Thèses sur le sujet « BHJ solar cell »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 15 meilleures thèses pour votre recherche sur le sujet « BHJ solar cell ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
GIRONDA, RAMONA. « Synthesis and characterization of polythiophenes functionalized with electron poor moieties for application in organic electronics ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40893.
Texte intégralConvertir l'énergie illimitée et renouvelable du soleil pour produire de l'électricité est l'un des plus grands défis scientifiques et technologiques du 21e siècle. Parmi les techniques disponibles, les cellules solaires photovoltaïques (cellules PV) sont très intéressantes car elles peuvent convertir directement l'énergie solaire en électricité avec un rendement assez élevé. Le développement des cellules PV est donc une alternative intéressante pour aborder les problèmes environnementaux mondiaux. Cependant, le coût élevé pour les dispositifs à base de semi-conducteurs inorganiques a limité leur application à grande échelle. Les cellules solaires organiques offrent une option convaincante pour les dispositifs photovoltaïques de demain, car ils peuvent être facilement mis en œuvre à faible coût et bénéficier de procédés de fabrication rouleaux à rouleaux (roll-to-roll) ou feuilles à feuilles (sheet-to-sheet). Au cours de la dernière décennie, la recherche sur le photovoltaïque organique (OPV) a progressé de manière remarquable à la fois en ce qui concerne de nouveaux matériaux et aussi les performances des dispositifs. Un intérêt particulier a été consacré aux composants à hétérojonction en volume (BHJ), dans lesquels la couche active est constituée d'un mélange intime de matériaux : un DONNEUR (semi-conducteur de type p) et un accepteur (semi-conducteur de type n). La couche active peut être facilement déposée par des techniques en voie liquide, et ainsi faciliter la fabrication sur de grandes surfaces, avec un poids léger, et donc sur des substrats potentiellement flexibles. Les fullerènes C60 ou C70 et en particulier leurs dérivés solubles (PCBM) sont pour le moment les ACCEPTEURS les plus populaires, et seulement une recherche marginale est consacrée à la mise au point de matériaux de remplacement viables. La recherche s'est concentrée sur des polymères conjugués, comme matériau de donneur, en raison de leurs propriétés accordables par conception structurale et une potentielle production à faible coût. Au cours de la dernière décennie, les études se sont intéressées au poly (3-hexylthiophène) (P3HT) régio-régulier comme principal matériau donneur d'électrons dans les cellules solaires polymères en volume (BHJ). D'importants progrès ayant été réalisés dans la compréhension des dispositifs améliorant ainsi l'efficacité de ceux ci. Toutefois, le P3HT n'est pas le polymère idéal car il possède une bande interdite relativement large (1,85 eV) et sa plus haute orbitale moléculaire occupée (HOMO) (-5,1 eV) restant trop grande, elle limite la tension de circuit ouvert (Voc) des dispositifs P3HT/PC61BM à 0,6 V. Ceci à pour conséquence de limiter l'efficacité des cellules aux alentours de 5%. Pour résoudre ce problème et augmenter la conversion solaire, une stratégie efficace est d'utiliser des matériaux à faible bande interdite avec des spectres d'absorption larges. Il en résulte une augmentation du courant de court-circuit (Jsc). En choisissant de manière appropriée le niveau HOMO, on peut maximiser la tension en circuit ouvert (Voc). Enfin des mobilités de trous supérieures et une meilleure Jsc engendreront un meilleur facteur de forme (FF). Typiquement, un polymère de faible largeur de bande interdite est réalisé par l'intermédiaire d'une approche donneur-accepteur (D-A), en incorporant les deux fractions celle riche en électrons et celle pauvre en électrons sur le même squelette conjugué. Parmi un large éventail de nouveaux matériaux donneurs à faible bande interdite, des polymères où l'unité du donneur est à base de thiophène ont été fabriqués; ces composés conçus ont comme groupement accepteur : l'iso-DPP (iso-dicétopyrrolopyrrole) ou maléimide. Ces structures électro-attractrices combinent un niveau HOMO bas et un noyau rigide plan qui permet une longueur de conjugaison π et un transfert de charges dans le squelette du polymère. Les polymères et les molécules obtenues par condensation de Stille ont été caractérisés dans des dispositifs comme matériau donneur ou comme additif dans le mélange classique P3HT/PCBM. Il sera détaillé dans le chapitre 3, la synthèse d'un nouveau dérivé déficient en électrons, le 1,4-dibutyl-3,6-di-(thiophène-2-yl)-pyrrolo-[3,2-b]-pyrrole-2,5-dione (iso-DPP). Cette nouvelle brique moléculaire a été co-polymérisée avec des bistannanes de thiophène et des bithiophènes par polycondensation de Stille, pour obtenir les polymères correspondants (respectivement PDPPT et PDPPTT). Ces composés présentent une faible bande d'énergie interdite combinée à des niveaux d'énergie HOMO bas. Les bandes d'énergie interdites de PPDPT et PPDPTT, calculées à partir des spectres d'absorption, sont respectivement de 1,63 et 1,73 eV. Les niveaux HOMO et LUMO déterminés par voltampérométrie cyclique sont de -5,12 et -3,50 eV pour le PDPPT, et de -5,09 et -3,50 eV pour le PDPPTT. L'efficacité, sous éclairement AM 1.5G, des cellules photovoltaïques à base de PDPPT: PC60BM est de 1,24%, sans optimisation des matériaux, nettement plus élevée que pour celle des dispositifs à base de PDPPTT: PC60BM qui est de 0,33%. Les résultats démontrent que les polymères à base d'iso-DPP sont des matériaux prometteurs pour l'utilisation en cellules solaires à hétérojonction en volume. Une série de polymères donneur-accepteur et d'oligomères donneur-accepteur conçs sur des structures à base de N-alkyl-maléimide ont été synthétisés par une voie simple et efficace expliquée dans le chapitre 4. Les matériaux à faible gap obtenus ont été utilisés dans des cellules photovoltaïques polymères, afin d'en améliorer leur efficacité en optimisant leurs propriétés électroniques. L'introduction de petites quantités (<20% en rapport en masse) de polymères ou d'oligomères contenant des N-alkyl-maléimide à l'intérieur des couches actives de mélanges P3HT / PC61BM a permis d'augmenter considérablement l'efficacité de ces cellules solaires à hétérojonction en volume (jusqu'à 80% d'augmentation). Cet effet bénéfique est attribué à une amélioration de la photo-génération des charges et du transport dans la couche. Quand le maléimide est utilisé seul comme matériau donneur mélangé au PC61BM, les résultats sont en revanches mauvais. Afin d'obtenir de bons résultats en performances de dispositifs, il faut non seulement réaliser un bon design chimique du polymère donneur, mais contrôler soigneusement d'autres paramètres au niveau moléculaire et supramoléculaire. Le meilleur potentiel d'un polymère conjugué ne peut être obtenu qu'avec une optimisation maitrisée de la morphologie de celui-ci. A cet effet, la synthèse de copolymères aléatoires et di-bloc à base de poly-(3-alkylthiophène) portant des substituants polaires a été développée avec succès par polymérisation GRIM. Ces détails sont présentés dans le chapitre 5. La co-polymérisation du 3-hexyl-thiophène avec un nouveau dérivé, 3-thiophène-fonctionnalisé (propyl-5-(2-(thiophén-3-yl)-éthoxy)-pentanoate), porteur d'une fonction ester a été réalisée avec succès. Dans des conditions optimales, cet ester s'est avéré être pleinement compatible avec la polymérisation par métathèse de Grignard. La saponification des copolymères esters a conduit aux polyacides correspondants. Les propriétés photovoltaïques de ces copolymères ont été étudiées dans des dispositifs à hétérojonctions en volume avec PC61BM comme accepteur. Parmi tous les copolymères amphiphiles, le P3HT-b-P3AcidHT a montré les meilleurs résultats avec un rendement de conversion de 4,2%, une tension de circuit ouvert (Voc) de 0,60 V, une densité de courant de court-circuit (Jsc) de 13,0 mAcm-2, et un facteur de forme (FF) de 0,60. Toutes les molécules conjuguées Donneur-Accepteur et les polymères ont été caractérisés par des méthodes chimiques et leurs propriétés optiques, électrochimiques, ainsi que les propriétés morphologiques et photovoltaïque ont été étudiés.
Cheung, Kai-yin, et 張啓賢. « Metallopolyyne polymers based bulk heterojunction (BHJ) solar cells ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841719.
Texte intégralCheung, Kai-yin. « Metallopolyyne polymers based bulk heterojunction (BHJ) solar cells ». Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42841719.
Texte intégralQuadretti, Debora. « Nuovi polimeri tiofenici per celle fotovoltaiche con architettura BHJ ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16662/.
Texte intégralKraft, Thomas. « Ternary blend ink formulations for fabricating organic solar cells via inkjet printing ». Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0027.
Texte intégralTwo approaches were followed to achieve increased control over properties of the photo-active layer (PAL) in solution processed polymer solar cells. This was accomplished by either (1) the addition of functionalized single-walled carbon nanotubes (SWCNTs) to improve the charge transport properties of the device or (2) the realization of dual donor polymer ternary blends to achieve colour-tuned devices.In the first component of the study, P3HT:PC61BM blends were doped with SWCNTs with the ambition to improve the morphology and charge transport within the PAL. The SWCNTs were functionalized with alkyl chains to increase their dispersive properties in solution, increase their interaction with the P3HT polymer matrix, and to disrupt the metallic characteristic of the tubes, which ensures that the incorporated SWCNTs are primarily semi-conducting. P3HT:PCBM:CNT composite films were characterized and prepared for use as the photoactive layer within the inverted solar cell. The CNT doping acts to increase order within the active layer and improve the active layer’s charge transport properties (conductivity) as well as showed some promise to increase the stability of the device. The goal is that improved charge transport will allow high level PSC performance as the active layer thickness and area is increased, which is an important consideration for large-area inkjet printing. The use of ternary blends (two donor polymers with a fullerene acceptor) in bulk-heterojunction (BHJ) photovoltaic devices was investigated as a future means to colour-tune ink-jet printed PSCs. The study involved the blending of two of the three chosen donor polymers [red (P3HT), blue (B1), and green (G1)] with PC61BM. Through EQE measurements, it was shown that even devices with blends exhibiting poor efficiencies, caused by traps, both polymers contributed to the PV effect. However, traps were avoided to create a parallel-like BHJ when two polymers were chosen with suitable physical compatibility (harmonious solid state mixing), and appropriate HOMO-HOMO energy band alignment. The parallel diode model was used to describe the PV circuit of devices with the B1:G1:PC61BM ternary blend
De, Noia Federica. « Sintesi e caratterizzazione di eptameri a base tiofenica con sequenza D-A1-D-A-D-A1-D per applicazioni in BHJ solar cells ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22236/.
Texte intégralDigrandi, Salvatore. « Sintesi di oligotiofeni “push-pull” per applicazioni in celle solari di tipo bulkheterojunction (BHJ) ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19230/.
Texte intégralLimberti, Simone. « Sintesi e caratterizzazione di oligo e politiofeni per applicazioni in elettronica e biodiagnostica ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6555/.
Texte intégralFronzi, Daniel. « Nuovi polimeri cationici a base tiofenica per applicazioni fotovoltaiche ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14467/.
Texte intégralDal, Zilio Simone. « Innovative solution in organic photovoltaic devices ». Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426627.
Texte intégralIl problema energetico sta destando negli ultimi anni sempre maggior interesse e preoccupazione, per il ridursi delle risorse fossili e dal conseguente acuirsi dei problemi d’inquinamento derivanti dal loro quasi esclusivo utilizzo per la produzione di energia elettrica. Non è sorprendente quindi che dal mondo della ricerca un grande sforzo sia dedicato allo sviluppo della tecnologia fotovoltaica. Attualmente, il silicio possiede una posizione centrale nel panorama delle celle fotovoltaiche: l’elevato costo di questo tipo di tecnologia, derivato dall’alto costo del materiale e dei processi fabbricativi, ha incoraggiato lo sviluppo di soluzioni alternative che si basino su materiali innovativi. Tra queste, grande risalto è stato dato negli ultimi anni alle cosiddette "organic solar cell", basate sull’impiego di semiconduttori organici. Il loro vantaggio risiede nel fatto che questi possono essere depositati, su larghe aree e a costi molto ridotti, in fase liquida, utilizzando quindi metodi tipici dell’industria della stampa nel campo del fotovoltaico ed eliminando così alti costi di materiale e di processo tipici dell’industria a semiconduttore inorganico. L’impiego di film sottili e conseguentemente di poco materiale, contribuisce a rendere il fotovoltaico organico uno dei più quotati candidati per lo sviluppo di una tecnologia solare a basso costo. Una tipologia di celle solari organiche utilizza come materiali foto attivi i polimeri coniugati; evidenti progressi sono stati compiuti, col raggiungimento di efficienze ragguardevoli, dell’ordine del 4-5%. Purtroppo però, questo non è ancora sufficiente perché la tecnologia possa essere trasferita su scala industriale. Molti sforzi si stanno facendo nell’ambito della ricerca per migliorare l’efficienza di queste celle. Sullo sviluppo e l’impiego di soluzioni alternative e innovative applicabili al campo del fotovoltaico organico, e in particolare polimerico, è concentrata la nostra attività di ricerca. Due percorsi in particolare sono stati investigati, basate sull’impiego di un nuovo sistema per l’intrappolamento in cavità della luce e sull’impiego delle nanotecnologie fabbricative.
Bolognesi, Margherita. « Organic bulk-heterojunction photovoltaic devices : materials, device architectures and interfacial processes ». Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/128202.
Texte intégralWidmer, Johannes. « Charge transport and energy levels in organic semiconductors ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.
Texte intégralOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
PAN, TUNG-SHENG, et 潘同昇. « Synthesis of Au/ZnO nanocomposite and its application in P3HT/ZnO BHJ solar cell ». Thesis, 2011. http://ndltd.ncl.edu.tw/handle/mhm22j.
Texte intégral國立臺灣科技大學
化學工程系
99
In this study, bulk heterojunction photovoltaic devices have been fabricated by utilizing a conjugated polymer P3HT as electron donor and self-assembled monolayer (SAM)-modified crystalline ZnO nanorods as electron acceptor. By modifying with different SAMs, the solubility of ZnO can be improved when blending with P3HT in organic solvent such as chlorobenzene, leading to improved solar cells performance. The Jsc can be further increased up to 43.5% upon the modification of ZnO by 61-dicarboxylic acid SAM (C60-SAM). Finally, in order to apply the surface plasmon resonance effect to the solar cell device to benfit the light absorption, we synthesized a novel Au/ZnO nanocomposite and blended it into the active layer, which led to further improvement of cell performance. The power conversion efficiency was 1.96 times higher than the cell with pristine active materials (Amine-SAM-modified ZnO/P3HT).
Kuo, Ya-Ching, et 郭雅菁. « Investigation of Device Performance and Structures of BHJ Inverted Organic Solar Cells ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/33643145676476365529.
Texte intégral國立臺灣大學
光電工程學研究所
101
Organic polymer solar cells (PSCs) have lots of advantages for low-cost technology , light weight, easy fabrication and have drawn a great deal of attention. In recent years, many research groups are devoted to the study of processing, materials, and device structures. As a result, the PCE increases rapidly in a short time. In this study, we investigate the inverted structure solar cells with zinc oxide as the electron transport layer because of its stability. The ZnO film in our solar devices is deposited by sol-gel technique. Our study shows that more ZnO layers lead to flatter film. This would make the contact between ZnO and the active layer better. The short circuit current (Jsc) of our device is enhanced. The PCE of P3HT:PC61BM device with 3-layer ZnO is 3.78%. It should be noted that, the conductivity of ZnO thin film can be improved by addition of small amount of Al. The PCE of device with 3-layer of AZO is 3.91%. In addition, we use a low bangap material, PBDTTT-C-T, to increase short circuit current because of its broad light absorption enhancement. The surface morphology of these devices can be modified by additives such as DIH. The maximum PCE of PBDTTT-C-T:PC71BM devices is 6.51% with 4% DIH because the cluster size of organic material is suitable for carrier extraction in this mixture ratio. Finally, we study the lifetime of aforementioned devices. The PCE of the device without encapsulation under N2 environment is still above 97% after 900 hours. The PCE of the device without encapsulation under ambient environment of air is above 79% after 900 hours.
Widmer, Johannes. « Charge transport and energy levels in organic semiconductors ». Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28350.
Texte intégralOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers