Littérature scientifique sur le sujet « Auroral electrons »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Auroral electrons ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Auroral electrons"
Kozelov, Boris V., et Elena E. Titova. « Conjunction Ground Triangulation of Auroras and Magnetospheric Processes Observed by the Van Allen Probe Satellite near 6 Re ». Universe 9, no 8 (29 juillet 2023) : 353. http://dx.doi.org/10.3390/universe9080353.
Texte intégralVichare, Geeta, Ankush Bhaskar, Rahul Rawat, Virendra Yadav, Wageesh Mishra, Dorje Angchuk et Anand Kumar Singh. « Low-latitude Auroras : Insights from 2023 April 23 Solar Storm ». Astrophysical Journal 977, no 2 (1 décembre 2024) : 171. https://doi.org/10.3847/1538-4357/ad8dd3.
Texte intégralSamara, M., R. G. Michell, K. Asamura, M. Hirahara, D. L. Hampton et H. C. Stenbaek-Nielsen. « Ground-based observations of diffuse auroral structures in conjunction with Reimei measurements ». Annales Geophysicae 28, no 3 (26 mars 2010) : 873–81. http://dx.doi.org/10.5194/angeo-28-873-2010.
Texte intégralYahnin, A. G., V. A. Sergeev, B. B. Gvozdevsky et S. Vennerstrøm. « Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles ». Annales Geophysicae 15, no 8 (31 août 1997) : 943–58. http://dx.doi.org/10.1007/s00585-997-0943-z.
Texte intégralBlixt, E. M., M. J. Kosch et J. Semeter. « Relative drift between black aurora and the ionospheric plasma ». Annales Geophysicae 23, no 5 (27 juillet 2005) : 1611–21. http://dx.doi.org/10.5194/angeo-23-1611-2005.
Texte intégralSergienko, T., I. Sandahl, B. Gustavsson, L. Andersson, U. Brändström et Å. Steen. « A study of fine structure of diffuse aurora with ALIS-FAST measurements ». Annales Geophysicae 26, no 11 (21 octobre 2008) : 3185–95. http://dx.doi.org/10.5194/angeo-26-3185-2008.
Texte intégralBlomberg, L. G., J. A. Cumnock, I. I. Alexeev, E. S. Belenkaya, S. Yu Bobrovnikov et V. V. Kalegaev. « Transpolar aurora : time evolution, associated convection patterns, and a possible cause ». Annales Geophysicae 23, no 5 (28 juillet 2005) : 1917–30. http://dx.doi.org/10.5194/angeo-23-1917-2005.
Texte intégralKong, Wanqiu, Zejun Hu, Jiaji Wu, Tan Qu et Gwanggil Jeon. « A Comparative Study of Estimating Auroral Electron Energy from Ground-Based Hyperspectral Imagery and DMSP-SSJ5 Particle Data ». Remote Sensing 12, no 14 (14 juillet 2020) : 2259. http://dx.doi.org/10.3390/rs12142259.
Texte intégralLummerzheim, D., et J. Lilensten. « Electron transport and energy degradation in the ionosphere : evaluation of the numerical solution, comparison with laboratory experiments and auroral observations ». Annales Geophysicae 12, no 10/11 (31 août 1994) : 1039–51. http://dx.doi.org/10.1007/s00585-994-1039-7.
Texte intégralMilan, S. E., A. Grocott, C. Forsyth, S. M. Imber, P. D. Boakes et B. Hubert. « A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery : open magnetic flux control of substorm intensity ». Annales Geophysicae 27, no 2 (11 février 2009) : 659–68. http://dx.doi.org/10.5194/angeo-27-659-2009.
Texte intégralThèses sur le sujet "Auroral electrons"
Schroeder, James William Ryan. « Exploring the Alfvén-wave acceleration of auroral electrons in the laboratory ». Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5846.
Texte intégralHénaff, Gwendal. « Modeling, development, and test of a 3D-printed plasma camera for in-situ measurements in space ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX139.
Texte intégralKey phenomena governing the dynamics of space plasmas - including charged particle acceleration, magnetic reconnection and the turbulent dissipation of electromagnetic energy - are multi-scale in nature. In order to understand their role in the Sun-Earth relationship, whether in the solar wind, at the magnetopause or in the Earth's magnetosphere, it is essential to develop instrumentation that is both compact and high-performance, enabling the deployment of satellite constellations. However, the reference instruments used to measure the energy distribution of charged particles have a limited field of view. Adding electrostatic deflection systems circumvents this limitation, with the disadvantage of making these instruments heavier, slowing down their measurement rate, and therefore reducing their performance. In this case, more sensors are needed to achieve the desired performance, impacting satellite size and, ultimately, the number of satellites that can be deployed. The characterization of charged particle fluxes for studying space weather, conducted using compact instruments with a limited field of view, faces the same limitations.The first step in this research project was to develop a method for designing a new range of plasma spectrometers that overcome these limitations. These spectrometers are based on an innovative toroidal topology, offering an instantaneous hemispherical field of view that eliminates the need for electrostatic deflectors. Their planar detection system makes them true plasma cameras. The methods developed have enabled the numerical generation and characterization by simulating a wide range of plasma cameras with different angular resolutions that could meet these various scientific needs.A model instrument was then designed to meet the challenges of space weather applications, with an energy range of up to 22 keV. It features dual ion/electron detection capability, avoiding the need for separate sensors for electron and ion measurements. Intended for nanosatellites, it has a mass of 1.8 kg and a diameter of 19 cm. A 3D-printing manufacturing process and functionalization of the material have been defined and implemented. An ion/electron conversion system using carbon foils, enabling dual use of this plasma camera, has also been developed. An instrument integrating the electrostatic optics and a simplified dual detection system has been tested under an electron beam to obtain precise experimental responses in terms of energy and angle. The beam tests showed behavior very close to the simulation, reinforcing confidence in the numerical modeling. The principle of the conversion system was tested under electron and ion beams. One of the short-term prospects of this thesis is the development, with the support of CNES, of a complete model of this plasma camera, with the aim to demonstrate in orbit the performances of this instrument dedicated to space weather applications
Ahlberg, Carl Daniel, et Wera Mauritz. « Modeling Far Ultraviolet Auroral Ovals at Ganymede ». Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239382.
Texte intégralWerden, Scott H. « Energetic electron precipitation in the aurora as determined by X-ray imaging / ». Thesis, Connect to this title online ; UW restricted, 1988. http://hdl.handle.net/1773/6826.
Texte intégralChua, Damien Han. « Ionospheric influence on the global characteristics of electron precipitation during auroral substorms / ». Thesis, Connect to this title online ; UW restricted, 2002. http://hdl.handle.net/1773/6740.
Texte intégralWilliams, John Denis. « An investigation into pulsating aurora / ». Thesis, Connect to this title online ; UW restricted, 2002. http://hdl.handle.net/1773/6820.
Texte intégralKopf, Andrew James. « A multi-instrument study of auroral hiss at Saturn ». Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/692.
Texte intégralCardoso, Flavia Reis. « Auroral electron precipitating energy during magnetic storms with peculiar long recovery phase features ». Instituto Nacional de Pesquisas Espaciais, 2010. http://urlib.net/sid.inpe.br/mtc-m19/2010/11.06.23.26.
Texte intégralAurora, light emissions generated by collisions between energetic electrons and atmospheric particles, is often seen in the polar region. Although much is known about the aurora, there are still many questions unanswered. For example, it is not well known what is the source of the energetic particles or by what processes the particles are energized. Understanding the behavior of the aurora is an important scientific problem because it provides information about the processes occurring during the solar wind-magnetosphere interaction. The auroral zone is significantly affected by magnetic storms and substorms. Occasionally, magnetic storms exhibit a long recovery phase which can last for several days. During such events, the auroral electrojet can display high-intensity, long duration activity. These events are known as HILDCAA events (High Intensity Long Duration Continuous AE Activity). The power input to the magnetosphere/ionosphere carried by precipitating electrons is an important parameter which can be estimated by the Ultraviolet Imager (UVI) on board the Polar satellite. This instrument monitors the spatial morphology and temporal evolution of the aurora in the far ultraviolet range in both sunlight and darkness. Applying the necessary instrument corrections and the dayglow removal, it is possible to evaluate the energy coming into the auroral zone. Our goal is to obtain quantitative information about the energy source for magnetic storms with long (LRP) and short (SRP) recovery phases by estimating the amount of precipitation energy input. Precipitation energy has been found highly variable for LRP. A significant energy input during long storm recovery phases implies additional energy source to maintain the magnetic activity in the auroral electrojet which is believed to be related to the fluctuating solar wind magnetic field and velocity. On the other hand, IMF (interplanetary magnetic field) remained southward for a while in SRP events. All the results suggest LRP could be a consequence of a solar wind driven system and SRP would be associated to an energy unloading process.
Fillingim, Matthew Owen. « Kinetic processes in the plasma sheet observed during auroral activity / ». Thesis, Connect to this title online ; UW restricted, 2002. http://hdl.handle.net/1773/6824.
Texte intégralWykes, William John. « Enhanced pitch angle diffusion due to stochastic electron-whistler wave-particle interactions ». Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367162.
Texte intégralLivres sur le sujet "Auroral electrons"
Calvert, W. Uji lectures on the aurora : A theory of the aurora based upon electron scattering into the loss cone by the cyclotron maser instability. Iowa City, Iowa : W. Calvert, 1997.
Trouver le texte intégralLazutin, Leonid L. X-Ray Emission of Auroral Electrons and Magnetospheric Dynamics. Sous la direction de Theodore J. Rosenberg. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70398-0.
Texte intégralUnited States. National Aeronautics and Space Administration., dir. Comment on "Bremsstrahlung X rays from Jovian auroral electrons". San Antonio, Tex : Southwest Research Institute, 1991.
Trouver le texte intégral1953-, Snyder David B., Jongeward Gary A et United States. National Aeronautics and Space Administration., dir. Auroral interactions with ISSA. [Washington, DC] : National Aeronautics and Space Administration, 1994.
Trouver le texte intégralD, Morgan D., et United States. National Aeronautics and Space Administration., dir. Perpendicular electron heating by absorption of auroral kilometric radiation. [Washington, DC : National Aeronautics and Space Administration, 1994.
Trouver le texte intégralWaite, J. H. The Jovian aurora : Electron or ion precipitation ? [Washington, DC ? : National Aeronautics and Space Administration, 1988.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. A comprehensive analysis of electron conical distributions from multi-satellite databases : Final report. Iowa City, IA : University of Iowa, 1994.
Trouver le texte intégralR, Sharber J., et United States. National Aeronautics and Space Administration., dir. An electron sensor for the Pulsating Aurora 2 (PULSAUR 2) Mission. San Antonio, TX : Southwest Research Institute, 1996.
Trouver le texte intégralH, Waite J., et United States. National Aeronautics and Space Administration., dir. Superthermal electron processes in the upper atmosphere of Uranus : Aurora and electroglow. [Washington, DC ? : National Aeronautics and Space Administration, 1988.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. A study of the spatial scales of discrete polar auroral arcs. El Segundo, Calif : Aerospace Corp., 1989.
Trouver le texte intégralChapitres de livres sur le sujet "Auroral electrons"
Chaston, C. C. « ULF Waves and Auroral Electrons ». Dans Magnetospheric ULF Waves : Synthesis and New Directions, 239–57. Washington, D. C. : American Geophysical Union, 2006. http://dx.doi.org/10.1029/169gm16.
Texte intégralTemerin, M., C. Carlson et J. P. Mcfadden. « The Acceleration of Electrons by Electromagnetic Ion Cyclotron Waves ». Dans Auroral Plasma Dynamics, 155–61. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0155.
Texte intégralSwift, Daniel W. « The Generation of Electric Potentials Responsible for the Acceleration of Auroral Electrons ». Dans Physics of Auroral Arc Formation, 288–95. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm025p0288.
Texte intégralLazutin, Leonid L. « Auroral Electrons in the Midnight Sector and Magnetospheric Disturbances ». Dans Physics and Chemistry in Space, 93–154. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70398-0_4.
Texte intégralWatt, C. E. J., et R. Rankin. « Alfvén Wave Acceleration of Auroral Electrons in Warm Magnetospheric Plasma ». Dans Auroral Phenomenology and Magnetospheric Processes : Earth and Other Planets, 251–60. Washington, D. C. : American Geophysical Union, 2012. http://dx.doi.org/10.1029/2011gm001171.
Texte intégralBrown, D. G., P. G. Richards, J. L. Horwitz et G. R. Wilson. « Semikinetic simulation of effects of lonization by precipitating auroral electrons on ionospheric plasma transport ». Dans Cross‐Scale Coupling in Space Plasmas, 97–103. Washington, D. C. : American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm093p0097.
Texte intégralNemzek, Robert J. « Diffusion of Echo 7 Electron Beams During Bounce Motion ». Dans Auroral Plasma Dynamics, 173–81. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0173.
Texte intégralKlumpar, D. M. « Statistical Distributions of the Auroral Electron Albedo in the Magnetosphere ». Dans Auroral Plasma Dynamics, 163–71. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm080p0163.
Texte intégralLysak, Robert L. « Electron and Ion Acceleration by Strong Electrostatic Turbulence ». Dans Physics of Auroral Arc Formation, 444–50. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm025p0444.
Texte intégralKaneda, Eisuke, Toshifumi Mukai et Kunio Hirao. « Synoptic Features of Auroral System and Corresponding Electron Precipitation Observed by Kyokko ». Dans Physics of Auroral Arc Formation, 24–30. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm025p0024.
Texte intégralActes de conférences sur le sujet "Auroral electrons"
Dashkevich, Zh V., B. V. Kozelov, A. G. Demekhov, Y. Miyoshi, S. Kasahara, S. Yokota, A. Matsuoka et al. « Evolution of the energetic electron flux observed by ARASE satellite and simultaneous aurora in the case of March 31, 2017, 00-01 UT. » Dans Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.022.
Texte intégralWu, Ya-dong, Ya-nan Li et Shi-kui Dong. « Statistical Flux and Energy Deposition of Auroral Electrons ». Dans Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.015101.
Texte intégralBallatore, Paola. « Relationship Among Pc5 Micropulsations, Auroral Activity and Relativistic Electrons : Preliminary Observations ». Dans PLASMAS IN THE LABORATORY AND IN THE UNIVERSE : New Insights and New Challenges. AIP, 2004. http://dx.doi.org/10.1063/1.1718449.
Texte intégralAshour-Abdalla, Maha, Meng Zhou, Mostafa El-Alaoui, David Schriver, Robert Richard et Raymond Walker. « The acceleration of electrons in the magnetotail and their auroral signatures ». Dans 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051066.
Texte intégralSchroeder, J. W. R., G. G. Howes, F. Skiff, C. A. Kletzing, T. A. Carter, S. Vincena et S. Dorfman. « Resonant interactions of Alfvén waves and electrons in the LAPD and the acceleration of auroral electrons ». Dans 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2021. http://dx.doi.org/10.1109/iceaa52647.2021.9539786.
Texte intégralTsurutani, B. T., G. S. Lakhina, A. Sen, P. K. Kaw, E. Echer, M. V. Alves, E. da Costa et al. « Interplanetary Alfvén Waves, HILDCAAs, Acceleration of Magnetospheric Relativistic “Killer” Electrons and Auroral Zone Heating ». Dans 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-301.
Texte intégralCucicov, Dorin. « Mytherrella : an interactive installation hallucinating mythological auroral formations ». Dans 28th International Symposium on Electronic Art. Paris : Ecole des arts decoratifs - PSL, 2024. http://dx.doi.org/10.69564/isea2023-7-short-cucicov-mytherrella.
Texte intégralKirillov, A. S., R. Werner et V. Guineva. « The simulation of vibrational populations of electronically excited N2and O2molecules in the middle atmosphere of the Earth during precipitations of high-energetic particles. » Dans Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.037.
Texte intégralBelakhovsky, Vladimir, Yaqi Jin et Wojciech Miloch. « Impact of the substorms and polar cap patches on GPS radio waves at polar latitudes. » Dans Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.020.
Texte intégralKleimenova, N. G., J. Manninen, T. Turunen, L. I. Gromova, Yu V. Fedorenko, A. S. Nikitenko et O. M. Lebed. « Unexpected high-frequency “birds”-type VLF emissions. » Dans Physics of Auroral Phenomena. FRC KSC RAS, 2020. http://dx.doi.org/10.37614/2588-0039.2020.43.008.
Texte intégralRapports d'organisations sur le sujet "Auroral electrons"
Bounar, K. H., et W. J. McNeil. Persistence of Auroral Electron Flux Events from DMSP/F9 Electron Measurements. Fort Belvoir, VA : Defense Technical Information Center, janvier 1992. http://dx.doi.org/10.21236/ada251241.
Texte intégralHowes, Gregory. Final Technical Report for DE-SC0014599 Physics of the Aurora : Laboratory Measurements of Electron Acceleration by Inertial Alfven Waves. Office of Scientific and Technical Information (OSTI), décembre 2023. http://dx.doi.org/10.2172/2251517.
Texte intégral