Littérature scientifique sur le sujet « Beilinson spectral sequence »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Beilinson spectral sequence ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Beilinson spectral sequence"

1

Braunling, Oliver, et Jesse Wolfson. « Hochschild coniveau spectral sequence and the Beilinson residue ». Pacific Journal of Mathematics 300, no 2 (30 juillet 2019) : 257–329. http://dx.doi.org/10.2140/pjm.2019.300.257.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Suslin, A. A. « The Beilinson spectral sequence for theK-theory of the field of real numbers ». Journal of Soviet Mathematics 63, no 1 (janvier 1993) : 57–58. http://dx.doi.org/10.1007/bf01103082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bondarko, M. V. « Differential graded motives : weight complex, weight filtrations and spectral sequences for realizations ; Voevodsky versus Hanamura ». Journal of the Institute of Mathematics of Jussieu 8, no 1 (16 octobre 2008) : 39–97. http://dx.doi.org/10.1017/s147474800800011x.

Texte intégral
Résumé :
AbstractWe describe explicitly the Voevodsky's triangulated category of motives $\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}$ (and give a ‘differential graded enhancement’ of it). This enables us to able to verify that DMgm ℚ is (anti)isomorphic to Hanamura's $\mathcal{D}$(k).We obtain a description of all subcategories (including those of Tate motives) and of all localizations of $\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}$. We construct a conservative weight complex functor $t:\smash{\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}}\to\smash{K^{\mathrm{b}}(\operatorname{Chow}^{\mathrm{eff}})}$; t gives an isomorphism $K_0(\smash{\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}})\to\smash{K_0(\operatorname{Chow}^{\mathrm{eff}})}$. A motif is mixed Tate whenever its weight complex is. Over finite fields the Beilinson–Parshin conjecture holds if and only if tℚ is an equivalence.For a realization D of $\operatorname{DM}^{\mathrm{eff}}_{\mathrm{gm}}$ we construct a spectral sequence S (the spectral sequence of motivic descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight filtration is non-trivial and appears to be quite new.We define the (rational) length of a motif M; modulo certain ‘standard’ conjectures this length coincides with the maximal length of the weight filtration of the singular cohomology of M.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Costa, L., et R. M. Miró-Roig. « m-Blocks Collections and Castelnuovo-mumford Regularity in multiprojective spaces ». Nagoya Mathematical Journal 186 (2007) : 119–55. http://dx.doi.org/10.1017/s0027763000009387.

Texte intégral
Résumé :
AbstractThe main goal of the paper is to generalize Castelnuovo-Mumford regularity for coherent sheaves on projective spaces to coherent sheaves on n-dimensional smooth projective varieties X with an n-block collection B which generates the bounded derived category To this end, we use the theory of n-blocks and Beilinson type spectral sequence to define the notion of regularity of a coherent sheaf F on X with respect to the n-block collection B. We show that the basic formal properties of the Castelnuovo-Mumford regularity of coherent sheaves over projective spaces continue to hold in this new setting and we compare our definition of regularity with previous ones. In particular, we show that in case of coherent sheaves on ℙn and for the n-block collection Castelnuovo-Mumford regularity and our new definition of regularity coincide. Finally, we carefully study the regularity of coherent sheaves on a multiprojective space ℙn1x…x ℙnr with respect to a suitable n1 +…+ nr-block collection and we compare it with the multigraded variant of the Castelnuovo-Mumford regularity given by Hoffman and Wang in [14].
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bondarko, Mikhail V. « Mixed motivic sheaves (and weights for them) exist if ‘ordinary’ mixed motives do ». Compositio Mathematica 151, no 5 (9 janvier 2015) : 917–56. http://dx.doi.org/10.1112/s0010437x14007763.

Texte intégral
Résumé :
The goal of this paper is to prove that if certain ‘standard’ conjectures on motives over algebraically closed fields hold, then over any ‘reasonable’ scheme $S$ there exists a motivic$t$-structure for the category $\text{DM}_{c}(S)$ of relative Voevodsky’s motives (to be more precise, for the Beilinson motives described by Cisinski and Deglise). If $S$ is of finite type over a field, then the heart of this $t$-structure (the category of mixed motivic sheaves over $S$) is endowed with a weight filtration with semisimple factors. We also prove a certain ‘motivic decomposition theorem’ (assuming the conjectures mentioned) and characterize semisimple motivic sheaves over $S$ in terms of those over its residue fields. Our main tool is the theory of weight structures. We actually prove somewhat more than the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic $t$-structure is transversal to the Chow weight structure for $\text{DM}_{c}(S)$ (that was introduced previously by Hébert and the author). We also deduce several properties of mixed motivic sheaves from this fact. Our reasoning relies on the degeneration of Chow weight spectral sequences for ‘perverse étale homology’ (which we prove unconditionally); this statement also yields the existence of the Chow weight filtration for such (co)homology that is strictly restricted by (‘motivic’) morphisms.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Beilinson spectral sequence"

1

Sanna, Giangiacomo. « Rational curves and instantons on the Fano threefold Y_5 ». Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3867.

Texte intégral
Résumé :
This thesis is an investigation of the moduli spaces of instanton bundles on the Fano threefold Y_5 (a linear section of Gr(2,5)). It contains new proofs of classical facts about lines, conics and cubics on Y_5, and about linear sections of Y_5. The main original results are a Grauert-Mülich theorem for the splitting type of instantons on conics, a bound to the splitting type of instantons on lines and an SL_2-equivariant description of the moduli space in charge 2 and 3. Using these results we prove the existence of a unique SL_2-equivariant instanton of minimal charge and we show that for all instantons of charge 2 the divisor of jumping lines is smooth. In charge 3, we provide examples of instantons with reducible divisor of jumping lines. Finally, we construct a natural compactification for the moduli space of instantons of charge 3, together with a small resolution of singularities for it.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Beilinson spectral sequence"

1

Huybrechts, D. Spherical and Exceptional Objects. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0008.

Texte intégral
Résumé :
Spherical objects — motivated by considerations in the context of mirror symmetry — are used to construct special autoequivalences. Their action on cohomology can be described precisely, considering more than one spherical object often leads to complicated (braid) groups acting on the derived category. The results related to Beilinson are almost classical. Section 3 of this chapter gives an account of the Beilinson spectral sequence and how it is used to deduce a complete description of the derived category of the projective space. This will use the language of exceptional sequences and semi-orthogonal decompositions encountered here. The final section gives a simplified account of the work of Horja, which extends the theory of spherical objects and their associated twists to a broader geometric context.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie