Articles de revues sur le sujet « Azadinium »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Azadinium.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Azadinium ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Fabro, Elena, Gastón O. Almandoz, Bernd Krock et Urban Tillmann. « Field observations of the dinoflagellate genus Azadinium and azaspiracid toxins in the south-west Atlantic Ocean ». Marine and Freshwater Research 71, no 7 (2020) : 832. http://dx.doi.org/10.1071/mf19124.

Texte intégral
Résumé :
Some dinoflagellate species of the genera Azadinium and Amphidoma (Amphidomataceae) produce azaspiracids (AZA), a group of toxins responsible for gastrointestinal disorders in humans following the consumption of contaminated shellfish. In this study, we investigated the diversity, distribution and abundance of Azadinium and AZA from field plankton samples collected during four oceanographic expeditions that covered an extended area of the Argentine Sea during different seasons. Scanning electron microscopy analyses indicated the presence of five Azadinium species: Az. dexteroporum, Az. luciferelloides, Az. obesum, Az. asperum and Az. cf. poporum. Azadinium-like cells were frequently found and were even an abundant component of plankton assemblages, showing a wide latitudinal distribution, from ~38 to ~55.5°S, and occurring in a wide temperature and salinity range. High cell densities (up to 154000cellsL–1) occurred in northern slope and external shelf waters during spring. AZA-2 was detected in net samples from the 20- to 200-µm fractions by tandem mass spectrometry–liquid chromatography analysis, suggesting a transfer of AZA through the food web. Our results contribute to the knowledge of the worldwide occurrence of Azadinium species and AZA, and highlight the importance of amphidomatacean species as a potential source of AZA shellfish poisoning in the south-west Atlantic Ocean.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kim, Joo-Hwan, Urban Tillmann, Nicolaus G. Adams, Bernd Krock, Whitney L. Stutts, Jonathan R. Deeds, Myung-Soo Han et Vera L. Trainer. « Identification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA ». Harmful Algae 68 (septembre 2017) : 152–67. http://dx.doi.org/10.1016/j.hal.2017.08.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tillmann, Urban, Sylvia Soehner, Elisabeth Nézan et Bernd Krock. « First record of the genus Azadinium (Dinophyceae) from the Shetland Islands, including the description of Azadinium polongum sp. nov. » Harmful Algae 20 (décembre 2012) : 142–55. http://dx.doi.org/10.1016/j.hal.2012.10.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jauffrais, Thierry, Christine Herrenknecht, Véronique Séchet, Manoella Sibat, Urban Tillmann, Bernd Krock, Jane Kilcoyne et al. « Quantitative analysis of azaspiracids in Azadinium spinosum cultures ». Analytical and Bioanalytical Chemistry 403, no 3 (26 février 2012) : 833–46. http://dx.doi.org/10.1007/s00216-012-5849-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Potvin, Éric, Hae Jin Jeong, Nam Seon Kang, Urban Tillmann et Bernd Krock. « First Report of the Photosynthetic Dinoflagellate Genus Azadinium in the Pacific Ocean : Morphology and Molecular Characterization of Azadinium cf. poporum ». Journal of Eukaryotic Microbiology 59, no 2 (20 décembre 2011) : 145–56. http://dx.doi.org/10.1111/j.1550-7408.2011.00600.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tillmann, Urban, Sonia Sánchez-Ramírez, Bernd Krock et Avy Bernales-Jiménez. « A bloom of Azadinium polongum in coastal waters off Peru ». Revista de biología marina y oceanografía 52, no 3 (décembre 2017) : 591–610. http://dx.doi.org/10.4067/s0718-19572017000300015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Krock, Bernd, Urban Tillmann, Matthias Witt et Haifeng Gu. « Azaspiracid variability of Azadinium poporum (Dinophyceae) from the China Sea ». Harmful Algae 36 (juin 2014) : 22–28. http://dx.doi.org/10.1016/j.hal.2014.04.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Luo, Zhaohe, Haifeng Gu, Bernd Krock et Urban Tillmann. « Azadinium dalianense, a new dinoflagellate species from the Yellow Sea, China ». Phycologia 52, no 6 (novembre 2013) : 625–36. http://dx.doi.org/10.2216/13-178.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tillmann, Urban, Bernd Krock et Bettina B. Taylor. « Azadinium caudatumvar.margalefii, a poorly known member of the toxigenic genusAzadinium(Dinophyceae) ». Marine Biology Research 10, no 10 (27 mai 2014) : 941–56. http://dx.doi.org/10.1080/17451000.2013.866252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hernández-Becerril, David U., Sofía A. Barón-Campis et Sergio Escobar-Morales. « A new record of Azadinium spinosum (Dinoflagellata) from the tropical Mexican Pacific ». Revista de biología marina y oceanografía 47, no 3 (décembre 2012) : 553–57. http://dx.doi.org/10.4067/s0718-19572012000300016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Akselman, Rut, Rubén M. Negri et Ezequiel Cozzolino. « Azadinium (Amphidomataceae, Dinophyceae) in the Southwest Atlantic : In situ and satellite observations ». Revista de biología marina y oceanografía 49, no 3 (décembre 2014) : 511–26. http://dx.doi.org/10.4067/s0718-19572014000300008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Luo, Zhaohe, Bernd Krock, Antonia Giannakourou, Amalia Venetsanopoulou, Kalliopi Pagou, Urban Tillmann et Haifeng Gu. « Sympatric occurrence of two Azadinium poporum ribotypes in the Eastern Mediterranean Sea ». Harmful Algae 78 (septembre 2018) : 75–85. http://dx.doi.org/10.1016/j.hal.2018.08.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Tillmann, Urban, Rafael Salas, Marc Gottschling, Bernd Krock, Daniel O'Driscoll et Malte Elbrächter. « Amphidoma languida sp. nov. (Dinophyceae) Reveals a Close Relationship between Amphidoma and Azadinium ». Protist 163, no 5 (septembre 2012) : 701–19. http://dx.doi.org/10.1016/j.protis.2011.10.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gu, Haifeng, Zhaohe Luo, Bernd Krock, Mattias Witt et Urban Tillmann. « Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea ». Harmful Algae 21-22 (janvier 2013) : 64–75. http://dx.doi.org/10.1016/j.hal.2012.11.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tillmann, Urban, Stephan Wietkamp, Bernd Krock, Anette Tillmann, Daniela Voss et Haifeng Gu. « Amphidomataceae (Dinophyceae) in the western Greenland area, including description of Azadinium perforatum sp. nov. » Phycologia 59, no 1 (2 décembre 2019) : 63–88. http://dx.doi.org/10.1080/00318884.2019.1670013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Toebe, Kerstin, Aboli R. Joshi, Philip Messtorff, Urban Tillmann, Allan Cembella et Uwe John. « Molecular discrimination of taxa within the dinoflagellate genus Azadinium, the source of azaspiracid toxins ». Journal of Plankton Research 35, no 1 (14 novembre 2012) : 225–30. http://dx.doi.org/10.1093/plankt/fbs077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Jauffrais, Thierry, Andrea Contreras, Christine Herrenknecht, Philippe Truquet, Véronique Séchet, Urban Tillmann et Philipp Hess. « Effect of Azadinium spinosum on the feeding behaviour and azaspiracid accumulation of Mytilus edulis ». Aquatic Toxicology 124-125 (novembre 2012) : 179–87. http://dx.doi.org/10.1016/j.aquatox.2012.08.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jauffrais, Thierry, Claire Marcaillou, Christine Herrenknecht, Philippe Truquet, Véronique Séchet, Elodie Nicolau, Urban Tillmann et Philipp Hess. « Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum ». Toxicon 60, no 4 (septembre 2012) : 582–95. http://dx.doi.org/10.1016/j.toxicon.2012.04.351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Tillmann, Urban, Malte Elbrächter, Bernd Krock, Uwe John et Allan Cembella. « Azadinium spinosumgen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins ». European Journal of Phycology 44, no 1 (février 2009) : 63–79. http://dx.doi.org/10.1080/09670260802578534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kilcoyne, Jane, Amy McCoy, Stephen Burrell, Bernd Krock et Urban Tillmann. « Effects of Temperature, Growth Media, and Photoperiod on Growth and Toxin Production of Azadinium spinosum ». Marine Drugs 17, no 9 (22 août 2019) : 489. http://dx.doi.org/10.3390/md17090489.

Texte intégral
Résumé :
Azaspiracids (AZAs) are microalgal toxins that can accumulate in shellfish and lead to human intoxications. To facilitate their study and subsequent biomonitoring, purification from microalgae rather than shellfish is preferable; however, challenges remain with respect to maximizing toxin yields. The impacts of temperature, growth media, and photoperiod on cell densities and toxin production in Azadinium spinosum were investigated. Final cell densities were similar at 10 and 18 °C, while toxin cell quotas were higher (~3.5-fold) at 10 °C. A comparison of culture media showed higher cell densities and AZA cell quotas (2.5–5-fold) in f10k compared to f/2 and L1 media. Photoperiod also showed differences, with lower cell densities in the 8:16 L:D treatment, while toxin cell quotas were similar for 12:12 and 8:16 L:D treatments but slightly lower for the 16:8 L:D treatment. AZA1, -2 and -33 were detected during the exponential phase, while some known and new AZAs were only detected once the stationary phase was reached. These compounds were additionally detected in field water samples during an AZA event.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Percopo, Isabella, Raffaele Siano, Rachele Rossi, Vittorio Soprano, Diana Sarno et Adriana Zingone. « A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov. » Journal of Phycology 49, no 5 (27 août 2013) : 950–66. http://dx.doi.org/10.1111/jpy.12104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tillmann, Urban, Marc Gottschling, Elisabeth Nézan, Bernd Krock et Gwenaël Bilien. « Morphological and Molecular Characterization of Three New Azadinium Species (Amphidomataceae, Dinophyceae) from the Irminger Sea ». Protist 165, no 4 (août 2014) : 417–44. http://dx.doi.org/10.1016/j.protis.2014.04.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Li, Aifeng, Baozhou Jiang, Huidan Chen et Haifeng Gu. « Growth and toxin production of Azadinium poporum strains in batch cultures under different nutrient conditions ». Ecotoxicology and Environmental Safety 127 (mai 2016) : 117–26. http://dx.doi.org/10.1016/j.ecoenv.2016.01.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Tillmann, Urban, Malte Elbrächter, Uwe John, Bernd Krock et Allan Cembella. « Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins ». Phycologia 49, no 2 (mars 2010) : 169–82. http://dx.doi.org/10.2216/ph09-35.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Salas, Rafael, Urban Tillmann, Uwe John, Jane Kilcoyne, Amanda Burson, Caoimhe Cantwell, Philipp Hess, Thierry Jauffrais et Joe Silke. « The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels ». Harmful Algae 10, no 6 (septembre 2011) : 774–83. http://dx.doi.org/10.1016/j.hal.2011.06.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Luo, Zhaohe, Bernd Krock, Kenneth Neil Mertens, Andrea Michelle Price, Robert Eugene Turner, Nancy N. Rabalais et Haifeng Gu. « Morphology, molecular phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the Gulf of Mexico ». Harmful Algae 55 (mai 2016) : 56–65. http://dx.doi.org/10.1016/j.hal.2016.02.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Tillmann, Urban, Stephan Wietkamp, Haifeng Gu, Bernd Krock, Rafael Salas et Dave Clarke. « Multiple New Strains of Amphidomataceae (Dinophyceae) from the North Atlantic Revealed a High Toxin Profile Variability of Azadinium spinosum and a New Non-Toxigenic Az. cf. spinosum ». Microorganisms 9, no 1 (8 janvier 2021) : 134. http://dx.doi.org/10.3390/microorganisms9010134.

Texte intégral
Résumé :
Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell−1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Tillmann, Urban, Stephan Wietkamp, Haifeng Gu, Bernd Krock, Rafael Salas et Dave Clarke. « Multiple New Strains of Amphidomataceae (Dinophyceae) from the North Atlantic Revealed a High Toxin Profile Variability of Azadinium spinosum and a New Non-Toxigenic Az. cf. spinosum ». Microorganisms 9, no 1 (8 janvier 2021) : 134. http://dx.doi.org/10.3390/microorganisms9010134.

Texte intégral
Résumé :
Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell−1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Luo, Zhaohe, Bernd Krock, Kenneth Neil Mertens, Elisabeth Nézan, Nicolas Chomérat, Gwenael Bilien, Urban Tillmann et Haifeng Gu. « Adding new pieces to the Azadinium (Dinophyceae) diversity and biogeography puzzle : Non-toxigenic Azadinium zhuanum sp. nov. from China, toxigenic A. poporum from the Mediterranean, and a non-toxigenic A. dalianense from the French Atlantic ». Harmful Algae 66 (juin 2017) : 65–78. http://dx.doi.org/10.1016/j.hal.2017.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Jauffrais, Thierry, Jane Kilcoyne, Véronique Séchet, Christine Herrenknecht, Philippe Truquet, Fabienne Hervé, Jean Baptiste Bérard et al. « Production and Isolation of Azaspiracid-1 and -2 from Azadinium spinosum Culture in Pilot Scale Photobioreactors ». Marine Drugs 10, no 12 (13 juin 2012) : 1360–82. http://dx.doi.org/10.3390/md10061360.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Krock, Bernd, Urban Tillmann, Éric Potvin, Hae Jeong, Wolfgang Drebing, Jane Kilcoyne, Ahmed Al-Jorani, Michael Twiner, Qun Göthel et Matthias Köck. « Structure Elucidation and in Vitro Toxicity of New Azaspiracids Isolated from the Marine Dinoflagellate Azadinium poporum ». Marine Drugs 13, no 11 (30 octobre 2015) : 6687–702. http://dx.doi.org/10.3390/md13116687.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Giuliani, Maria Elisa, Stefano Accoroni, Marica Mezzelani, Francesca Lugarini, Simone Bacchiocchi, Melania Siracusa, Tamara Tavoloni et al. « Biological Effects of the Azaspiracid-Producing Dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea ». Marine Drugs 17, no 10 (22 octobre 2019) : 595. http://dx.doi.org/10.3390/md17100595.

Texte intégral
Résumé :
Azaspiracids (AZAs) are marine biotoxins including a variety of analogues. Recently, novel AZAs produced by the Mediterranean dinoflagellate Azadinium dexteroporum were discovered (AZA-54, AZA-55, 3-epi-AZA-7, AZA-56, AZA-57 and AZA-58) and their biological effects have not been investigated yet. This study aimed to identify the biological responses (biomarkers) induced in mussels Mytilus galloprovincialis after the bioaccumulation of AZAs from A. dexteroporum. Organisms were fed with A. dexteroporum for 21 days and subsequently subjected to a recovery period (normal diet) of 21 days. Exposed organisms accumulated AZA-54, 3-epi-AZA-7 and AZA-55, predominantly in the digestive gland. Mussels’ haemocytes showed inhibition of phagocytosis activity, modulation of the composition of haemocytic subpopulation and damage to lysosomal membranes; the digestive tissue displayed thinned tubule walls, consumption of storage lipids and accumulation of lipofuscin. Slight genotoxic damage was also observed. No clear occurrence of oxidative stress and alteration of nervous activity was detected in AZA-accumulating mussels. Most of the altered parameters returned to control levels after the recovery phase. The toxic effects detected in M. galloprovincialis demonstrate a clear biological impact of the AZAs produced by A. dexteroporum, and could be used as early indicators of contamination associated with the ingestion of seafood.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Jauffrais, Thierry, Véronique Séchet, Christine Herrenknecht, Philippe Truquet, Savar Véronique, Urban Tillmann et Philipp Hess. « Effect of environmental and nutritional factors on growth and azaspiracid production of the dinoflagellate Azadinium spinosum ». Harmful Algae 27 (juillet 2013) : 138–48. http://dx.doi.org/10.1016/j.hal.2013.05.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Tillmann, Urban, C. Marcela Borel, Facundo Barrera, Rubén Lara, Bernd Krock, Gastón O. Almandoz, Matthias Witt et Nicole Trefault. « Azadinium poporum from the Argentine Continental Shelf, Southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate ». Harmful Algae 51 (janvier 2016) : 40–55. http://dx.doi.org/10.1016/j.hal.2015.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Krock, Bernd, Urban Tillmann, Jan Tebben, Nicole Trefault et Haifeng Gu. « Two novel azaspiracids from Azadinium poporum, and a comprehensive compilation of azaspiracids produced by Amphidomataceae, (Dinophyceae) ». Harmful Algae 82 (février 2019) : 1–8. http://dx.doi.org/10.1016/j.hal.2018.12.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Potvin, É., YJ Hwang, YD Yoo, JS Kim et HJ Jeong. « Feeding by heterotrophic protists and copepods on the photosynthetic dinoflagellate Azadinium cf. poporum from western Korean waters ». Aquatic Microbial Ecology 68, no 2 (7 février 2013) : 143–58. http://dx.doi.org/10.3354/ame01603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Meyer, Jan M., Christian Rödelsperger, Karsten Eichholz, Urban Tillmann, Allan Cembella, Angela McGaughran et Uwe John. « Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes ». BMC Genomics 16, no 1 (2015) : 27. http://dx.doi.org/10.1186/s12864-014-1205-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Smith, Kirsty F., Lesley Rhodes, D. Tim Harwood, Janet Adamson, Catherine Moisan, Rex Munday et Urban Tillmann. « Detection of Azadinium poporum in New Zealand : the use of molecular tools to assist with species isolations ». Journal of Applied Phycology 28, no 2 (21 juillet 2015) : 1125–32. http://dx.doi.org/10.1007/s10811-015-0667-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Akselman, Rut, et Rubén M. Negri. « Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic ». Harmful Algae 19 (septembre 2012) : 30–38. http://dx.doi.org/10.1016/j.hal.2012.05.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Cavalcante, Kaoli Pereira, Sylvia Maria Moreira Susini-Ribeiro et Urban Tillmann. « First detection of species of the potentially toxic genus Azadinium (Amphidomataceae, Dinophyceae) in tropical coastal waters of Brazil ». Brazilian Journal of Botany 41, no 1 (1 février 2018) : 209–18. http://dx.doi.org/10.1007/s40415-017-0435-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kilcoyne, Jane, Ciara Nulty, Thierry Jauffrais, Pearse McCarron, Fabienne Herve, Barry Foley, Frode Rise et al. « Isolation, Structure Elucidation, Relative LC-MS Response, and in Vitro Toxicity of Azaspiracids from the Dinoflagellate Azadinium spinosum ». Journal of Natural Products 77, no 11 (30 octobre 2014) : 2465–74. http://dx.doi.org/10.1021/np500555k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Abal, Paula, M. Carmen Louzao, María Fraga, Natalia Vilariño, Sara Ferreiro, Mercedes R. Vieytes et Luis M. Botana. « Absorption and Effect of Azaspiracid-1 Over the Human Intestinal Barrier ». Cellular Physiology and Biochemistry 43, no 1 (2017) : 136–46. http://dx.doi.org/10.1159/000480331.

Texte intégral
Résumé :
Background: Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. Methods: The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. Conclusion: After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Adams, Nicolaus G., Urban Tillmann et Vera L. Trainer. « Temporal and spatial distribution of Azadinium species in the inland and coastal waters of the Pacific northwest in 2014–2018 ». Harmful Algae 98 (septembre 2020) : 101874. http://dx.doi.org/10.1016/j.hal.2020.101874.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rossi, Rachele, Carmela Dell’Aversano, Bernd Krock, Patrizia Ciminiello, Isabella Percopo, Urban Tillmann, Vittorio Soprano et Adriana Zingone. « Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35 : a structural study by a multi-platform mass spectrometry approach ». Analytical and Bioanalytical Chemistry 409, no 4 (7 novembre 2016) : 1121–34. http://dx.doi.org/10.1007/s00216-016-0037-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

McGirr, Stephen, Dave Clarke, Jane Kilcoyne, Rafael Salas, Henry Koehler, Joe Silke et Nicolas Touzet. « Insights into the discrepancy between Azadinium spp. and azaspiracid toxins near strategically important aquaculture operations in the west and southwest of Ireland ». Estuarine, Coastal and Shelf Science 262 (novembre 2021) : 107622. http://dx.doi.org/10.1016/j.ecss.2021.107622.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ji, Ying, Jiangbing Qiu, Tian Xie, Pearse McCarron et Aifeng Li. « Accumulation and transformation of azaspiracids in scallops ( Chlamys farreri ) and mussels ( Mytilus galloprovincialis ) fed with Azadinium poporum, and response of antioxidant enzymes ». Toxicon 143 (mars 2018) : 20–28. http://dx.doi.org/10.1016/j.toxicon.2017.12.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ji, Ying, Jiangbing Qiu, Tian Xie, Pearse McCarron et Aifeng Li. « Accumulation and transformation of azaspiracids in scallops (Chlamys farreri) and mussels (Mytilus galloprovincialis) fed with Azadinium poporum, and response of antioxidant enzymes ». Toxicon 158 (février 2019) : S42—S43. http://dx.doi.org/10.1016/j.toxicon.2018.10.149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Tillmann, Urban, Marc Gottschling, Bernd Krock, Kirsty F. Smith et Valeria Guinder. « High abundance of Amphidomataceae (Dinophyceae) during the 2015 spring bloom of the Argentinean Shelf and a new, non-toxigenic ribotype of Azadinium spinosum ». Harmful Algae 84 (avril 2019) : 244–60. http://dx.doi.org/10.1016/j.hal.2019.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Pelin, Marco, Jane Kilcoyne, Chiara Florio, Philipp Hess, Aurelia Tubaro et Silvio Sosa. « Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes : Involvement of Potassium and Chloride Ions ». Marine Drugs 17, no 5 (8 mai 2019) : 276. http://dx.doi.org/10.3390/md17050276.

Texte intégral
Résumé :
Background: Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, being the most important in terms of occurrence and toxicity. In vivo studies in mice showed that, in addition to gastrointestinal effects, AZA1 induces liver alterations that are visible as a swollen organ, with the presence of hepatocellular fat droplets and vacuoles. Hence, an in vitro study was carried out to investigate the effects of AZA1, -2, and -3 on liver cells, using human non-tumor IHH hepatocytes. Results: The exposure of IHH cells to AZA1, -2, or -3 (5 × 10−12–1 × 10−7 M) for 24 h did not affect the cell viability and proliferation (Sulforhodamine B assay and 3H-Thymidine incorporation assay), but they induced a significant concentration-dependent increase of mitochondrial dehydrogenases activity (MTT reduction assay). This effect depends on the activity of mitochondrial electron transport chain complex I and II, being counteracted by rotenone and tenoyl trifluoroacetone, respectively. Furthermore, AZAs-increased mitochondrial dehydrogenase activity was almost totally suppressed in the K+-, Cl−-, and Na+-free media and sensitive to the specific inhibitors of KATP and hERG potassium channels, Na+/K+, ATPase, and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. Conclusions: These results suggest that AZA mitochondrial effects in hepatocytes derive from an imbalance of intracellular levels of K+ and, in particular, Cl− ions, as demonstrated by the selective reduction of toxin effects by CFTR chloride channel inhibition.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ozawa, Mayu, Hajime Uchida, Ryuichi Watanabe, Ryoji Matsushima, Hiroshi Oikawa, Kazuya Takahashi, Mitsunori Iwataki et Toshiyuki Suzuki. « Complex profiles of azaspiracid analogues in two culture strains of Azadinium poporum (Amphidomataceae, Dinophyceae) isolated from Japanese coastal waters determined by LC-MS/MS ». Toxicon 199 (août 2021) : 145–55. http://dx.doi.org/10.1016/j.toxicon.2021.06.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie