Articles de revues sur le sujet « Automated Rendezvous and Docking »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Automated Rendezvous and Docking.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Automated Rendezvous and Docking ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kemble, Stephen. « Automated Rendezvous and Docking of Spacecraft ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 221, no 6 (juin 2007) : 997. http://dx.doi.org/10.1177/095441000722100603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kawano, Isao, Masaaki Mokuno, Hiroshi Koyama et Taichi Nakamura. « Space robot. Guidance and Control for the Automatic Rendezvous Docking Technology. Engineering Test Satellite VII Rendezvous Docking System. » Journal of the Robotics Society of Japan 14, no 7 (1996) : 935–39. http://dx.doi.org/10.7210/jrsj.14.935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

HU, Jun, Hao ZHANG, YongChun XIE et HaiXia HU. « Automatic control system design of Shenzhou spacecraft for rendezvous and docking ». SCIENTIA SINICA Technologica 44, no 1 (1 janvier 2014) : 12–19. http://dx.doi.org/10.1360/092013-1263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhao, Xia, Quan Gan et Tian Hua Lin. « Multi-Slide-Mode Control for the Homing Phase of Automatic Rendezvous and Docking ». Applied Mechanics and Materials 336-338 (juillet 2013) : 599–603. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.599.

Texte intégral
Résumé :
Multi-Slide-Mode Control (MSMC) is proposed to decrease energy consumption for homing phase of automatic rendezvous and docking (AR&D). The energy consumption is an important target in homing phase. MSMC is developed from sliding mode control (SMC) and its advantage is energy saving. The switching function of MSMC is piecewise, which is named as multi-sliding-mode. The control system is simulated and the results show the control effects are in accord with prospects.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Pan et Ma. « Real-Time Docking Ring Detection Based on the Geometrical Shape for an On-Orbit Spacecraft ». Sensors 19, no 23 (28 novembre 2019) : 5243. http://dx.doi.org/10.3390/s19235243.

Texte intégral
Résumé :
Docking ring is a circular hatch of spacecraft that allows servicing spacecraft to dock in various space missions. The detection of the ring is greatly beneficial to automatic capture, rendezvous and docking. Based on its geometrical shape, we propose a real-time docking ring detection method for on-orbit spacecraft. Firstly, we extract arcs from the edge mask and classify them into four classes according to edge direction and convexity. By developing the arc selection strategy, we select a combination of arcs possibly belonging to the same ellipse, and then estimate its parameters via the least squares fitting technique. Candidate ellipses are validated according to the fitness of the estimation with the actual edge pixels. The experiments show that our method is superior to the state-of-the-art methods, and can be used in real time application. The method can also be extended to other applications.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Xu, Haojian. « Wigbert Fehse, Automated Rendezvous and Docking of Spacecraft, Cambridge University Press, Cambridge, ISBN : 0-521-82492-3, 2003 (price : $ 120, pp. 495) ». Automatica 41, no 7 (juillet 2005) : 1295–97. http://dx.doi.org/10.1016/j.automatica.2005.02.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Zhiming, Zhouhuai Luo, Yunhua Wu, Wei Xue et Wenxing Li. « Research on High-Precision Attitude Control of Joint Actuator of Three-Axis Air-Bearing Test Bed ». Journal of Control Science and Engineering 2021 (25 mars 2021) : 1–11. http://dx.doi.org/10.1155/2021/5582541.

Texte intégral
Résumé :
Three-axis air-bearing test bed is important semiphysical simulation equipment for spacecraft, which can simulate spacecraft attitude control, rendezvous, and docking with high confidence. When the three-axis air-bearing table is maneuvering at a large angle, if it is only controlled by the flywheel, it will cause the problems of slow maneuvering speed and high energy consumption, and when the external interference torque becomes large, the control accuracy will decline. A combined actuator including flywheel, air-conditioner thruster, and automatic balancing device is designed, and a hierarchical saturation PD control algorithm is proposed to improve the control accuracy and anti-interference ability of the three-axis air-bearing test bed. Finally, the mathematical simulation of the proposed control algorithm is carried out, and the physical verification is carried out on the three-axis air-bearing test bed. The results show that the control algorithm has higher control accuracy than the traditional control algorithm, and the control accuracy is better than 0.1 ∘ and basically meets the attitude control requirements of the ground simulation in-orbit satellite.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hou, Shu Ping, Xiao Yan Wang et Jian Nan Zhang. « A Method of Rendezvous and Docking Based on the 6-DOF Parallel Mechanism in Subsea Environment ». Applied Mechanics and Materials 574 (juillet 2014) : 651–57. http://dx.doi.org/10.4028/www.scientific.net/amm.574.651.

Texte intégral
Résumé :
According to the condition of the docking of the oceanic space with low visibility,strong sea current and large declining attitude, the rendezvous and docking device based on the 6-DOF parallel mechanism is proposed. A method of the rendezvous and docking operation is discussed between subsea vehicle and deep-sea space station. The mathematic model of the docking device is established after analyzing the structural characteristics and operational principle of subsea vehicle docking device, the momentum of the docking device. In order to satisfy the need of the subsea docking, a moving path is brought forward for the docking device. The impacting analysis of the docking device is conducted under its docking trait, which shows that the docking device could achieve the rendezvous and docking in case of the serious condition in subsea environment.
Styles APA, Harvard, Vancouver, ISO, etc.
9

KOYAMA, Hiroshi. « Rendezvous & ; Docking of Spacecraft ». Journal of the Society of Mechanical Engineers 110, no 1066 (2007) : 704–5. http://dx.doi.org/10.1299/jsmemag.110.1066_704.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pairot, J. M., M. Frezet, J. Tailhades, W. Fehse, A. Tobias et A. Getzschmann. « European rendezvous and docking system ». Acta Astronautica 28 (août 1992) : 31–42. http://dx.doi.org/10.1016/0094-5765(92)90007-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Mokuno, M., I. Kawano et T. Suzuki. « In-orbit demonstration of rendezvous laser radar for unmanned autonomous rendezvous docking ». IEEE Transactions on Aerospace and Electronic Systems 40, no 2 (avril 2004) : 617–26. http://dx.doi.org/10.1109/taes.2004.1310009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Grishin, Vladimir A. « Corner Retroreflector in Rendezvous and Docking Systems ». Journal of Spacecraft and Rockets 56, no 6 (novembre 2019) : 1862–65. http://dx.doi.org/10.2514/1.a34510.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kluever, Craig A. « Feedback Control for Spacecraft Rendezvous and Docking ». Journal of Guidance, Control, and Dynamics 22, no 4 (juillet 1999) : 609–11. http://dx.doi.org/10.2514/2.7636.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

MOU, XiaoGang, Lei SHI, YueXin GUAN, JingHai WANG et Ning TANG. « Ground test technology of rendezvous and docking ». SCIENTIA SINICA Technologica 44, no 1 (1 janvier 2014) : 27–33. http://dx.doi.org/10.1360/092013-1261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Youn, Hoya, et Henzeh Leeghim. « Rendezvous and Docking Simulations Considering J2 Perturbation ». Journal of Space Technology and Applications 2, no 4 (novembre 2022) : 245–56. http://dx.doi.org/10.52912/jsta.2022.2.4.245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhang, Yuan, Junpeng Shao, Jingwei Zhang et Enwen Zhou. « Attitude Error and Contact Influencing Characteristic Analysis for a Composite Docking Test Platform ». Applied Sciences 12, no 23 (25 novembre 2022) : 12093. http://dx.doi.org/10.3390/app122312093.

Texte intégral
Résumé :
The design and analysis of a new type of three-jaw docking mechanism capable of space rendezvous and docking are presented. In addition, a composite docking test platform capable of both vertical and horizontal docking is created. On the basis of kinematics theory, a global coordinate system is built, and the attitude error is assessed based on the error angle. On the basis of dynamic theory, the multi-body dynamic differential equation of the composite docking platform is derived, and the impact-induced interaction state of the locking pawls is studied. The simulation software is then used to jointly simulate the test platform and the docking mechanism under the two conditions of frontal and oblique docking, and to analyze the attitude law caused by the change of docking impact force. This provides a solid foundation for future research into the application of space rendezvous theory to small spacecraft.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yu, Dan, Peng Liu, Dezhi Qiao et Xianglong Tang. « A Safety Prediction System for Lunar Orbit Rendezvous and Docking Mission ». Algorithms 14, no 6 (21 juin 2021) : 188. http://dx.doi.org/10.3390/a14060188.

Texte intégral
Résumé :
In view of the characteristics of the guidance, navigation and control (GNC) system of the lunar orbit rendezvous and docking (RVD), we design an auxiliary safety prediction system based on the human–machine collaboration framework. The system contains two parts, including the construction of the rendezvous and docking safety rule knowledge base by the use of machine learning methods, and the prediction of safety by the use of the base. First, in the ground semi-physical simulation test environment, feature extraction and matching are performed on the images taken by the navigation surveillance camera. Then, the matched features and the rendezvous and docking deviation are used to form training sample pairs, which are further used to construct the safety rule knowledge base by using the decision tree method. Finally, the safety rule knowledge base is used to predict the safety of the subsequent process of the rendezvous and docking based on the current images taken by the surveillance camera, and the probability of success is obtained. Semi-physical experiments on the ground show that the system can improve the level of intelligence in the flight control process and effectively assist ground flight controllers in data monitoring and mission decision-making.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Li, Xuehui, Zhibin Zhu et Shenmin Song. « Non-cooperative autonomous rendezvous and docking using artificial potentials and sliding mode control ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 233, no 4 (2 janvier 2018) : 1171–84. http://dx.doi.org/10.1177/0954410017748988.

Texte intégral
Résumé :
In this paper, the problem of autonomous rendezvous and docking with a non-cooperative target spacecraft is studied. A coupled translational and rotational dynamics of the spacecraft is used, where the rotation matrix is used to represent the attitude of spacecraft to overcome the drawbacks related to the unwinding. An asymptotically stable autonomous rendezvous and docking collision-free controller is proposed based on a novel designed sliding surface. Then, a new nonsingular terminal sliding surface is given, based on which the developed autonomous rendezvous and docking collision-free controller can make the tracking errors converge into a small bounded area near the origin in a finite time. Using artificial potential function and virtual obstacles model established based on cissoid, both controllers ensure the chaser spacecraft strictly remains in the safety area to avoid the collision with the target spacecraft. The effectiveness of the proposed controllers is demonstrated by numerical simulation.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Wu, Guan-qun, Shen-Min Song et Jing-guang Sun. « Finite-time antisaturation control for spacecraft rendezvous and docking with safe constraint ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 233, no 6 (8 mai 2018) : 2170–84. http://dx.doi.org/10.1177/0954410018774678.

Texte intégral
Résumé :
This thesis studies control schemes for spacecraft safe rendezvous and docking considering input saturation. Based on the spacecraft attitude and orbit coupled model, by using fast terminal sliding mode method, a finite-time antisaturation controller and an adaptive finite-time antisaturation controller are designed for the situations of known and unknown upper bound of external disturbances, respectively. In controller design, a novel continuous and differentiable collision avoidance potential function is presented to restrict motion area and guarantee the safety of the spacecrafts. Meanwhile, the saturation function and auxiliary system are introduced to deal with the input saturation. Lyapunov theory is utilized to prove that the error states of the system under the proposed controllers are finite-time convergent, and the rendezvous and docking without collision can be accomplished. The numerical simulation results indicate that the chaser can realize the rendezvous and docking with input saturation and safe constraint, which can further illustrate the effectiveness of the designed controllers.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Grishin, Vladimir A. « Bias of Distance Measurement in Rendezvous and Docking ». Journal of Spacecraft and Rockets 56, no 6 (novembre 2019) : 1857–61. http://dx.doi.org/10.2514/1.a34493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kawano, Isao, Masaaki Mokuno, Takashi Suzuki, Hiroshi Koyama et Makoto Kunugi. « Result of Rendezvous Docking Experiment of ETS-VII. » JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 50, no 578 (2002) : 95–102. http://dx.doi.org/10.2322/jjsass.50.95.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Gryaznov, N. A., V. I. Kuprenyuk et E. N. Sosnov. « Laser information system for spacecraft rendezvous and docking ». Journal of Optical Technology 82, no 5 (1 mai 2015) : 286. http://dx.doi.org/10.1364/jot.82.000286.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Eatherley, G. J., et E. M. Petriu. « A fuzzy controller for vehicle rendezvous and docking ». IEEE Transactions on Instrumentation and Measurement 44, no 3 (juin 1995) : 810–14. http://dx.doi.org/10.1109/19.387339.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

KAWANO, Isao. « Rendezvous Docking Technology to realize On-orbit Service ». Proceedings of the JSME annual meeting 2002.1 (2002) : 281–82. http://dx.doi.org/10.1299/jsmemecjo.2002.1.0_281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Strietzel, Roland. « A Rendezvous and Docking Sensor Using a Videometer ». IFAC Proceedings Volumes 37, no 6 (juin 2004) : 753–58. http://dx.doi.org/10.1016/s1474-6670(17)32267-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Liang, Jianxun, et Ou Ma. « Angular velocity tracking for satellite rendezvous and docking ». Acta Astronautica 69, no 11-12 (décembre 2011) : 1019–28. http://dx.doi.org/10.1016/j.actaastro.2011.07.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Capello, Elisa, Elisabetta Punta, Fabrizio Dabbene, Giorgio Guglieri et Roberto Tempo. « Sliding-Mode Control Strategies for Rendezvous and Docking Maneuvers ». Journal of Guidance, Control, and Dynamics 40, no 6 (juin 2017) : 1481–87. http://dx.doi.org/10.2514/1.g001882.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Hashizume, Yuji, Fumiaki Imado et Akira Murota. « A Study on Rendezvous Docking Control of the HOPE ». JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 52, no 611 (2004) : 541–48. http://dx.doi.org/10.2322/jjsass.52.541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

FUKAO, Takanori, et Norihiko ADACHI. « Rendezvous Docking of a Spacecraft Based on Adaptive Control ». Transactions of the Japan Society of Mechanical Engineers Series C 71, no 702 (2005) : 573–80. http://dx.doi.org/10.1299/kikaic.71.573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ui, Kyoichi, Saburo Matunaga, Shin Satori et Tomohiro Ishikawa. « Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase ». Microgravity - Science and Technology 17, no 3 (septembre 2005) : 56–63. http://dx.doi.org/10.1007/bf02872088.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

LI, ZUOXUN, et KAI ZHANG. « STOCHASTIC MODEL PREDICTIVE CONTROL FOR SPACECRAFT RENDEZVOUS AND DOCKING VIA A DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH ». ANZIAM Journal 63, no 1 (janvier 2021) : 39–57. http://dx.doi.org/10.1017/s1446181121000031.

Texte intégral
Résumé :
AbstractA stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded disturbance. In particular, we only assume that the mean and variance information of the disturbance is available. In other words, the probability density function of the disturbance distribution is not fully known. Obstacle avoidance is considered during the rendezvous phase. Line-of-sight cone, attitude control bandwidth, and thrust direction constraints are considered during the docking phase. A distributionally robust optimization based algorithm is then proposed by reformulating the SMPC problem into a convex optimization problem. Numerical examples show that the proposed method improves the existing model predictive control based strategy and the robust model predictive control based strategy in the presence of disturbance.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zuoxun, Li, et Kai Zhang. « Stochastic model predictive control for spacecraft rendezvous and docking via a distributionally robust optimization approach ». ANZIAM Journal 63 (30 juillet 2021) : 39–57. http://dx.doi.org/10.21914/anziamj.v63.15509.

Texte intégral
Résumé :
A stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded disturbance. In particular, we only assume that the mean and variance information of the disturbance is available. In other words, the probability density function of the disturbance distribution is not fully known. Obstacle avoidance is considered during the rendezvous phase. Line-of-sight cone, attitude control bandwidth, and thrust direction constraints are considered during the docking phase. A distributionally robust optimization based algorithm is then proposed by reformulating the SMPC problem into a convex optimization problem. Numerical examples show that the proposed method improves the existing model predictive control based strategy and the robust model predictive control based strategy in the presence of disturbance. doi:10.1017/S1446181121000031
Styles APA, Harvard, Vancouver, ISO, etc.
33

Pan, Hui, Jian Yu Huang et Shi Yin Qin. « Relative Pose Estimation under Monocular Vision in Rendezvous and Docking ». Applied Mechanics and Materials 433-435 (octobre 2013) : 799–805. http://dx.doi.org/10.4028/www.scientific.net/amm.433-435.799.

Texte intégral
Résumé :
Autonomous rendezvous and docking (ARD) plays a very important role in planned space programs such as on-orbit construction and assembly, refueling of satellites, repairing or rescuing failed satellites, active removal of space debris, autonomous re-supply and crew exchange of space stations, and so on. However,the success of ARD rests with the estimation accuracy and efficiency of relative pose among various spacecraft in rendezvous and docking. In this paper, a high accuracy and efficiency estimation algorithm of relative pose of cooperative space targets is presented based on monocular vision imaging, in which a modified gravity model approach and multiple targets tracking methods are employed to improve the accuracy of feature extraction and enhance the estimation efficiency, moreover the Levenberg-Marquardt method (LMM) is used to achieve a well global convergence. The comprehensive experiment results demonstrate its outstanding predominance in estimation accuracy and efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Polites, Michael E. « Technology of Automated Rendezvous and Capture in Space ». Journal of Spacecraft and Rockets 36, no 2 (mars 1999) : 280–91. http://dx.doi.org/10.2514/2.3443.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lea, Robert N. « Automated space vehicle control for rendezvous proximity operations ». Telematics and Informatics 5, no 3 (janvier 1988) : 179–85. http://dx.doi.org/10.1016/s0736-5853(88)80022-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kim, Kiduck, Hae-Dong Kim et Dong-Hyun Cho. « Scenario Design for Verification of Rendezvous Docking Technology for Nanosatellite ». Journal of Space Technology and Applications 2, no 1 (février 2022) : 30–40. http://dx.doi.org/10.52912/jsta.2022.2.1.30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lü Bo, 吕博, 刘伟奇 Liu Weiqi, 张大亮 Zhang Daliang, 康玉思 Kang Yusi et 冯睿 Feng Rui. « Optical System Design of Sensor for Space Rendezvous and Docking ». Chinese Journal of Lasers 40, no 12 (2013) : 1216003. http://dx.doi.org/10.3788/cjl201340.1216003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wilde, Markus, Andreas Fleischner et Sean C. Hannon. « Utility of Head-Up Displays for Teleoperated Rendezvous and Docking ». Journal of Aerospace Information Systems 11, no 5 (mai 2014) : 280–99. http://dx.doi.org/10.2514/1.i010104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

YASUDA, Kuniharu. « Rendezvous and Docking Simulation for the Engineering Test Satellite VII. » Journal of the Japan Society for Aeronautical and Space Sciences 42, no 491 (1994) : 739–45. http://dx.doi.org/10.2322/jjsass1969.42.739.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

OKANUMA, Toru, et Jun-ichi MIYASHITA. « Rendezvous-Docking Operation Test System Future Vision of Aerospace Industry ». Journal of the Japan Society for Aeronautical and Space Sciences 44, no 505 (1996) : 131–34. http://dx.doi.org/10.2322/jjsass1969.44.131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zhou, Jian-yong, Jian-ping Zhou et Zi-cheng Jiang. « Design and Validation of Novel Teleoperation Rendezvous and Docking System ». Journal of Aerospace Engineering 27, no 5 (septembre 2014) : 04014017. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zhang, Ya-Kun, Jian-Ping Zhou, Hai-Yang Li, Tao Li et Rui-Xue Huang. « Shared Control of Teleoperation Rendezvous and Docking in Lunar Orbit ». Journal of Aerospace Engineering 29, no 6 (novembre 2016) : 04016043. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000637.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Milgram, P., et P. H. Wewerinke. « Control Theoretic Analysis of Human Operator Mediated Rendezvous and Docking ». IFAC Proceedings Volumes 18, no 10 (septembre 1985) : 153–58. http://dx.doi.org/10.1016/s1474-6670(17)60213-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Li, Shiqi, Wei Chen, Yan Fu, Chunhui Wang, Yu Tian et Zhiqiang Tian. « Modeling human behavior in manual control Rendezvous and Docking task ». Cognition, Technology & ; Work 18, no 4 (29 septembre 2016) : 745–60. http://dx.doi.org/10.1007/s10111-016-0388-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Xin, ZHENG, LIU Qing-hui, WU Ya-jun, MA Jun-wu et DENG Tao. « Study on VLBI Differential Delay of Lunar Rendezvous and Docking ». Chinese Astronomy and Astrophysics 44, no 3 (juillet 2020) : 356–70. http://dx.doi.org/10.1016/j.chinastron.2020.08.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Crane, Jason R., Christopher W. T. Roscoe, Bharani P. Malladi, Giulia Zucchini, Eric Butcher, Ricardo G. Sanfelice et Islam I. Hussein. « Hybrid Control for Autonomous Spacecraft Rendezvous Proximity Operations and Docking ». IFAC-PapersOnLine 51, no 12 (2018) : 94–99. http://dx.doi.org/10.1016/j.ifacol.2018.07.094.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Hao, Dezhu Gong, Tongling Fu, Huadong He et Bo Li. « Motion Simulator System for Rendezvous and Docking Based on RTX ». IOP Conference Series : Materials Science and Engineering 563 (9 août 2019) : 032017. http://dx.doi.org/10.1088/1757-899x/563/3/032017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

HU, Jun, YongChun XIE et HaiXia HU. « Shenzhou spacecraft rendezvous &amp ; docking manual control system design ». SCIENTIA SINICA Technologica 44, no 1 (1 janvier 2014) : 34–40. http://dx.doi.org/10.1360/092013-1262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Luo, Yuan, Yan He, Min Gao, Cuiyun Zhou, Huaguo Zang, Linjun Lei, Kedi Xie et al. « Fiber laser-based scanning lidar for space rendezvous and docking ». Applied Optics 54, no 9 (19 mars 2015) : 2470. http://dx.doi.org/10.1364/ao.54.002470.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yang, Yaguang. « Coupled orbital and attitude control in spacecraft rendezvous and soft docking ». Proceedings of the Institution of Mechanical Engineers, Part G : Journal of Aerospace Engineering 233, no 9 (9 août 2018) : 3109–19. http://dx.doi.org/10.1177/0954410018792991.

Texte intégral
Résumé :
This paper discusses coupled orbital and attitude control in spacecraft rendezvous and soft docking. The target spacecraft orbit can be either circular or elliptic. The high-fidelity model for this problem is intrinsically a nonlinear system but can be viewed as a linear time-varying system. Therefore, a model predictive control-based design is proposed to deal with the time-varying feature of the problem. A robust pole assignment method is used in the model predictive control-based design because of the following merits and/or considerations: (a) no oscillation crossing the horizontal line for the relative position and relative attitude (between the target and the chaser spacecraft) to achieve soft docking by placing all closed-loop poles in the negative real axis of the complex plan, which will avoid collision between the target and the chaser in the docking stage, (b) fast online computation, (c) measurement and control error tolerance, and (d) disturbance rejection. This paper will discuss these considerations and merits and use some design examples to demonstrate that the desired performance is indeed achieved.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie