Littérature scientifique sur le sujet « Basal ganglia model »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Basal ganglia model ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Basal ganglia model"
Barker, Roger. « Model for basal ganglia disorders ». Trends in Neurosciences 13, no 3 (mars 1990) : 93. http://dx.doi.org/10.1016/0166-2236(90)90181-9.
Texte intégralGonzalo, N. « The parafascicular thalamic complex and basal ganglia circuitry : further complexity to the basal ganglia model ». Thalamus & ; Related Systems 1, no 4 (juin 2002) : 341–48. http://dx.doi.org/10.1016/s1472-9288(02)00007-9.
Texte intégralGonzalo, N., J. L. Lanciego, M. Castle, A. Vázquez, E. Erro et J. A. Obeso. « The parafascicular thalamic complex and basal ganglia circuitry : further complexity to the basal ganglia model ». Thalamus and Related Systems 1, no 04 (juin 2002) : 341. http://dx.doi.org/10.1017/s1472928802000079.
Texte intégralHallett, Mark. « Physiology of Basal Ganglia Disorders : An Overview ». Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 20, no 3 (août 1993) : 177–83. http://dx.doi.org/10.1017/s0317167100047909.
Texte intégralYin, Henry H. « How Basal Ganglia Outputs Generate Behavior ». Advances in Neuroscience 2014 (18 novembre 2014) : 1–28. http://dx.doi.org/10.1155/2014/768313.
Texte intégralFéger, J. « Updating the functional model of the basal ganglia ». Trends in Neurosciences 20, no 4 (13 mai 1997) : 152–53. http://dx.doi.org/10.1016/s0166-2236(96)01016-8.
Texte intégralSuri, R. E., C. Albani et A. H. Glattfelder. « A dynamic model of motor basal ganglia functions ». Biological Cybernetics 76, no 6 (22 juillet 1997) : 451–58. http://dx.doi.org/10.1007/s004220050358.
Texte intégralLepora, Nathan F., et Kevin N. Gurney. « The Basal Ganglia Optimize Decision Making over General Perceptual Hypotheses ». Neural Computation 24, no 11 (novembre 2012) : 2924–45. http://dx.doi.org/10.1162/neco_a_00360.
Texte intégralPlotkin, Joshua L., et Joshua A. Goldberg. « Thinking Outside the Box (and Arrow) : Current Themes in Striatal Dysfunction in Movement Disorders ». Neuroscientist 25, no 4 (31 octobre 2018) : 359–79. http://dx.doi.org/10.1177/1073858418807887.
Texte intégralYin, Henry H. « The Basal Ganglia in Action ». Neuroscientist 23, no 3 (15 juin 2016) : 299–313. http://dx.doi.org/10.1177/1073858416654115.
Texte intégralThèses sur le sujet "Basal ganglia model"
Søiland, Stian. « Sequence learning in a model of the basal ganglia ». Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9312.
Texte intégralThis thesis presents a computational model of the basal ganglia that is able to learn sequences and perform action selection. The basal ganglia is a set of structures in the human brain involved in everything from action selection to reinforcement learning, inspiring research in psychology, neuroscience and computer science. Two temporal difference models of the basal ganglia based on previous work have been reimplemented. Several experiments and analyses help understand and describe the original works. This uncovered flaws and problems that is addressed.
Senatore, Rosa. « The role of basal ganglia and cerebellum in motor learning. A computational model ». Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/373.
Texte intégralOur research activity investigates the computational processes underlying the execution of complex sequences of movements and aims at understanding how different levels of the nervous system interact and contribute to the gradual improvement of motor performance during learning. Many research areas, from neuroscience to engineering, investigate, from different perspectives and for diverse purposes, the processes that allow humans to efficiently perform skilled movements. From a biological point of view, the execution of voluntary movements requires the interaction between nervous and musculoskeletal systems, involving several areas, from the higher cortical centers to motor circuits in the spinal cord. Understanding these interactions could provide important insights for many research fields, from machine learning to medicine, from the design of robotic limbs to the development of new treatments for movement disorders, such as Parkinson’s disease. This goal could be achieved by finding an answer to the following questions: · How does the central nervous system control and coordinate natural voluntary movements? · Which brain areas are involved in learning a new motor skill? What are the changes that happen in these neural structures? What are the aspects of the movement memorized? · Which is the process that allows people to perform a skilled task, such as playing an instrument, being apparently unaware of the movements they are performing? · What happen when a neurodegenerative disease affects the brain areas involved in executing movements? These questions have been addressed from different perspectives and levels of analysis, from the exploration of the anatomical structure of the neural systems thought to be involved in motor learning (such as the basal ganglia, cerebellum and hippocampus) to the investigation of their neural interaction; from the analysis of the activation of these systems in executing a motor task to the specific activation of a single or a small group of neurons within them. In seeking to understand all the breadth and facets of motor learning, many researchers have used different approaches and methods, such as genetic analysis, neuroimaging techniques (such as fMRI, PET and EEG), animal models and clinical treatments (e.g. drugs administration and brain stimulation). These studies have provided a large body of knowledge that has led to several theories related to the role of the central nervous system in controlling and learning simple and complex movements. These theories envisage the interaction among multiple brain regions, whose cooperation leads to the execution of skilled movements. How can we test these interactions for the purpose of evaluating a theory? Our answer to this question is investigating these interactions through computational models, which provide a valuable complement to the experimental brain research, especially in evaluating the interactions within and among multiple neural systems. Based on these concepts arises our research, which addresses the questions previously pointed out and aims at understanding the computational processes performed by two neural circuits, the Basal Ganglia and Cerebellum, in motor learning. We propose a new hypothesis about the neural processes occurring during acquisition and retention of novel motor skills. According to our hypothesis, a sequence of movements is stored in the nervous system in the form of a spatial sequence of points (composing the trajectory plan associated to the motor sequence) and a sequence of motor commands. We propose that learning novel motor skills requires two phases, in which two different processes take place. Early in learning, when movements are slower, less accurate, and attention demanding, the motor sequence is performed by converting the sequence of target points into the appropriate sequence of motor commands. During this phase, the trajectory plan is acquired and the movements rely on the information provided by the visuo-proprioceptive feedback, which allows to correct the sequence of movements so that the actual trajectory plan corresponds to the desired one and the lowest energy is spent by the muscular subsystem involved. During the late learning phase, when the sequence of movements is performed faster and automatically, with little or no cognitive resources needed to complete it, and is characterized by anticipatory movements, the sequence of motor commands is acquired and thus, the sequence of movements comes to be executed as a single behavior. We suggest that the Basal Ganglia and Cerebellum are involved in learning novel motor sequences, although their role is crucial in different stages of learning. Accordingly, we propose a neural scheme for procedural motor learning, comprising the basal ganglia, cerebellum and cortex, which envisages that the basal ganglia, interacting with the cortex, select the sequence of target points to reach (composing the trajectory plan), whereas the cerebellum, interacting with the cortex, is responsible for converting the trajectory plan into the appropriate sequence of motor commands. Consequently, we suggest that early in learning, task performance is more dependent on the procedural knowledge maintained by the cortex-basal ganglia system, while after a long-term practice, when the sequence of motor commands is acquired within the cerebellum, task performance is more dependent on the motor command sequence maintained by the cortexcerebellar system. We tested the neural scheme (and the hypothesis behind it) through a computational model that incorporates the key anatomical, physiological and biological features of these brain areas in an integrated functional network. Analyzing the behavior of the network in learning novel motor tasks and executing well-known motor tasks, both in terms of the neural activations and motor response provided, we found that the results obtained fit those reported by many neuroimaging and experimental studies presented in the literature. We also carried out further experiments, simulating neurodegenerative disorders (Parkinson's and Huntington disease, which affect the basal ganglia) and cerebellar damages. Results obtained by these experiments validates the proposed hypothesis, showing that the basal ganglia play a key role during the early stage of learning, whereas the cerebellum is crucial for motor skill retention. Our model provides some insights about the learning mechanisms occurring within the cerebellum and gains further understanding of the functional dynamics of information processing within the basal ganglia and cerebellum in normal as well as in diseased brains. Therefore the model provides novel predictions about the role of basal ganglia and cerebellum in motor learning, motivating further investigations of their interactions. [edited by author]
X n.s.
Silva, Miranda B. A. « The role of prefrontal cortex and basal ganglia in model-based and model-free reinforcement learning ». Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1475076/.
Texte intégralKumbhare, Deepak. « ELECTROPHYSIOLOGY OF BASAL GANGLIA (BG) CIRCUITRY AND DYSTONIA AS A MODEL OF MOTOR CONTROL DYSFUNCTION ». VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4305.
Texte intégralDu, Zhuowei. « Caractérisation of GABAergic neurotransmission within basal ganglia circuit in R6/1 Huntington's disease mouse model ». Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0046/document.
Texte intégralWe explored GABAergic neurotransmission in a mouse model of Huntington's disease. Combining molecular, imaging and electrophysiologicaltechniques, we showed changes of GABAergic neurotransmission in presymptomatic and symptomatic R6/1 mice. Our data demonstrated a decreased GABAergic inhibition in the globus pallidus of R6/1 mice, which could result in an alteration of basal ganglia output nuclei and motor activity. Taken together, our results will help to define the contribution of receptor subtypes to inhibitory transmission throughout the brain in physiological and pathophysiological states
Slewa, Barbara Lidia [Verfasser]. « Electrophysiological activity of basal ganglia under deep brain stimulation in the rat model / Barbara Lidia Slewa ». Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1223451445/34.
Texte intégralHaynes, William. « When anatomy drives physiology : expanding the actor-critic model of the basal ganglia to new subthalamus connections ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066662/document.
Texte intégralThe basal ganglia are a network of subcortical structures of which the invariant architecture throughout vertebrate evolution suggests a key function in evolution. As was noted as early as the 18th century, they have the unique characteristic of concentrating afferences from the entire cortical surgace. Given this central position and the internal architecture of the network, they could provide a centralised selection mechanism in the brain, arbitrating between any two conflicting processes. Among the basal ganglia, the subthalamic nucleus has become of particular interest as it is the target of deep brain stimulation, a neurosurgical procedure used to treat severe Parkinson’s disease and obsessive-compulsive disorder. It would have for function to integrate contextual information from its cortical inputs to filter behavioural programs encoded by the striatum. Within the framework of decision-making models, this filtering function is akin to setting the decision threshold, or the amount of evidence required before selecting a program. However, this considerations remain hypothetical as they are lacking experimental support. The first objective of this work was to validate the anatomical basis of these assumptions. Indeed, the existence of a prefrontal-subthalamic pathway, necessary to expand the decision models to every type of decision, had only been demonstrated in rodents. We demonstrated its existence in the primate using anterograde axonal tracing. In addition, this projection will have allowed us to redefine the medial border of the subthalamic nucleus with the clinical consequences that that may have. The second objective of this thesis was to test the functional validity of the models, and specifically the role of the subthalamic nucleus in setting decision thresholds. Deep brain stimulation offers a rare access to the electrophysiology of this structure; however, it is a patient population, here obsessive-compulsive disorder patients. A first step was, therefore, to characterise this population, anatomically and behaviourally, to understand how it might be of use as a model of decision-making in the basal ganglia. We demonstrated a reduction in the strength of cortico-subcortical anatomical connections. We suggest that this prevents accurate conscious control over decision mechanisms. Behaviourally, patients displayed a pathologically low confidence levels in their decisions and we hypothesised that this would lead to an increase of the decision threshold and matching subthalamic activity. To test this, we recorded the activity of the subthalamic nucleus during a decision-making task. We demonstrate that subthalamic neurons have a multimodal activity, consistent with our demonstration of convergent cortical inputs. However, we were unable to demonstrate a link between subthalamic activity and decision threshold, although this may be due to technical considerations…
Zachrisson, Love. « HIGH-FREQUENCY OSCILLATIONS IN A MOUSE MODEL OF PARKINSON’S DISEASE ». Thesis, Umeå universitet, Institutionen för psykologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172265.
Texte intégralDopaminbehandling är den mest förekommande metoden för att behandla Parkinsons sjukdom men detta orsakar dessvärre en bieffekt i form av gradvis förvärrande ofrivilliga rörelser. Detta beteendemönster kallas för Levodopa-Inducerad-Dyskinesi (LID) och med hjälp av elektrodimplantat i hjärnan, på parkinsonpatienter och djurmodeller av parkinsons, har man kunnat se att beteendet är förknippat med högfrekventa oscilleringar (HFO) av hjärnaktivitet i motorcortex och basala ganglierna. Trots försök att kartlägga om dessa högfrekventa oscilleringar också är närvarande i den populära 6-OHDA musmodellen av Parkinsons sjukdom, så har man hittills inte lyckats demonstrera detta. Genom att bygga och implantera ett elektrodimplantat med 64 kanaler i en ensidigt-leisonerad 6-OHDA musmodell av Parkinsons sjukdom så kunde vi åskådliggöra HFO i motor cortex, basala ganglierna och thalamus i den lesionerade hjärnhalvan under LID. Vi kunde också påvisa HFO som sträckte sig över till den intakta hjärnhalvan, med frekvenser över 100 Hz. Denna forskning ger stöd att 6-OHDA modellen för Parkinsons i möss är valid och ger möjlighet till nya metoder att utforska och behandla Parkinsons, dyskinesi och andra neurologiska åkommor. Studien lägger också grunden för framtida studier som ämnar att undersöka föreslagna mekanismer bakom sättet populationer av neuroner bearbetar information.
ingår i ett projekt finansierat av Vetenskapsrådet #2018-02717
Canudas, Teixidó Anna-Maria. « Estudi de la degeneració transneuronal en models de malalties que afecten als ganglis basals ». Doctoral thesis, Universitat de Barcelona, 2001. http://hdl.handle.net/10803/672867.
Texte intégralThurnham, A. J. « Computational modelling of the neural systems involved in schizophrenia ». Thesis, University of Hertfordshire, 2008. http://hdl.handle.net/2299/1842.
Texte intégralLivres sur le sujet "Basal ganglia model"
Pieter, Voorn, Berendse Henk W, Mulder Antonius B, Cools Alexander Rudolf 1941- et SpringerLink (Online service), dir. The Basal Ganglia IX. New York, NY : Springer-Verlag New York, 2009.
Trouver le texte intégralChakravarthy, V. Srinivasa, et Ahmed A. Moustafa. Computational Neuroscience Models of the Basal Ganglia. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2.
Texte intégralC, Houk James, Davis Joel L. 1942- et Beiser David G, dir. Models of information processing in the basal ganglia. Cambridge, Mass : MIT Press, 1994.
Trouver le texte intégralC, Houk James, Davis Joel L. 1942- et Beiser David G, dir. Models of information processing in the basal ganglia. Cambridge, Mass : MIT Press, 1995.
Trouver le texte intégralInternational Basal Ganglia Society. Symposium. The basal ganglia II : Structure and function : current concepts. New York : Plenum Press, 1987.
Trouver le texte intégralP, Riederer, et Wesemann W, dir. Parkinson's disease : Experimental models and therapy. Wien : Springer-Verlag, 1995.
Trouver le texte intégralEly, Budding Deborah, dir. Subcortical structures and cognition : Implications for neuropsychological assessment. New York : Springer, 2009.
Trouver le texte intégralSubcortical functions in language and memory. New York : Guilford Press, 1992.
Trouver le texte intégralSteele, Vaughn R., Vani Pariyadath, Rita Z. Goldstein et Elliot A. Stein. Reward Circuitry and Drug Addiction. Sous la direction de Dennis S. Charney, Eric J. Nestler, Pamela Sklar et Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0044.
Texte intégralSymposium, International Basal Ganglia Society. The basal ganglia II. Plenum, 1987.
Trouver le texte intégralChapitres de livres sur le sujet "Basal ganglia model"
Koziol, Leonard F., Deborah Ely Budding et Dana Chidekel. « The Basal Ganglia ». Dans ADHD as a Model of Brain-Behavior Relationships, 35–39. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8382-3_14.
Texte intégralKoziol, Leonard F., Deborah Ely Budding et Dana Chidekel. « The Basal Ganglia and Intention Programs ». Dans ADHD as a Model of Brain-Behavior Relationships, 41–42. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8382-3_15.
Texte intégralKoziol, Leonard F., Deborah Ely Budding et Dana Chidekel. « Reward Circuitry and the Basal Ganglia ». Dans ADHD as a Model of Brain-Behavior Relationships, 45–49. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8382-3_17.
Texte intégralMandali, Alekhya, et V. Srinivasa Chakravarthy. « Synchronization and Exploration in Basal Ganglia—A Spiking Network Model ». Dans Computational Neuroscience Models of the Basal Ganglia, 97–112. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2_6.
Texte intégralMuralidharan, Vignesh, Pragathi Priyadharsini Balasubramani, V. Srinivasa Chakravarthy et Ahmed A. Moustafa. « A Basal Ganglia Model of Freezing of Gait in Parkinson’s Disease ». Dans Computational Neuroscience Models of the Basal Ganglia, 113–29. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2_7.
Texte intégralKrishnan, Ravi, Shivakesavan Ratnadurai, Deepak Subramanian et Srinivasa Chakravarthy. « A Model of Basal Ganglia in Saccade Generation ». Dans Artificial Neural Networks – ICANN 2010, 282–90. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15819-3_37.
Texte intégralMuralidharan, Vignesh, Alekhya Mandali, Pragathi Priyadharsini Balasubramani, Hima Mehta, V. Srinivasa Chakravarthy et Marjan Jahanshahi. « A Cortico-Basal Ganglia Model to Understand the Neural Dynamics of Targeted Reaching in Normal and Parkinson’s Conditions ». Dans Computational Neuroscience Models of the Basal Ganglia, 167–95. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2_10.
Texte intégralMandali, Alekhya, et V. Srinivasa Chakravarthy. « Studying the Effect of Dopaminergic Medication and STN–DBS on Cognitive Function Using a Spiking Basal Ganglia Model ». Dans Computational Neuroscience Models of the Basal Ganglia, 197–214. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2_11.
Texte intégralMaya, M., V. Srinivasa Chakravarthy et B. Ravindran. « An Oscillatory Neural Network Model for Birdsong Learning and Generation : Implications for the Role of Dopamine in Song Learning ». Dans Computational Neuroscience Models of the Basal Ganglia, 255–84. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2_14.
Texte intégralBogacz, Rafal. « Optimal Decision Making in the Cortico-Basal-Ganglia Circuit ». Dans An Introduction to Model-Based Cognitive Neuroscience, 291–302. New York, NY : Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2236-9_14.
Texte intégralActes de conférences sur le sujet "Basal ganglia model"
Mohagheghi-Nejad, Mohammad Reza, Fariba Bahrami et Mahyar Janahmadi. « Conductance-based computational model of basal ganglia ». Dans 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/iraniancee.2014.6999867.
Texte intégralElibol, Rahmi, et Neslihan Serap Sengor. « Modeling basal ganglia circuits with mass model equations ». Dans 2016 Medical Technologies National Congress (TIPTEKNO). IEEE, 2016. http://dx.doi.org/10.1109/tiptekno.2016.7863131.
Texte intégralGuiyeom Kang et M. M. Lowery. « Conductance-based model of the basal ganglia in Parkinson's Disease ». Dans IET Irish Signals and Systems Conference (ISSC 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1692.
Texte intégralOzdemir, Mustafa Yasir, et Neslihan Serap Sengor. « A Computational Model of Basal Ganglia Circuit Established with Spiking Neural Network ». Dans 2017 21st National Biomedical Engineering Meeting (BIYOMUT). IEEE, 2017. http://dx.doi.org/10.1109/biyomut.2017.8479123.
Texte intégralGao, Yuanyuan, et Hongjun Song. « A motor learning model based on the basal ganglia in operant conditioning ». Dans 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6853115.
Texte intégralBaston, Chiara, et Mauro Ursino. « A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia ». Dans 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319883.
Texte intégralLiang, Yabin, Zikai Yan, Qi Zhang, Hongyu Liang, Xiyu Ji, Yin Liu et Rong Liu. « A Decision-Making Model Based on Basal Ganglia Account of Action Prediction ». Dans 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019. http://dx.doi.org/10.1109/robio49542.2019.8961538.
Texte intégralCabessa, Jeremie, et Alessandro E. P. Villa. « Attractor-based complexity of a Boolean model of the basal ganglia-thalamocortical network ». Dans 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727812.
Texte intégralKepce, Ayca, et N. Serap Sengor. « Bifurcation Analysis of A Mass Model Related to Cortex - Basal Ganglia - Thalamus Loop ». Dans 2019 Medical Technologies Congress (TIPTEKNO). IEEE, 2019. http://dx.doi.org/10.1109/tiptekno.2019.8894916.
Texte intégralLiu, Jianbo, Hassan K. Khalil et Karim G. Oweiss. « Model-based spatiotemporal analysis and control of a network of spiking Basal Ganglia neurons ». Dans 5th International IEEE/EMBS Conference on Neural Engineering (NER 2011). IEEE, 2011. http://dx.doi.org/10.1109/ner.2011.5910540.
Texte intégral