Littérature scientifique sur le sujet « Autonomous robotic surgery »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Autonomous robotic surgery ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Autonomous robotic surgery"

1

Abdelaal, Alaa Eldin, Jordan Liu, Nancy Hong, Gregory D. Hager et Septimiu E. Salcudean. « Parallelism in Autonomous Robotic Surgery ». IEEE Robotics and Automation Letters 6, no 2 (avril 2021) : 1824–31. http://dx.doi.org/10.1109/lra.2021.3060402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ray, Katrina. « Autonomous robotic laparoscopic gastrointestinal surgery ». Nature Reviews Gastroenterology & ; Hepatology 19, no 3 (1 février 2022) : 148. http://dx.doi.org/10.1038/s41575-022-00584-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yang, Shuo, Jiahao Chen, An Li, Ping Li et Shulan Xu. « Autonomous Robotic Surgery for Immediately Loaded Implant-Supported Maxillary Full-Arch Prosthesis : A Case Report ». Journal of Clinical Medicine 11, no 21 (7 novembre 2022) : 6594. http://dx.doi.org/10.3390/jcm11216594.

Texte intégral
Résumé :
Robotic systems have emerged in dental implant surgery due to their accuracy. Autonomous robotic surgery may offer unprecedented advantages over conventional alternatives. This clinical protocol was used to show the feasibility of autonomous robotic surgery for immediately loaded implant-supported full-arch prostheses in the maxilla. This case report demonstrated the surgical protocol and outcomes in detail, highlighting the pros and cons of the autonomous robotic system. Within the limitations of this study, autonomous robotic surgery could be a feasible alternative to computer-assisted guided implant surgery.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rhatomy,MD, Sholahuddin, Krisna Yuarno Phatama, Asep Santoso, Kukuh Dwiputra Hernugrahanto et Nicolaas Budhiparama. « Robot-Assisted in Hip and Knee Surgery : Are we ready ? » Hip and Knee Journal 2, no 2 (25 août 2021) : 54–56. http://dx.doi.org/10.46355/hipknee.v2i2.111.

Texte intégral
Résumé :
The word 'robot' is derived from the Polish word "robota," which means forced labor. It describes a machine that carries out various tasks either automatically or with minimal external input, especially one that is programmable. There are two main types of robotic surgery systems: haptic and autonomous. Haptic or tactile systems allow the surgeon to use or drive the robot to perform a surgical procedure. This technology requires constant input by the surgeon for the procedure to proceed. In contrast, autonomous robotic systems require the surgeon to perform the approach and set up the machine, but once engaged, the robot completes the surgery without the surgeon's help. The use of robotic technology has, in some cases, facilitated minimally invasive surgery, which has gained popularity with some patients. In spinal surgery, robotic technology has been successfully used to increase the accuracy of implant placement. Furthermore, robotic technology can improve the radiological alignment of implants following the pre-operative plan.1,2
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shademan, Azad, Ryan S. Decker, Justin D. Opfermann, Simon Leonard, Axel Krieger et Peter C. W. Kim. « Supervised autonomous robotic soft tissue surgery ». Science Translational Medicine 8, no 337 (4 mai 2016) : 337ra64. http://dx.doi.org/10.1126/scitranslmed.aad9398.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rivas-Blanco, Irene, Carlos Perez-del-Pulgar, Carmen López-Casado, Enrique Bauzano et Víctor Muñoz. « Transferring Know-How for an Autonomous Camera Robotic Assistant ». Electronics 8, no 2 (18 février 2019) : 224. http://dx.doi.org/10.3390/electronics8020224.

Texte intégral
Résumé :
Robotic platforms are taking their place in the operating room because they provide more stability and accuracy during surgery. Although most of these platforms are teleoperated, a lot of research is currently being carried out to design collaborative platforms. The objective is to reduce the surgeon workload through the automation of secondary or auxiliary tasks, which would benefit both surgeons and patients by facilitating the surgery and reducing the operation time. One of the most important secondary tasks is the endoscopic camera guidance, whose automation would allow the surgeon to be concentrated on handling the surgical instruments. This paper proposes a novel autonomous camera guidance approach for laparoscopic surgery. It is based on learning from demonstration (LfD), which has demonstrated its feasibility to transfer knowledge from humans to robots by means of multiple expert showings. The proposed approach has been validated using an experimental surgical robotic platform to perform peg transferring, a typical task that is used to train human skills in laparoscopic surgery. The results show that camera guidance can be easily trained by a surgeon for a particular task. Later, it can be autonomously reproduced in a similar way to one carried out by a human. Therefore, the results demonstrate that the use of learning from demonstration is a suitable method to perform autonomous camera guidance in collaborative surgical robotic platforms.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rodriguez y Baena, Ferdinando, et Brian Davies. « Robotic surgery : from autonomous systems to intelligent tools ». Robotica 28, no 2 (27 août 2009) : 163–70. http://dx.doi.org/10.1017/s0263574709990427.

Texte intégral
Résumé :
SUMMARYA brief history of robotic surgery is provided, which describes the transition from autonomous robots to hands-on systems that are under the direct control of the surgeon. An example of the latter is the Acrobot (for active-constraint robot) system used in orthopaedics, whilst soft-tissue surgery is illustrated by the daVinci telemanipulator system. Non-technological aspects of robotic surgery have often been a major impediment to their widespread clinical use. These are discussed in detail, together with the role of navigation systems, which are considered a major competitor to surgical robots. A detailed description is then given of a registration method for robots to achieve improved accuracy. Registration is a major source of error in robotic surgery, particularly in orthopaedics. The paper describes the design and clinical implementation of a novel method, coined the bounded registration method, applied to minimally invasive registration of the femur. Results of simulations which compare the performance of bounded registration with a standard implementation of the iterative closest point algorithm are also presented, alongside a description of their application in the Acrobot hands-on robot, used clinically for uni-condylar knee arthroplasty.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rosen, Jacob, et Ji Ma. « Autonomous Operation in Surgical Robotics ». Mechanical Engineering 137, no 09 (1 septembre 2015) : S15—S18. http://dx.doi.org/10.1115/1.2015-sep-9.

Texte intégral
Résumé :
The article focuses on developing an algorithm for automation based on stereo computer vision and dynamic registration in a surgical robotic context. The performance of the algorithm was further tested experimentally utilizing the block transfer task which corresponds to tissue manipulation as designed by Fundamentals of Laparoscopic Surgery (FLS). The surgical robotics field as a whole progresses towards the reduction of invasiveness limiting the trauma at the periphery of the surgical site and increase of semi-autonomous operation while positioning the surgeon as a decision maker rather than as an operator. The autonomous FLS task is implemented successfully and tested experimentally with the Raven II surgical robot system. The data indicate that the autonomous operational mode has better overall performance and limited tool-environment interaction compared with the human teleoperation mode. Surgeon’s intention may also be extracted from a database that may lead to seamless switching between the human operator and the autonomous system and in that sense, it may allow the autonomous algorithm to cope with more complex surgical environments.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bani, Mehrdad J. « Autonomous Camera Movement for Robotic-Assisted Surgery : A Survey ». International Journal of Advanced Engineering, Management and Science 3, no 8 (2017) : 829–36. http://dx.doi.org/10.24001/ijaems.3.8.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Prendergast, J. Micah, et Mark E. Rentschler. « Towards autonomous motion control in minimally invasive robotic surgery ». Expert Review of Medical Devices 13, no 8 (11 juillet 2016) : 741–48. http://dx.doi.org/10.1080/17434440.2016.1205482.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Autonomous robotic surgery"

1

Sneath, Evan B. « Artificial neural network training for semi-autonomous robotic surgery applications ». University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416231638.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sudhakaran, Nair Sudhesh. « A Virtual Framework for Semi-Autonomous Robotic Surgery using Real-Time Spatial Mapping ». University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378196074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tagliabue, Eleonora. « Patient-specific simulation for autonomous surgery ». Doctoral thesis, 2022. http://hdl.handle.net/11562/1061936.

Texte intégral
Résumé :
An Autonomous Robotic Surgical System (ARSS) has to interact with the complex anatomical environment, which is deforming and whose properties are often uncertain. Within this context, an ARSS can benefit from the availability of patient-specific simulation of the anatomy. For example, simulation can provide a safe and controlled environment for the design, test and validation of the autonomous capabilities. Moreover, it can be used to generate large amounts of patient-specific data that can be exploited to learn models and/or tasks. The aim of this Thesis is to investigate the different ways in which simulation can support an ARSS and to propose solutions to favor its employability in robotic surgery. We first address all the phases needed to create such a simulation, from model choice in the pre-operative phase based on the available knowledge to its intra-operative update to compensate for inaccurate parametrization. We propose to rely on deep neural networks trained with synthetic data both to generate a patient-specific model and to design a strategy to update model parametrization starting directly from intra-operative sensor data. Afterwards, we test how simulation can assist the ARSS, both for task learning and during task execution. We show that simulation can be used to efficiently train approaches that require multiple interactions with the environment, compensating for the riskiness to acquire data from real surgical robotic systems. Finally, we propose a modular framework for autonomous surgery that includes deliberative functions to handle real anatomical environments with uncertain parameters. The integration of a personalized simulation proves fundamental both for optimal task planning and to enhance and monitor real execution. The contributions presented in this Thesis have the potential to introduce significant step changes in the development and actual performance of autonomous robotic surgical systems, making them closer to applicability to real clinical conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dumpert, Jason James. « Towards supervised autonomous task completion using an in vivo surgical robot ». 2009. http://proquest.umi.com/pqdweb?did=1902406691&sid=4&Fmt=2&clientId=14215&RQT=309&VName=PQD.

Texte intégral
Résumé :
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2009.
Title from title screen (site viewed July 8, 2010). PDF text: xi, 200 p. : ill. (chiefly col.) ; 12 Mb. UMI publication number: AAT 3378560. Includes bibliographical references. Also available in microfilm and microfiche formats.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Autonomous robotic surgery"

1

Casals, Alícia. « Robots in surgery ». Dans Autonomous Robotic Systems, 222–34. London : Springer London, 1998. http://dx.doi.org/10.1007/bfb0030808.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dolph, Erica, Crystal Krause et Dmitry Oleynikov. « Future Robotic Systems : Microrobotics and Autonomous Robots ». Dans Robotic-Assisted Minimally Invasive Surgery, 329–35. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96866-7_40.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

López, Alfonso Montellano, Mojtaba Khazravi, Robert Richardson, Abbas Dehghani, Rupesh Roshan, Tomasz Liskiewicz, Ardian Morina, David G. Jayne et Anne Neville. « Locomotion Selection and Mechanical Design for a Mobile Intra-abdominal Adhesion-Reliant Robot for Minimally Invasive Surgery ». Dans Towards Autonomous Robotic Systems, 173–82. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23232-9_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tzemanaki, Antonia, Sanja Dogramadzi, Tony Pipe et Chris Melhuish. « Towards an Anthropomorphic Design of Minimally Invasive Instrumentation for Soft Tissue Robotic Surgery ». Dans Advances in Autonomous Robotics, 455–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32527-4_56.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jörg, Stefan, Rainer Konietschke et Julian Klodmann. « Classification of Modeling for Versatile Simulation Goals in Robotic Surgery ». Dans Frontiers of Intelligent Autonomous Systems, 357–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sengül, Ali, Attila Barsi, David Ribeiro et Hannes Bleuler. « Role of Holographic Displays and Stereovision Displays in Patient Safety and Robotic Surgery ». Dans Frontiers of Intelligent Autonomous Systems, 369–80. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Morandi, Angelica, Monica Verga, Elettra Oleari, Lorenza Gasperotti et Paolo Fiorini. « A Methodological Framework for the Definition of Patient Safety Measures in Robotic Surgery : The Experience of SAFROS Project ». Dans Frontiers of Intelligent Autonomous Systems, 381–90. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sandoval, Juan, Med Amine Laribi et Saïd Zeghloul. « Autonomous Robot-Assistant Camera Holder for Minimally Invasive Surgery ». Dans Robotics and Mechatronics, 465–72. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30036-4_42.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Raczkowsky, Jörg, Philip Nicolai, Björn Hein et Heinz Wörn. « System Concept for Collision-Free Robot Assisted Surgery Using Real-Time Sensing ». Dans Frontiers of Intelligent Autonomous Systems, 391–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Comparetto, Ciro, et Franco Borruto. « Applications of Robotics in Gynecological Surgery ». Dans Design and Control Advances in Robotics, 256–94. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5381-0.ch014.

Texte intégral
Résumé :
Robotic-assisted surgery is a branch of engineering that develops robotic machines that allow the operator to perform surgery by maneuvering, from a distance, a robot that is not completely autonomous but capable of performing controlled maneuvers. It is a technique that has recently come into use, even in selected centers, and represents a further step in the field of minimally invasive surgery (MIS). It has basically the same indications, but, at the moment, it is reserved for selected patients. Compared to traditional video-assisted surgery, it has some important differences. The surgeon is physically distant from the operating field and sits at a console, equipped with a monitor, from which, through a complex system, he controls the movement of the robotic arms. To these are fixed the various surgical tools—forceps, scissors, dissectors—which a team present at the operating table introduces into the cavity where the surgery is performed.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Autonomous robotic surgery"

1

Fiorini, P., D. Dall Alba, M. Ginesi, B. Maris, D. Meli, H. Nakawala et A. Roberti. « Challenges of Autonomous Robotic Surgery ». Dans The Hamlyn Symposium on Medical Robotics. The Hamlyn Centre, Faculty of Engineering, Imperial College London, 2019. http://dx.doi.org/10.31256/hsmr2019.53.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Francom, Matthew, Clinton Burns, Philip Repisky, Benjamin Medina, Alex Kinney, Erick Tello et Pinhas Ben-Tzvi. « Development of Autonomous Robotic Cataract Surgery Device ». Dans ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59643.

Texte intégral
Résumé :
The current rate of incidence of cataracts is increasing faster than treatment capacity, and an autonomous robotic system is proposed to mitigate this by carrying out cataract surgeries. The robot is composed of a three actuator RPS parallel mechanism in series with an actuated rail mounted roller that moves around the eye, and is designed to perform a simplified version of the extracapsular cataract surgery procedure autonomously. The majority of the design work has been completed, and it is projected that the system will have a tool accuracy of 0.167 mm, 0.141 mm, and 0.290 mm in the x, y, and z directions, respectively. Such accuracies are within the acceptable errors of 1.77mm in the x and y directions of the horizontal plane, as well as 1.139 mm in the vertical z direction. Tracking of the tool when moving at 2 mm/s should give increments of 0.08 mm per frame, ensuring constant visual feedback. Future work will involve completing construction and testing of the device, as well as adding the capability to perform a more comprehensive surgical procedure if time allows.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sneath, Evan, Christopher Korte et Grant Schaffner. « Semi-Autonomous Robotic Surgery for Space Exploration Missions ». Dans AIAA Scitech 2020 Forum. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Connolly, Laura, Anton Deguet, Kyle Sunderland, Andras Lasso, Tamas Ungi, John F. Rudan, Russell H. Taylor, Parvin Mousavi et Gabor Fichtinger. « An Open-Source Platform for Cooperative, Semi-Autonomous Robotic Surgery ». Dans 2021 IEEE International Conference on Autonomous Systems (ICAS). IEEE, 2021. http://dx.doi.org/10.1109/icas49788.2021.9551149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ginesi, Michele, Daniele Meli, Andrea Roberti, Nicola Sansonetto et Paolo Fiorini. « Autonomous task planning and situation awareness in robotic surgery ». Dans 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Col, Tommaso Da, Andrea Mariani, Anton Deguet, Arianna Menciassi, Peter Kazanzides et Elena De Momi. « SCAN : System for Camera Autonomous Navigation in Robotic-Assisted Surgery ». Dans 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Le, Hanh N. D., Justin D. Opfermann, Michael Kam, Sudarshan Raghunathan, Hamed Saeidi, Simon Leonard, Jin U. Kang et Axel Krieger. « Semi-Autonomous Laparoscopic Robotic Electro-Surgery with a Novel 3D Endoscope ». Dans 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018. http://dx.doi.org/10.1109/icra.2018.8461060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nguyen, Ngoc Duy, Thanh Nguyen, Saeid Nahavandi, Asim Bhatti et Glenn Guest. « Manipulating Soft Tissues by Deep Reinforcement Learning for Autonomous Robotic Surgery ». Dans 2019 IEEE International Systems Conference (SysCon). IEEE, 2019. http://dx.doi.org/10.1109/syscon.2019.8836924.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sophia, Strasser, et Kucera Markus. « Artificial intelligence in safety-relevant embedded systems - on autonomous robotic surgery ». Dans 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE, 2021. http://dx.doi.org/10.1109/iiai-aai53430.2021.00089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tagliabue, Eleonora, Daniele Meli, Diego Dall'Alba et Paolo Fiorini. « Deliberation in autonomous robotic surgery : a framework for handling anatomical uncertainty ». Dans 2022 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2022. http://dx.doi.org/10.1109/icra46639.2022.9811820.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie