10.1002/pssr.202100066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Wei, Jingjing, Nicolas Schaeffer et Marie-Paule Pileni. « Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices ». Journal of the American Chemical Society 137, no 46 (16 novembre 2015) : 14773–84. http://dx.doi.org/10.1021/jacs.5b09959.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Pretti, Evan, Hasan Zerze, Minseok Song, Yajun Ding, Nathan A. Mahynski, Harold W. Hatch, Vincent K. Shen et Jeetain Mittal. « Assembly of three-dimensional binary superlattices from multi-flavored particles ». Soft Matter 14, no 30 (2018) : 6303–12. http://dx.doi.org/10.1039/c8sm00989a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Friedrich, Heiner, Cedric J. Gommes, Karin Overgaag, Johannes D. Meeldijk, Wiel H. Evers, Bart de Nijs, Mark P. Boneschanscher et al. « Quantitative Structural Analysis of Binary Nanocrystal Superlattices by Electron Tomography ». Nano Letters 9, no 7 (8 juillet 2009) : 2719–24. http://dx.doi.org/10.1021/nl901212m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chen, Jun, Xingchen Ye et Christopher B. Murray. « Systematic Electron Crystallographic Studies of Self-Assembled Binary Nanocrystal Superlattices ». ACS Nano 4, no 4 (19 mars 2010) : 2374–81. http://dx.doi.org/10.1021/nn1003259.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Künzle, Matthias, Thomas Eckert et Tobias Beck. « Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices ». Journal of the American Chemical Society 138, no 39 (21 septembre 2016) : 12731–34. http://dx.doi.org/10.1021/jacs.6b07260.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Altamura, Davide, Michela Corricelli, Liberato De Caro, Antonietta Guagliardi, Andrea Falqui, Alessandro Genovese, Andrei Y. Nikulin, M. Lucia Curri, Marinella Striccoli et Cinzia Giannini. « Structural Investigation of Three-Dimensional Self-Assembled PbS Binary Superlattices ». Crystal Growth & ; Design 10, no 8 (4 août 2010) : 3770–74. http://dx.doi.org/10.1021/cg100601a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Ke, Fan Li, Seon-Mi Jin, Kui Wang, Di Tian, Mubashir Hussain, Jiangping Xu et al. « Chain-length effect on binary superlattices of polymer-tethered nanoparticles ». Materials Chemistry Frontiers 4, no 7 (2020) : 2089–95. http://dx.doi.org/10.1039/d0qm00194e.

Texte intégral
Résumé :
The co-assembly behavior of polymer-tethered NPs is determined by the chain-length of the polymer ligand on the two sized NPs, and exhibits three different models, where each one has its own key factor that determines the crystalline structure.
Styles APA, Harvard, Vancouver, ISO, etc.
36

O'Donnell, K. P., P. J. Parbrook, F. Yang, X. Chen, D. J. Irvine, C. Trager-Cowan, B. Henderson, P. J. Wright et B. Cockayne. « The optical properties of wide bandgap binary II–VI superlattices ». Journal of Crystal Growth 117, no 1-4 (février 1992) : 497–500. http://dx.doi.org/10.1016/0022-0248(92)90800-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Talapin, Dmitri V., Elena V. Shevchenko, Maryna I. Bodnarchuk, Xingchen Ye, Jun Chen et Christopher B. Murray. « ChemInform Abstract : Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices. » ChemInform 40, no 51 (22 décembre 2009) : no. http://dx.doi.org/10.1002/chin.200951214.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Noh, Hyunwoo, Albert M. Hung et Jennifer N. Cha. « Surface-Driven DNA Assembly of Binary Cubic 3D Nanocrystal Superlattices ». Small 7, no 21 (8 septembre 2011) : 3021–25. http://dx.doi.org/10.1002/smll.201101212.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Meder, Fabian, Steffi S. Thomas, Tobias Bollhorst et Kenneth A. Dawson. « Ordered Surface Structuring of Spherical Colloids with Binary Nanoparticle Superlattices ». Nano Letters 18, no 4 (26 mars 2018) : 2511–18. http://dx.doi.org/10.1021/acs.nanolett.8b00173.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fong, C. Y., M. C. Qian, Kai Liu, L. H. Yang et J. E. Pask. « Design of Spintronic Materials with Simple Structures ». Journal of Nanoscience and Nanotechnology 8, no 7 (1 juillet 2008) : 3652–60. http://dx.doi.org/10.1166/jnn.2008.18331.

Texte intégral
Résumé :
A brief comparison of conventional electronics and spintronics is given. The key features of half metallic binary compounds with the zincblende structure are presented, using MnAs as an example. We discuss the interactions responsible for the half metallic properties. Special properties of superlattices and a digital ferromagnetic heterostructure incorporating zincblende half metals are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jensen, C. G., et B. H. Smaill. « Analysis of the spatial organization of microtubule-associated proteins. » Journal of Cell Biology 103, no 2 (1 août 1986) : 559–69. http://dx.doi.org/10.1083/jcb.103.2.559.

Texte intégral
Résumé :
We have developed microdensitometer-computer correlation techniques to analyze the arrangement of microtubule arms and bridges (i.e., microtubule-associated proteins [MAPs]). A microdensitometer was used to scan immediately adjacent to the wall of longitudinally sectioned microtubules in positive transparency electron micrographs. Signal enhancement procedures were applied to the digitized densitometer output to produce a binary sequence representing the apparent axial spacing of MAP projections. These enhanced records were analyzed in two ways. (a) Autocorrelograms were formed for each record and correlogram peaks from a group of scans were pooled to construct a peak frequency histogram. (b) Cross-correlation was used to optimize the match between each enhanced record and templates predicted by different models of MAP organization. Seven symmetrical superlattices were considered as well as single axial repeats. The analyses were repeated with randomly generated records to establish confidence levels. Using the above methods, we analyzed the intrarow bridges of the Saccinobaculus axostyle and the MAP2 projections associated with brain microtubules synthesized in vitro. We confirmed a strict 16-nm axial repeat for axostyle bridges. For 26 MAP2 records, the only significant match was to a 12-dimer superlattice model (P less than 0.002). However, we also found some axial distances between MAP2 projections which were compatible with the additional spacings predicted by a 6-dimer superlattice. Therefore, we propose that MAP2 projections are arranged in a "saturated 12-dimer, unsaturated 6-dimer" superlattice, which may be characteristic of a wide variety of MAPs.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chen, Zhuoying, Jenny Moore, Guillaume Radtke, Henning Sirringhaus et Stephen O'Brien. « Binary Nanoparticle Superlattices in the Semiconductor−Semiconductor System : CdTe and CdSe ». Journal of the American Chemical Society 129, no 50 (décembre 2007) : 15702–9. http://dx.doi.org/10.1021/ja076698z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Paik, Taejong, Benjamin T. Diroll, Cherie R. Kagan et Christopher B. Murray. « Binary and Ternary Superlattices Self-Assembled from Colloidal Nanodisks and Nanorods ». Journal of the American Chemical Society 137, no 20 (15 mai 2015) : 6662–69. http://dx.doi.org/10.1021/jacs.5b03234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Redl, F. X., K. S. Cho, C. B. Murray et S. O'Brien. « Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots ». Nature 423, no 6943 (juin 2003) : 968–71. http://dx.doi.org/10.1038/nature01702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mikhailovskii, V. V., K. C. Russell et V. I. Sugakov. « Formation of defect density superlattices in binary compounds under nuclear irradiation ». Physics of the Solid State 42, no 3 (mars 2000) : 481–87. http://dx.doi.org/10.1134/1.1131235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Xia, Jianshe, Hongxia Guo et Alex Travesset. « On the Thermodynamic Stability of Binary Superlattices of Polystyrene-Functionalized Nanocrystals ». Macromolecules 53, no 22 (10 novembre 2020) : 9929–42. http://dx.doi.org/10.1021/acs.macromol.0c01860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Altantzis, Thomas, Zhijie Yang, Sara Bals, Gustaaf Van Tendeloo et Marie-Paule Pileni. « Thermal Stability of CoAu13 Binary Nanoparticle Superlattices under the Electron Beam ». Chemistry of Materials 28, no 3 (21 janvier 2016) : 716–19. http://dx.doi.org/10.1021/acs.chemmater.5b04898.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Смирнов, М. Б., Д. В. Панькин, Е. М. Рогинский et А. В. Савин. « Теоретическое исследование структуры и колебательных спектров сверхрешеток Si/SiO-=SUB=-2-=/SUB=- ». Физика твердого тела 64, no 11 (2022) : 1701. http://dx.doi.org/10.21883/ftt.2022.11.53323.430.

Texte intégral
Résumé :
Structure, phonon states and vibrational spectra of binary Si/SiO2 superlattices (SL) formed by junction of crystalline silicon and β-cristobalite are investigated with the use of ab-initio quantum-mechanical computational methods. Several stable SL structures with ultra-narrow interfaces consisted of only one monolayer of Si2+ atoms are found. For these SLs, we have simulated the infrared and Raman spectra in which some characteristic spectral features are detected
Styles APA, Harvard, Vancouver, ISO, etc.
49

Lebedev A. I. « First-principles calculations of vibrational spectra of CdSe/CdS superlattices ». Physics of the Solid State 64, no 14 (2022) : 2312. http://dx.doi.org/10.21883/pss.2022.14.54328.156.

Texte intégral
Résumé :
The vibrational spectra of CdSe/CdS superlattices (SLs) with different layer thicknesses are calculated from first principles within the density functional theory. It is shown that, along with folded acoustic and confined optical modes, a number of confined acoustic modes appear in SLs. In structures with a minimum thickness of one of the layers, microscopic interface modes similar to local and gap modes in crystals appear. An analysis of projections of the eigenvectors of vibrational modes in SLs onto the orthonormal basis of normal modes in binary compounds enables to establish the details of formation of these vibrational modes and, in particular, to determine the degree of intermixing of acoustic and optical modes. A comparison of the frequencies of vibrational modes in CdSe/CdS SLs and CdSe/CdS nanoplatelets enables to separate the influence of size quantization and surface relaxation on the vibrational frequencies in the nanoplatelets. Keywords: phonon spectra, semiconductor superlattices, cadmium selenide, cadmium sulfide, nanostructures.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Maye, Mathew M., Mudalige Thilak Kumara, Dmytro Nykypanchuk, William B. Sherman et Oleg Gang. « Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands ». Nature Nanotechnology 5, no 2 (20 décembre 2009) : 116–20. http://dx.doi.org/10.1038/nnano.2009.378.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie